-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroups2021.json
986 lines (986 loc) · 98.2 KB
/
groups2021.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
{
"year": "2021",
"eventName": "fern-ArbeitsgruppenInspitationsmesse",
"eventAbbr": "fAIM",
"groups": {
"HFJ": {
"name": "Max-Planck-Institut f\u00fcr Kernphysik, Abteilung: Teilchen- & Astroteilchenphysik\u000b",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Dr. Dr. h.c. Manfred Lindner",
"room": 1,
"text": {
"de": "Theoretische Forschungsthemen: Neue Physik jenseits des Standardmodells – Theorie der Dunkle Materie – Neutrinotheorie</p><p>Forschungsarbeiten dazu: Modellierung und Analyse von theoretischen Erweiterungen des Standardmodells, alternative Erkl\u00e4rungen f\u00fcr Dunkle Materie und Neutrinomassen, neue Physik und fr\u00fches Universum, theoretische Interpretation von experimentellen Anomalien, ...</p><p>Experimente zum Nachweis neuer Physik: Dunkler Materie mit dem XENON-Experiment – Gerda\/LEGEND200: Neutrinoloser Doppelbetazerfall – STEREO: Die Suche nach neuartigen ,,sterilen\u201d Neutrinos – CONUS \u2013 koh\u00e4rente Neutrinostreuung und neue Physik</p><p>Forschungsarbeiten dazu umfassen das ganze Spektrum von der Detektorentwicklung, Aufbau, Messkampagnen, Datenanalyse und Physik-Interpretation, ...",
"en": "Theoretical research topics: New physics beyond the Standard Model – Theories of Dark Matter – Theoretical neutrino physics </p><p>Research in these fields includes modeling and analysis of Standard Model extensions, alternative explanations of Dark Matter and of neutrino masses, new physics and the early Universe, theoretical interpretations of experimental anomalies ...</p><p>Experiments for the search of new physics: Dark Matter with the XENON-experiment – Gerda\/LEGEND200: Neutrino-less double beta decay – STEREO: Searching for a new type of ,,sterile\u201d neutrinos – CONUS \u2013 hunting new physics with coherent neutrino scattering</p><p>Research work includes here the full spectrum from detector design, construction, measurement campaigns, data analysis and interpretation, ...</p><p>"
},
"times": [
"0",
"0",
"2",
"1",
"1"
],
"total_times": "1",
"link": "https:\/\/www.mpi-hd.mpg.de\/lin\/",
"image": "uploads\/cover_image_HFJ.png"
},
"ZPN": {
"name": "Kosmologie, Strukturbildung",
"field": "COS",
"contact": "[email protected]",
"profs": "Matthias Bartelmann",
"room": 2,
"text": {
"de": "Wir untersuchen die Entwicklung kosmischer Strukturen mit analytischen Methoden. Dazu verwenden wir vor allem eine neu entwickelte Theorie, die Konzepte aus der klassischen Mechanik mit solchen aus der Quantenfeldtheorie verbindet. Unser Ziel ist es, analytisch zu verstehen, wie die sp\u00e4te, nichtlineare Phase der kosmischen Strukturbildung verl\u00e4uft und warum kosmische Strukturen die universellen Eigenschaften haben, die simuliert und beobachtet werden.",
"en": "We study the evolution of cosmic structures with analytical methods. To do so, we use primarily a newly developed theory, which combines concepts from classical mechanics with concepts from quantum field theory. Our goal is to understand analytically how the late, non-linear phase of cosmic structure formation proceeds and why cosmic structures have the universal properties which are being simulated and observed."
},
"times": [
"1",
"1",
"2",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.ita.uni-heidelberg.de\/research\/bartelmann\/",
"image": "uploads\/cover_image_ZPN.jpg"
},
"TNX": {
"name": "Theoretische Neurowissenschaften",
"field": "MED",
"contact": "[email protected]",
"profs": "Prof. Daniel Durstewitz",
"room": 3,
"text": {
"de": "Wir entwickeln moderne Machine-Learning-Algorithmen zur Datenanalyse von Zeitreihendaten aus einer statistischen Perspektive. Unser prim\u00e4res Ziel ist es, den Daten zugrundeliegende dynamische Systeme zu inferieren und damit unser Verst\u00e4ndis der Daten zu verbessern. Wir sind Teil des Zentralinstituts f\u00fcr Seelische Gesundheit in Mannheim, entsprechend liegt unser Fokus auf der Analyse von neuronalen Daten an der Schnittstelle zwischen Neurowissenschaften und psychatrischen Anwendungen.",
"en": "We develop novel machine learning approaches for data analysis from a theory-driven statistical perspective.</p><p>Our main focus lies on time series data, from which we infer underlying dynamical systems. We are part of the Central Institute for Mental Health in Mannheim, so the aim of our work is primarily focused on understanding mental illness better and working towards developing improved treatments."
},
"times": [
"1",
"1",
"1",
"1",
"1"
],
"total_times": "2",
"link": "https:\/\/durstewitzlab.github.io\/",
"image": "uploads\/cover_image_TNX.png"
},
"PHT": {
"name": "Biophysical Engineering",
"field": "BIO",
"contact": "[email protected]",
"profs": "Kerstin G\u00f6pfrich",
"room": 4,
"text": "What is life and could it be different? Is it possible to build a living cell from scratch? While questions like these have fascinated mankind for centuries, it is exciting that science begins to develop tools to approach them. Bottom-up synthetic biology conventionally isolates and subsequently recombine biomolecules from cells. Instead of copying life as we know it, our group tries to engineer cells featuring new ways of assembly, information propagation and replication. Thereby, it will be possible to probe boundary conditions of life and, from a practical point of view, to build biomedical interfaces between natural and synthetic cells.</p><p>Towards this goal, we are combining biophysical tools, including DNA origami, microfluidics, lipid vesicles, and 3D printing with experimental methods, like confocal and high-speed microscopy, atomic force microscopy and computational approaches.</p><p>Are you looking for a young and friendly, supportive and hard-working research group? We are located at the Max Planck Institute for Medical Research and would be looking forward to hear from you!",
"times": [
"0",
"0",
"1",
"1",
"0"
],
"total_times": "1",
"link": "https:\/\/goepfrichgroup.de\/",
"image": "uploads\/cover_image_PHT.png"
},
"GKW": {
"name": "F18 - Biophysik",
"field": "BIO",
"contact": "[email protected]",
"profs": "Prof. Michael Hausmann",
"room": 5,
"text": {
"de": "Lichtoptische Hoechstaufloesung in nativen Biosystemen zur Beschreibung geometrisch-funktionaler Beziehung bei Krankheitsentwicklung und als Grundlage zur ab initio Organsynthese",
"en": "Light optical super resolution microscopy in native biosystems for the description of geometric functional relations in terms of disease dynamics and for template generation in organomorphic engineering"
},
"times": [
"1",
"0",
"0",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.kip.uni-heidelberg.de\/biophysik\/"
},
"HJI": {
"name": "HydroTraP",
"field": "UP",
"contact": "[email protected]",
"profs": "Prof. Dr. Werner Aeschbach",
"room": 6,
"text": {
"de": "Hydrosph\u00e4rische Tracer und Proxies (HydroTraP)</p><p>Die HydroTraP Gruppe verwendet verschiedene im fl\u00fcssigen Wasser sowie im Eis enthaltene Spurenelemente, Verbindungen und Isotope (Tracer) f\u00fcr die Altersdatierung, um Chronologien von Archiven sowie Erkenntnisse \u00fcber die Dynamik von Oberfl\u00e4chen- und Grundw\u00e4ssern ebenso wie von Gletschern zu gewinnen. Atmosph\u00e4rische Edelgase und Wasserisotope dienen dar\u00fcber hinaus als Indikatoren (Proxies) f\u00fcr Umweltbedingungen bei der Bildung von Wasser- und Eismassen, wie etwa damalige Temperaturen und andere Klimaparameter. HydroTraP nutzt diese Methoden f\u00fcr Beitr\u00e4ge zum Management von Wasserressourcen, zum Studium des Klimasystems und zur Rekonstruktion des Pal\u00e4oklimas. Zudem entwickeln wir weltweit f\u00fchrend neue Messtechniken und Interpretationsmethoden. ",
"en": "Hydrospheric Tracers and Proxies (HydroTraP)</p><p>The HydroTraP group uses various trace elements, compounds and isotopes (tracers) contained in liquid water as well as in ice for age dating, to obtain information on the chronology of archives and the dynamics of surface and subsurface waters as well as glaciers. Atmospheric noble gases and water isotopes additionally serve as proxies for environmental conditions during the formation of water and ice masses, such as past temperatures and other climate parameters. HydroTraP uses these methods to contribute to water resources management, to the study of the climate system, and for paleoclimate reconstruction. Furthermore, we are world-leading in the development of new analytical techniques and interpretation methods. "
},
"times": [
"2",
"2",
"1",
"2",
"1"
],
"total_times": "2",
"link": "https:\/\/www.iup.uni-heidelberg.de\/de\/research\/hydrotrap",
"image": "uploads\/cover_image_HJI.jpg"
},
"UUD": {
"name": "Data Analysis and Modeling in Medicine",
"field": "MED",
"contact": "[email protected]",
"profs": "Prof. J\u00fcrgen Hesser",
"room": 8,
"text": {
"de": "Die Arbeitsgruppe besch\u00e4ftigt sich mit Themen aus der Computational Medizinischen Physik\/Medizintechnik mit dem momentanen Schwerpunkt der Modellierung und Simulation unter Verwendung von Machine Leraning (z.B. tiefen Neuronalen Netzen) und anderer numerischer Data Science Techniken. Wir arbeiten eng mit der Industrie zusammen, um diese Verfahren in die klinische Praxis zu bekommen. Beispielhafte Anwendungen sind </p><p>- Brachysimulator: Strahlentherapieplanung f\u00fcr die Brachytherapie unter Ber\u00fccksichtigung der Gewebedeformation</p><p>- Entwicklung einer Radiomics-Pipeline zur Pr\u00e4diktion des Therapieerfolgs beim Rektum-Karzinom</p><p>- Ultraschall-Tomographie-Rekonstruktion bei Brustkrebsscreening</p><p>- VR-Unterst\u00fctzung f\u00fcr Operationen in der HNO",
"en": "The working group deals with topics from computational medical physics \/ medical technology with the current focus on modeling and simulation using machine learning (e.g. deep neural networks) and other numerical data science techniques. We are working closely with industry to get these procedures into clinical practice. Exemplary applications are</p><p>- Brachysimulator: radiation therapy planning for brachytherapy taking into account tissue deformation</p><p>- Development of a radiomics pipeline to predict the success of treatment in rectal carcinoma</p><p>- Ultrasound tomography reconstruction</p><p>- VR support for H&N surgery"
},
"times": [
"0",
"0",
"1",
"1",
"0"
],
"total_times": "2",
"link": "http:\/\/medphyssrv1.medma.uni-heidelberg.de\/cms\/",
"image": "uploads\/cover_image_UUD.jpg"
},
"WEF": {
"name": "AG Hausmann: Strahlenbiophysik – Komparative Genomik – Astrobiologie\/Astrobiophysik",
"field": "BIO",
"contact": "[email protected]",
"profs": "Hausmann, Hildenbrand",
"room": 9,
"text": {
"de": "Wir besch\u00e4ftigen uns mit Wechselwirkungen von biologischer Materie mit Strahlung, insbesondere wie biologische Systeme unter Strahlung ihre Integrit\u00e4t bewahren oder wieder herstellen k\u00f6nnen.</p><p>Dabei messen wir sowohl zum einen mit modernster optischer Lokalisationsmikroskopie 3D-Strukturen des Chromatins im Zellkern, als auch im Rahmen der Gesamtreaktion der Zelle Ver\u00e4nderungen der Organisation von Proteinen in der Membran und im Zellplasma.</p><p>Bedeutung und Auswirkung der Biophysik der DNA selbst, basierend auf ihrer Sequenz, wird im Bereich der komparativen Genomik untersucht, wo Muster von k-Worten in der DNA-Sequenz und ihre H\u00e4ufungen untereinander sowie in Relation zu genomischen Elementen verglichen werden.</p><p>Im Bereich der Astrobiologie werden Bedingungen f\u00fcr Biochemie und Leben auf der Basis von Strahlung von radioaktiven Elementen bis aktiven Galaxienkernen untersucht und modelliert.</p><p>Es werden drei eigenst\u00e4ndige Breakout Rooms angestrebt, jeweils einen f\u00fcr Strahlenbiophysik, einen f\u00fcr Komparative Genomik und einen f\u00fcr Astrobiologie\/Astrobiophysik.",
"en": "Our research is mainly focused on the interactions of biological matter with radiation, in particular how biological systems can maintain or restore their integrity under irradiation.</p><p>We use the latest optical localization microscopy to measure 3D structures of the chromatin in the cell nucleus and, as part of the overall reaction of the cell, changes in the organization of proteins in the membrane and in the cytoplasm.</p><p>The meaning and impact of the biophysics of DNA itself, based on its sequence, is examined in the area of comparative genomics, where patterns of k-words in the DNA sequence and their accumulations are compared with one another and in relation to genomic elements.</p><p>In the field of astrobiology, conditions for biochemistry and life are investigated and modeled on the basis of radiation from radioactive elements to active galaxy nuclei.</p><p>The aim is to have three independent breakout rooms, one each for radiation biophysics, for comparative genomics and for astrobiology\/astrobiophysics."
},
"times": [
"1",
"1",
"1",
"0",
"0"
],
"total_times": "2",
"link": "http:\/\/www.kip.uni-heidelberg.de\/user\/hausmann\/",
"image": "uploads\/cover_image_WEF.png"
},
"KJT": {
"name": "Image Analysis and Learning",
"field": "COM",
"contact": "[email protected]",
"profs": "Prof. Fred Hamprecht ",
"room": 11,
"text": {
"de": "Wir entwickeln auf grundlegenden Prinzipien fu\u00dfende Methoden des maschinellen Lernens, um schwierige Computer-Vision Probleme zu l\u00f6sen. Die konkreten Anwendungen auf komplexe Strukturen stammen haupts\u00e4chlich aus den Lebenswissenschaften.",
"en": "We develop principled machine learning methods to solve difficult computer vision problems, with applications mainly from the Life Sciences. "
},
"times": [
"1",
"1",
"1",
"1",
"2"
],
"total_times": "3",
"link": "https:\/\/hci.iwr.uni-heidelberg.de\/ial",
"image": "uploads\/cover_image_KJT.jpg"
},
"RDT": {
"name": "Quantum Dynamics&Control (Abteilung Pfeifer, MPIK)",
"field": "AMO",
"contact": "[email protected]",
"profs": "Dr. Anne Harth, Dr. Laura Cattaneo, Dr. Jos\u00e9 Crespo, Dr. Alexander Dorn, Dr. Robert Moshammer, Dr. Christian Ott, Dr. Claus Dieter Schr\u00f6ter, Prof. Dr. Thomas Pfeifer",
"room": 14,
"text": {
"de": "Die vielf\u00e4ltigen Projekte unserer Arbeitsgruppe drehen sich um die genaue Vermessung quantenmechanischer Struktur und Bewegung in Atomen und Molek\u00fclen. Hierzu kommen Hochleistungslaser zum Einsatz, deren elektrische Felder mit den Coulomb-Kr\u00e4ften der Kerne auf ihre gebundenen Elektronen mit vergleichbarer St\u00e4rke konkurrieren. Hiermit gelingt es die quantendynamischen Bewegungsabl\u00e4ufe in Atomen und Molek\u00fclen gezielt zu beeinflussen und in Zukunft vielleicht \"Laserchemie\" oder auch \"molekulare Quantenrechner\" zu erm\u00f6glichen. Koinzidenzdetektion von Elektronen, Ionen und von Spektren extrem ultravioletter&R\u00f6ntgen-Strahlung (auch an Freie-Elektronen-Lasern, z.B. EuXFEL oder FLASH in Hamburg) erm\u00f6glichen die umfangreiche Abbildung zum besseren Verst\u00e4ndnis des \"Innenlebens\" von Atomen und Molek\u00fclen. Die Arbeitsgruppe besch\u00e4ftigt sich au\u00dferdem mit der Pr\u00e4zisionsspektroskopie hochgeladener Ionen zum Test fundamentaler Quantentheorien, zum Bau der genauesten Uhren (mit schnellsten Taktgebern), oder der \u00dcberpr\u00fcfung der Konstanz physikalischer Naturkonstanten.",
"en": "The diverse projects of our division evolve around the precise measurement of quantum-mechanical phenomena in atoms and molecules. This research is powered by high-performance lasers, delivering electric fields that compete on a comparable scale with the Coulomb forces acting on electrons when bound to their nuclei. This way, it is possible to steer quantum-dynamical processes in atoms and molecules that may enable transformative applications such as \"laser chemistry\" or \"molecular quantum computers\" in the future. Coincidence detection of electrons, ions or spectra of extreme ultraviolet&x-ray radiation (including work at free electron lasers, e.g. EuXFEL or FLASH at Hamburg) allow snapshots of the \"inner life\" of atoms and molecules, and thus push forward our understanding. Another focus of our division is the precision spectroscopy of highly charged ions for tests of fundamental quantum theories, for making the most precise (fastest-ticking) clocks, and towards tests of the constancy of natural constants."
},
"times": [
"0",
"1",
"1",
"1",
"1"
],
"total_times": "2",
"link": "https:\/\/www.mpi-hd.mpg.de\/mpi\/de\/forschung\/abteilungen-und-gruppen\/quantendynamik-und-kontrolle",
"image": "uploads\/cover_image_LDS.png"
},
"WGY": {
"name": "Exoplaneten - Landessternwarte K\u00f6nigstuhl",
"field": "AST",
"contact": "[email protected]",
"profs": "Prof. Andreas Quirrenbach, Dr. Sabine Reffert",
"room": 15,
"text": {
"de": "Hoch oben \u00fcber Heidelberg untersucht die Gruppe \"Exoplaneten\" der Landessternwarte K\u00f6nigstuhl Planeten um ferne Sterne. Unser Fokus liegt dabei auf der Suche nach Planeten mit der Radialgeschwindigkeitsmethode, d.h. der Dopplerverschiebung der stellaren Spektrallinien aufgrund der Bewegung um den gemeinsamen Schwerpunkt von Stern und Planet. Dazu nutzen wir den CARMENES Spektrographen in Spanien, aber auch demn\u00e4chst Beobachtungen unseres neuen Waltz-Spektrographen hier an der Sternwarte. Au\u00dferdem nutzen wir CARMENES und andere hochaufl\u00f6sende Spektrographen f\u00fcr die Charakterisierung der Atmosph\u00e4ren von Transitplaneten mit der Methode der Transmissionspektroskopie und f\u00fcr die Best\u00e4tigung von Planetenkandidaten des TESS Satelliten. Dar\u00fcber hinaus sind wir Teil des NACO-ISPY Projekts, dessen Ziel es ist Exoplaneten mit dem sogenannten \"High-Contrast Imaging\" direkt abzubilden.",
"en": "High above Heidelberg, the \"Exoplanets\" group of the Landessternwarte K\u00f6nigstuhl characterizes planets around distant stars. We focus on the search for planets using the radial velocity method (RV), i.e., the Doppler shift of the stellar spectral lines due to its motion around the common centre of gravity of star and planet. Doing so, we use the CARMENES spectrograph in Spain, but also soon observations from our newly commissioned Waltz spectrograph here at the observatory. Further, we use CARMENES and other high-resolution spectrographs to characterize the atmospheres of transiting exoplanets with the transmission spectroscopy method and to confirm planet candidates from the TESS satellite. In addition, we are also part of the NACO-ISPY project, which aims to directly image exoplanets with so-called \"high-contrast imaging\"."
},
"times": [
"1",
"1",
"1",
"1",
"0"
],
"total_times": "4",
"link": "https:\/\/www.lsw.uni-heidelberg.de\/projects\/exoplanets\/",
"image": "uploads\/cover_image_WGY.png",
"video": "uploads/LSW_Exoplanetengruppe_Messe_2021.mp4",
"video_url": "https://heibox.uni-heidelberg.de/f/fa96f5ab4a4e4ce889b0/"
},
"RRM": {
"name": "Limnophysik",
"field": "UP",
"contact": "[email protected]",
"profs": "Dr. Bertram Boehrer (PD)",
"room": 16,
"text": {
"de": "Die Limnophysik bearbeitet physikalische Prozesse in geschichteten Gew\u00e4ssern also Seen, Talsperren u.\u00e4. Wir behandeln Themen wie extreme Gasdr\u00fccke, physikalisch chemische Eigenschaften von limnischen W\u00e4ssern, permanent geschichtete Seen und numerische Simulation von geschichteten Gew\u00e4ssern. Vieles auch von dem Hintergrund des Einflusses durch das ver\u00e4nderliche Klima. ",
"en": "The Limnophysics deals with physical processes in stratified waters such as Lakes, Reservoirs and similar waterbodies. We work on topics like extreme gas pressures, physco-chemical properties of limnic waters, permanently stratified lakes and numerical simulation of stratified lakes. Many of these topics gain importance under consideration of climate variability."
},
"times": [
"1",
"2",
"0",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.ufz.de\/limnophysik",
"image": "uploads\/cover_image_RRM.jpg"
},
"SLE": {
"name": "ALICE Arbeitsgruppe am Physikalischen Institut",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Dr. Johanna Stachel, Prof. Dr. Klaus Reygers",
"room": 17,
"text": {
"de": "Die internationale ALICE Arbeitsgruppe am Physikalischen Institut Heidelberg untersucht Kernmaterie bei extremen Temperaturen und Dichten. Dazu werden Schwerionen oder Protonen bei nahezu Lichtgeschwindigkeit am Large Hadron Collider des CERN zur Kollision gebracht. In diesen Kollisionen wird das sogenannte Quark-Gluon-Plasma produziert. Unsere Gruppe ist an mehreren der Hauptdetektorsysteme des ALICE Experiments beteiligt. Unser Hauptaugenmerk liegt auf dem Transition Radiation Detector. Modernste Datenanalysemethoden, wie z.B. machine learning, werden eingesetzt um die produzierten Teilchen zu studieren. Aus diesen Untersuchungen wollen wir auf die Eigenschaften des Quark-Gluon-Plasmas schließen. Du kannst bei uns eine Bachelor- oder Masterarbeit in den Bereichen Datenanalyse, Phänomenologie (im Rahmen des SFB ISOQUANT) oder Detektorphysik schreiben. Wir freuen uns darauf Dich kennenzulernen!",
"en": "The international ALICE group at the physics institute in Heidelberg is studying nuclear matter under extreme conditions. For that we collide almost light speed heavy ions and protons at the Large Hadron Collider at CERN. In those collisions the so-called quark-gluon plasma is produced. Our group is involved in various of the main detector systems of the ALICE experiment. Especially we lead the efforts of the transition radiation detector. We use advanced data analysis techniques like machine learning to study the produced particles in order to reveal the properties of the quark-gluon plasma. We offer topics for bachelor and master theses in the areas of data analysis, phenomenology and detector physics. We are looking forward to meeting you!"
},
"times": [
"1",
"1",
"1",
"1",
"1"
],
"total_times": "5",
"link": "https:\/\/www.physi.uni-heidelberg.de\/Forschung\/kp\/",
"video": "uploads/Promo_German_full_Outtakes.mp4",
"video_url": "https://heibox.uni-heidelberg.de/f/f9c6028b86384952af7f/"
},
"LYB": {
"name": "Anwendungen von szintillierenden Fasern und Silizium Photomultipliern in der Teilchenphysik und Medizin",
"field": "PP",
"contact": "[email protected], [email protected]",
"profs": "Dr. Blake Leverington, Prof. Dr. Ulrich Uwer",
"room": 18,
"text": {
"de": "Die LHCb und \"Precision and Atomic Physics (PAT)' Gruppen am Physikalischen Institut entwickeln neue Teilchendetektoren die szintillierende und optische Fasern sowie SIlizium Photodetektoren f\u00fcr den Teilchennachweis verwenden. Verschiedene Anwendungen aus der Teilchenphysik und der medizischen Physik ben\u00f6tigen Detektoren mit einer sehr guten Ortsaufl\u00f6sung. Aktuell werden Detektoren f\u00fcr das LHCb Experiment am CERN und f\u00fcr das Heidelberger Ionenstrahl Therapiezentrum entwickelt und installiert. </p><p>Bachelor- und Masterstudenten sowie Doktoranden nehmen am Design, der Duchf\u00fchrung von Experimenten und der Datenanalyse der Experimente mit unterschiedlich Detektortypen teil. Hierbei k\u00f6nnen Studenten z.B.auf Themengebiete wie der Elektronik und FPGA Entwicklung f\u00fcr Echt-Zeit Datennahme, dem mechanischen Design von Teilchendetektoren, sowie der Datenanalyse und Simulationen mit Hilfe von Monte Carlo Methoden arbeiten. ",
"en": "The LHCb and \u2018Precision and Atomic Physics (PAT)\u2019 groups in the Physkaliches Institut are developing new particle detectors based on scintillating optical fibres and solid-state photodetectors for multiple applications requiring precise position information, including high energy and medical physics. Current detectors are being developed and installed at the LHCb experiment at CERN, as well as for the experimental beamline at the Heidelberg Ion-beam Therapy Clinic. There is also ongoing development of new projects. Bachelor, Master and Doctoral students participate in the design, study, development, data collection and the analysis for these various detectors. Students will learn topics such as Electronics and FPGA development for real time data processing, mechanical detector design, data analysis techniques, and Monte Carlo simulation. "
},
"times": [
"1",
"0",
"0",
"2",
"2"
],
"total_times": "1",
"link": "http:\/\/lhcb-public.web.cern.ch\/",
"image": "uploads\/cover_image_LYB.jpg"
},
"HHV": {
"name": "Dynamik in Kollisionen mit Atomen, Molek\u00fclen und Clustern",
"field": "AMO",
"contact": "[email protected]",
"profs": "PD Dr. Alexander Dorn",
"room": 21,
"text": "St\u00f6\u00dfe zwischen Elektronen und Atomen sind in unserer Umwelt allgegenw\u00e4rtig. In unserem Labor untersuchen wir diese Ionisationsprozesse in gr\u00f6\u00dftm\u00f6glichem Detail, indem wir alle geladenen Bruchst\u00fccke - also Elektronen und Ionen - mit einem Reaktionsmikroskop impulsaufgel\u00f6st nachweisen. St\u00f6\u00dfe mit Partnern wie Wasserstoff und Helium, die aus nur wenigen Bausteinen bestehen oder ultrakalten Atomen erlauben es grundlegende physikalische Rechnungen zu testen. St\u00f6\u00dfe mit organischen Molek\u00fclen und DNA-Bausteinen sind z.B. in der Strahlentherapie relevant. Hier beobachten wir bisher unbekannte Reaktionen, die durch die Einbettung der Molek\u00fcle in ihre nat\u00fcrliche Umgebung aus Wasser verursacht werden.",
"times": [
"2",
"2",
"2",
"1",
"1"
],
"total_times": "2",
"link": "https:\/\/www.mpi-hd.mpg.de\/mpi\/de\/forschung\/abteilungen-und-gruppen\/quantendynamik-und-kontrolle\/forschung\/ultrakalte-dynamik-und-kollisionen-ag-dorn",
"image": "uploads\/cover_image_HHV.png"
},
"SXN": {
"name": "Quantum Fluids",
"field": "AMO",
"contact": "[email protected]",
"profs": "Jun.-Prof. Lauriane Chomaz",
"room": 22,
"text": {
"de": "Die Aufdeckung neuartiger Quantenph\u00e4nomene ist das Ziel des Experiments der neuen Generation, das wir aufbauen und in dem wir Dysprosium-Atome k\u00fchlen und fangen werden. Als magnetischstes Element des Periodensystems weist Dysprosium starke interatomare Dipol-Dipol-Wechselwirkungen auf. Im Gegensatz zu den Standard-Kontakt-Wechselwirkungen sind die Dipol-Wechselwirkungen langreichweitig und anisotrop, was eine interessante neue Wendung in der Physik bringt. In unserem neuen Labor werden wir uns auf die Auswirkungen solcher Wechselwirkungen in Quantenfl\u00fcssigkeiten konzentrieren, die im niederdimensionalen Raum und in einem uniformen Potential gefangen sind, da in diesen Geometrien Quantenfluktuationen und kritische Effekte besonders ausgepr\u00e4gt sind.",
"en": "Unveiling novel quantum phenomena is the aim of the new-generation experiment that we are building and in which we will cool and trap dysprosium atoms. Being the most magnetic element of the periodic table, dysprosium presents strong interatomic dipole-dipole interactions. Contrasting with the standard contact interactions, the dipolar interactions are long-range and anisotropic, which brings an interesting new twist in the physics. In our new lab, we will focus on the impact of such interactions in quantum fluids trapped in lower-dimensional space and in uniform potential, since, in these geometries, quantum fluctuations and critical effects are exalted."
},
"times": [
"2",
"1",
"1",
"1",
"2"
],
"total_times": "2",
"link": "https:\/\/www.physi.uni-heidelberg.de\/Mitarbeiter\/madetails.php?id=1371",
"image": "uploads\/cover_image_SXN.jpg"
},
"JWS": {
"name": "Cosmology & Galaxy clusters",
"field": "COS",
"contact": "[email protected]",
"profs": "Priv.-Doz. Dr. Matteo Maturi",
"room": 23,
"text": {
"de": "Galaxienhaufen sind die gr\u00f6\u00dften gravitationsgebundenen Strukturen in unserem Universum und als solche die idealen Sonden, um die Eigenschaften der mysteri\u00f6sen dunklen Materie und der dunklen Energie sowie die Eigenschaften der Schwerkraft selbst zu untersuchen. Das lernen wir in dieser Gruppe.",
"en": "Galaxy clusters are the largest gravitationally bound structures in our universe and as such they are the ideal probes to investigate the properties of the mysterious dark matter and dark energy as well as the properties of gravity itself. This is what we study in this group."
},
"times": [
"1",
"1",
"2",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.ita.uni-heidelberg.de\/~maturi\/projects.html",
"image": "uploads\/cover_image_JWS.jpeg"
},
"DTD": {
"name": "Geometric Algebra",
"field": "MAT",
"contact": "[email protected]",
"profs": "P.D. Maarten DeKieviet, PhD",
"room": 24,
"text": "Geometric Algebra (GA), or Clifford Algebra, is possibly the most powerful and unifying language for physics. Still, this centuries old mathematics has not made it into the standard physics curriculum. It is thanks to the pioneering work of Hestenes, Doran and others, that since a few decades GA has been systematically applied to various fields of physics. During the last decade, computer graphics and robotics have discovered the tremendous advantages of this language and push its general acceptance substantially. For physics, however, the number of problems solved with GA ist still rather limited. </p><p>This semester, for the second year in a row, I organize a seminar on GA for physics, which by now covers almost all fields of physics, starting from Classical Mechanics, through Quantum Theory, all the way to Cosmology, and even Calculus. And that, using just one simple language! That is amazing and demonstrates the unifying power of GA impressively.</p><p>The beauty of GA is not only its very elegant and simple structure, with which physics is being recapped, but, very importantly, its revealing of deeper connections, not only within one field of physics, but between diffent fields as well. \u201eWhy hasn\u2018t anyone told me that before?\u201c, is the standard reaction of students working with me on GA. </p><p>There is still a lot of work to do, but I guarentee, it\u2018s worth it. So pick your favorate field of physics and I am sure, that we will discover something new, using GA. Or let\u2018s pick up that problem that has been bothering you for so long, we will tackle it in GA! </p><p>Come and join our GA task force, it will change the way you understand physics...",
"times": [
"0",
"0",
"1",
"0",
"1"
],
"total_times": "2"
},
"PTN": {
"name": "GIHAS",
"field": "CM",
"contact": "[email protected]",
"profs": "P.D. Maarten DeKieviet, PhD",
"room": 25,
"text": "The GIHAS experiment focuses on the structure and dynamics in and at the outermost surface layer of advanced materials. The studies include the characterization of well-ordered thin organic films, with particular emphasis on interplay between the surface structure and the dispersion of the corresponding phonon modes. These investigations are to be performed using a \"traditional\" Helium Atom Scattering (HAS) apparatus, equipped with a high resolution Time-of-Flight (ToF) spectrometer (energy transfer ranging from 0.1 \u201310 meV).</p><p> In extension to the study of ordered materials, we plan to measure charge transfer processes in disordered organic materials. The charge transfer process in organic electronics is known to be accompanied by electronic and vibronic excitations that follow dissipative decay channels which lie just below the surface. The goal is to identify these decay channels and to systematically investigate them with respect to their charge transfer efficiency. </p><p>For this purpose, a second atomic beam using 3He will be installed under grazing incidence on the existing HAS apparatus that makes use of the spin echo principle. The Grazing Incidence Helium Atom Scattering (GIHAS) spectrometer is now under construction at the CAM. The 3He beam will provide a spatial resolution that ranges from local atomic structures (10 pm) up to the morphology of larger domains (a few microns). This, in combination with the above mentioned energy resolution, makes the GIHAS experiment the world's first instrument of its kind.</p><p>We offer Bsc. and MSc. project that install and test the ToF capabilities of the Machine. In parallel, we need help by preparing the 3He Spin Echo option, which will need to be constructed and tested.",
"times": [
"1",
"2",
"0",
"0",
"0"
],
"total_times": "2",
"image": "uploads\/cover_image_PTN.jpg"
},
"WRB": {
"name": "Correlated (&) Quantum Materials",
"field": "CM",
"contact": "[email protected]",
"profs": "R\u00fcdiger Klingeler",
"room": 26,
"text": "Novel quantum materials exhibit a plethora of novel phenomena which allow further understanding the effect of quantum fluctuations in many body systems. In our materials-based approach we particularly focus on quantum ground states like unconventional superconductivity, electronic nemantic order or spin liquid states which challenge standard theory and hence enable extending our understanding of quantum many-body systems. In addition to such fundamental questions, we investigate novel materials regarding their potential usage in lithium- and sodium-ion batteries. For the various unique experimental techniques used to address these research topics, please see our wabpages.</p><p>",
"times": [
"0",
"0",
"0",
"1",
"1"
],
"total_times": "2",
"link": "https:\/\/www.kip.uni-heidelberg.de\/cmm",
"image": "uploads\/cover_image_WRB.jpg"
},
"NYH": {
"name": "Quantendynamik",
"field": "AMO",
"contact": "[email protected]",
"profs": "Prof. Matthias Weidem\u00fcller, Dr. Gerhard Z\u00fcrn",
"room": 27,
"text": {
"de": "Unsere Quantendynamik Gruppe forscht an ultrakalten Quantengasen, Rydberg Atomen und kalten Ionen.</p><p>Wir untersuchen beispielsweise, ob und wie isolierte Quantensysteme thermisches Gleichgewicht erreichen, wie sich Polaronen in einem Bose-Einstein-Kondensat verhalten und wie man negativ geladenen Ionen effizient k\u00fchlen kann. </p><p>Wir sind ein Team von ca. 20 Leuten und erzielen mit unseren Experimenten sehr hohe Kontrolle \u00fcber kalte Atome mit Hilfe von modernen Lasersystemen und innovativer Mikrowellentechnologie.</p><p>Auf unsere Hiwis, Bachelor- und Masterstudenten warten vielf\u00e4ltige spannenende Aufgaben, wie der Aufbau von Fallen zum Fangen von Atomen oder das Design von zeitinvertierten Vielteilchen-Hamiltonian. ",
"en": "Our Quantum dynamics group investigates ultracold quantum gases, Rydberg atoms and cold ions.</p><p>We study for example if and how isolated quantum systems reach thermal equilibrium, how polarons behave in a Bose-Einstein-condensate and how negatively charged ions can be efficiently cooled.</p><p>We are a team of about 20 people and achieve high control over cold atoms using modern laser systems and innovative microwave technologies.</p><p>Hiwis, Bachelor- and Master-students can expect diverse and exciting tasks, like the setup of optical potentials to trap atoms or the design of time-reversed many-body Hamiltonians."
},
"times": [
"0",
"1",
"1",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.physi.uni-heidelberg.de\/Forschung\/QD\/",
"image": "uploads\/cover_image_NYH.jpg"
},
"ALU": {
"name": "Hochenergiephysik - Mu3e & ATLAS",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Dr. Andre Sch\u00f6ning",
"room": 28,
"text": {
"de": "Wir arbeiten an 2 Experimenten in der Teilchenphysik \u2013 Mu3e und ATLAS.</p><p>F\u00fcr Mu3e bauen wir einen ultra-d\u00fcnnen Pixeldetektor aus hochspannungsbetriebenen monolithischen aktiven Pixelsensoren (HV-MAPS). Wir sind an der Entwicklung dieser Sensoren beteiligt und charakterisieren diese in unserem Labor sowie auf Teststrahlkampagnen. Au\u00dferdem f\u00fcgen wir die Sensoren zu Detektormodulen zusammen und k\u00fcmmern uns um deren Integration in das Experiment.</p><p>F\u00fcr das ATLAS Experiment entwicklen wir einen Spurtrigger f\u00fcr das Phase II Upgrade des Experiments. Der Spurtrigger basiert auf Hardwarekomponenten \u2013 FPGAs und Assoziativspeicherchips (AM-Chips) \u2013 letzere werden extra f\u00fcr diesen Zweck entwickelt. Wir sind an der Entwicklung der Firmware f\u00fcr die FPGAs sowie an der Entwicklung und der Tests der AM-Chips beteiligt.",
"en": "We are working on 2 particle physics experiments - Mu3e and ATLAS.</p><p>For Mu3e, we are building an ultra-thin pixel detector from high-voltage monolithic active pixel sensors (HV-MAPS). We are involved in the development of these sensors and characterize them in our laboratory and on test beam campaigns. We also assemble the sensors into detector modules and take care of their integration into the experiment.</p><p>For the ATLAS experiment, we are developing a track trigger for the phase II upgrade of the experiment. The track trigger is based on hardware components - FPGAs and associative memory chips (AM chips) - the latter being developed specifically for this purpose. We are involved in the development of the firmware for the FPGAs and in the development and testing of the AM chips."
},
"times": [
"1",
"1",
"2",
"0",
"0"
],
"total_times": "2",
"video": "uploads/mu3e_atlas_intro_final.mp4",
"video_url": "https://heibox.uni-heidelberg.de/f/98c23c3e89e545f1856e/"
},
"ADV": {
"name": "Palaeoclimate dynamics and variability",
"field": "UP",
"contact": "[email protected]",
"profs": "Dr. Kira Rehfeld",
"room": 29,
"text": {
"de": "\u00c4nderungen des Klimas an der Erdoberfl\u00e4che entstehen durch interne Dynamik und externen Antrieb. Auch die Randbedingungen des Systems ver\u00e4ndern sich fortlaufend. Wir wollen verstehen, wie dynamische und thermodynamische Prozesse zur Klimavariabilit\u00e4t beitragen. Um eine Br\u00fccke vom Wetter zum Klima und zur Geologie zu schlagen, kombinieren wir Klimamodellierung, Pal\u00e4oklimaarchive und Methoden f\u00fcr komplexe Systeme. Unsere wichtigsten Tracer f\u00fcr die Modellierung und Rekonstruktion von Klima- und Umweltdynamik sind Wasserisotopologe aus Spel\u00e4othemen (z.B. Tropfsteine) und Eisbohrkernen sowie Vegetation. So k\u00f6nnen wir testen, wie gut Klimamodelle das vergangene und gegenw\u00e4rtige Klima erfassen und wie sicher wir uns in Bezug auf Statistiken h\u00f6herer Ordnung und raum-zeitliche Muster des simulierten zuk\u00fcnftigen Klimas sein k\u00f6nnen.",
"en": "Changes in climate at the Earth's surface arise due to internal dynamics and external forcing. The boundary conditions of the system also continuously evolve. We aim to understand how dynamic and thermodynamic processes contribute to climate variability. To bridge from weather to climate and geology, we combine climate modeling, palaeoclimate archives, and complex systems approaches. Our key tracers for modeling and reconstructing climate and environmental dynamics are water isotopologues from speleothems and ice cores, and vegetation. This allows us to test how well climate models capture past and present climate, and how confident we can be in higher-order statistics as well as spatiotemporal patterns of simulated future climates."
},
"times": [
"2",
"1",
"1",
"1",
"0"
],
"total_times": "1",
"link": "https:\/\/www.iup.uni-heidelberg.de\/institut\/forschung\/groups\/palaeo\/index_stacy.html",
"image": "uploads\/cover_image_ADV.png"
},
"QNM": {
"name": "Atom- und Molek\u00fclphysik am Cryogenic Storage Ring (CSR)",
"field": "AMO",
"contact": "[email protected]",
"profs": "Holger Kreckel, Andreas Wolf, Oldrich Novotny",
"room": 30,
"text": {
"de": "Wir suchen motivierte Studenten und Doktoranden f\u00fcr Experimente am Cryogenic Storage Ring (CSR) des Max-Planck-Institut f\u00fcr Kernphysik in Heidelberg. Der CSR ist ein einzigartiger elektrostatischer Speicherring, der mit f\u00fcssigem Helium bei kryogenen Temperaturen betrieben werden kann. Unsere Experimente befassen sich mit fundamentalen atomaren und molekularen Prozessen. Neben astrophysikalisch motivierten Reaktionen und Elektronen-Kollisionen f\u00fchren wir zustandsspezifische Laser-Experimente durch. </p><p>Wir bieten die M\u00f6glichkeit an einer weltweit einzigartigen Anlage mit einem erfahrenen Team von Experimentatoren, Technikern und internationalen Wissenschaftlern zu arbeiten, und dabei breite interdisziplin\u00e4re Erfahrungen zu sammeln.</p><p>",
"en": "We are looking for motivated candidates for student and doctoral positions at the Cryogenic Storage Ring (CSR), a unique heavy ion storage ring that operates at liquid helium temperature. The CSR is situated at the Max-Planck-Institut f\u00fcr Kernphysik in Heidelberg. Our experiments focus on atomic and molecular physics; they range from astrophysical reactions to electron collision and recombination studies. Furthermore, we employ various continuous and pulsed laser systems for photodissociation and photodetachment studies with quantum state-selected atomic and molecular ions. </p><p>We offer the possibility to join a team of experienced experimentalists, technicians and international scientists to work at a world-wide unique facility on exciting interdisciplinary projects. </p><p>"
},
"times": [
"1",
"0",
"1",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.mpi-hd.mpg.de\/blaum\/storage-rings\/csr\/index.en.html ",
"image": "uploads\/cover_image_QNM.jpg"
},
"VXB": {
"name": "Gruppe Oberthaler",
"field": "AMO",
"contact": "[email protected]",
"profs": "Prof. Dr. Markus Oberthaler",
"room": 31,
"text": {
"de": "In der Gruppe von Markus Oberthaler k\u00fchlen wir Atome bis ganz nah an den absoluten Nullpunkt. Zwei Experimente benutzen diese ultrakalten Gase als analogen Quantensimulator f\u00fcr fundamentale quantenfeldtheoretische Fragen. In einem dritten Experiment dienen quantenoptische K\u00fchlmethoden dazu, in ganz anderen Bereichen Fragen zu beantworten, so zum Beispiel: Wie alt ist eigentlich das Wasser im tiefen Ozean oder in einem See in Afrika? Kommt vorbei, dann erz\u00e4hlen wir euch gerne mehr zu diesen Themen und zu m\u00f6glichen Abschlussarbeiten in unserer Gruppe!",
"en": "In the group of Markus Oberthaler we cool atoms very close to absolute zero temperature. Two experiments use these ultracold gases as analog quantum simulator for fundamental questions in quantum field theory. In a third experiment, quantum optical cooling methods are used to answer questions in seemingly different research areas, for example: How old is the water in the deep ocean or in a sea in Africa? Stop by to learn more about these topics and the possibilities for a thesis in our group!"
},
"times": [
"1",
"1",
"1",
"1",
"1"
],
"total_times": "2",
"link": "http:\/\/www.kip.uni-heidelberg.de\/matterwave",
"video": "uploads/ATTA_Trailer.MP4",
"video_url": "https://heibox.uni-heidelberg.de/f/2d0b78bf8a1a43519c80/"
},
"ZUS": {
"name": "Heavy-ion physics with ALICE and ISOQUANT (AG Masciocchi)",
"field": "NUC",
"contact": "[email protected]",
"profs": "Prof. Dr. Silvia Masciocchi",
"room": 32,
"text": {
"de": "Wir sind eine Gruppe von Bachelor-, Master- und PhD-Studenten, die die Physik von hochenergetischen Schwerionenkollisionen untersuchen. In enger Zusammenarbeit mit der ALICE-Gruppe an der GSI in Darmstadt analysieren wir Daten von Kern-Kern-Kollisionen in ALICE und sind stark an der Entwicklung neuer Detektoren zur Teilchenverfolgung beteiligt.</p><p>ALICE ist eines der vier gro\u00dfen Experimente am Large Hadron Collider (LHC) des CERN, das die Physik stark wechselwirkender Materie bei extremen Energiedichten untersucht, bei denen die Bildung einer neuen Phase der Materie, des Quark-Gluon-Plasmas, erwartet wird.</p><p>Neben unseren Aktivit\u00e4ten in der Datenanalyse und der Hardwareentwicklung arbeiten wir auch eng mit dem Theoretischen Institut (ITP) unserer Universit\u00e4t zusammen. Im Rahmen des Sonderforschungsbereichs ISOQUANT arbeiten wir an einer ph\u00e4nomenologischen Beschreibung von hei\u00dfer QCD-Materie, indem wir die Entwicklung von stark wechselwirkender Materie, die in ultra-relativistischen Kollisionen entsteht, mit Hilfe der Fluiddynamik beschreiben.",
"en": "We are a group of bachelor, master and PhD students investigating the physics of high energy heavy ion collisions. In close cooperation with the ALICE group at GSI in Darmstadt, we are analysing data from nucleus-nucleus collisions in ALICE and are strongly involved in the development of new detectors for particle tracking.</p><p>ALICE is one of the four big experiments at the CERN Large Hadron Collider (LHC), which is dedicated to study the physics of strongly interacting matter at extreme energy densities where the formation of a new phase of matter, the quark-gluon-plasma, is expected.</p><p>Apart from our activities in data analysis and hands-on hardware development, we are also working closely together with the theory department (ITP) of our university. Within the ISOQUANT Collaborative Research Centre, we are working on a phenomenology description of hot QCD matter by using fluid dynamics to describe the evolution of strongly interacting matter produced in ultra-relativistic collisions."
},
"times": [
"1",
"0",
"0",
"1",
"1"
],
"total_times": "3",
"link": "https:\/\/www.physi.uni-heidelberg.de\/~sma\/",
"image": "uploads\/cover_image_ZUS.png",
"video": "https://aim.mathphys.info/uploads/GroupVideo.mp4",
"video_url": "https://heibox.uni-heidelberg.de/f/e0b5eb19dc9f4d2ebdaa/"
},
"WAZ": {
"name": "LHCb Gruppe Heidelberg",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Dr. Stephanie Hansmann-Menzemer, Prof. Dr. Ulrich Uwer",
"room": 33,
"text": {
"de": "Unsere Arbeitsgruppe ist Mitglied der LHCb Kollaboratio am CERN, ein auf die Untersuchung von Beauty und Charm-Hadronen spezialisertes Experiment. Unser Arbeitsgebiet deckt einen weiten Bereich von Aktivitäten ab, u.a. die Analyse der experimentellen Daten, die Entwicklung von Algorithmen für die Rekonstruktion der Teilchenspuren sowie der Bau eines neuen Spurdetektors für den geplanten Upgrade.</p><p> Die physikalischen Analysen die von unserer Arbeitsgruppe durchgeführt werden beinhalten die Untersuchung von Oszillations- und CP verletzenden Phänomenen schwerer Hadronen, die Suche nach sehr seltenen oder im Standardmodell verbotenen Zerfällen sowie die Untersuchung der kürzlich von der LHCb Kollaboration entdeckten Tetra- und Pentaquarks.",
"en": "We are member of the LHCb collaboration at CERN, an experiment dedicated to investigate Beauty- and Charm-Hadrons at high precision. Our group covers a broad range of activities, including analysis of experimental data, development of track reconstruction algorithms and construction of a new tracking detector for the coming upgrade of the LHCb detector.</p><p>Physics topics covered by our group are the investigation of oscillation and CP violating phenomena of heavy mesons, the search for very rare and and forbidden particle decays as well as the study of tetra- and pentaquarks recently discovered by the LHCb collaboration."
},
"times": [
"0",
"1",
"1",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.physi.uni-heidelberg.de\/Forschung\/he\/LHCb\/workgroup\/",
"image": "uploads\/cover_image_WAZ.jpg"
},
"RBV": {
"name": "Theory and Observations of Stars",
"field": "AST",
"contact": "[email protected]",
"profs": "Prof.dr.ir. Saskia Hekker",
"room": 34,
"text": "Stars are an important source of electromagnetic radiation in the universe allowing for studies of many phenomena, from distant galaxies to the interstellar medium, stellar structure and evolution, and extra-solar planets. Hence, our understanding of the physical processes that take place in stars underpins our knowledge in many fields of astronomy. However due to their opacity the internal structure of stars can not be viewed directly. Using the global oscillation modes exhibited by many stars together with measurements of the surface properties of stars and stellar models, i.e. asteroseismology, it is now possible to probe the layers hidden by the stellar surface and infer the stellar structure in a quasi-direct way.",
"times": [
"0",
"1",
"0",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.h-its.org\/research\/tos\/",
"image": "uploads\/cover_image_RBV.jpg"
},
"QJN": {
"name": "Strongly Correlated Systems ",
"field": "COM",
"contact": "[email protected]",
"profs": "Jan M. Pawlowski",
"room": 35,
"text": "We are working on strongly correlated systems, ranging from ultracold atoms over QCD to quantum gravity. Strong correlations in physics either originate in a large couplings and\/or large fields\/occupations and\/or large correlation lengths and\/or topological effects. </p><p>This leads to exciting phenomena such as phase transitions, competing order, spontaneous symmetry breaking, and non-trivial scaling in and out of equilibrium. </p><p>All of these systems or rather phenomena have in common, that their resolution requires non-perturbative methods. We use non-perturbative renormalisation group techniques (diagrammatic), lattice simulations (with and without machine learning) as well as semi-classical expansions. </p><p>(1) QCD: phase structure of QCD and its real-time properties including non-equilibrium aspects such as transport, hydro and far-from equilibrium. </p><p>(2) Ultracold Atoms: study of the dimensional crossover and the thermodynamic limit vs finite systems, </p><p>especially the BCS-BEC crossover in fermionic systems, dynamics and real time properties. </p><p>(3) Asymptotically Safe Gravity: study of the phase structure of asymptotically safe gravity with matter, stability of the system with and without matter, phenomenological consequences, quantitative reliability and Minkowski properties (real-time\/timelike)</p><p>(4) Lattice, Neuromorphic Computing & Machine Learning: Here we aim at simulations of in particular QCD and ultracold atoms (sign problem), as well as the study of real-time properties (inverse problems). In the context of neuromorphic computing we are also interested in the understanding of learning processes on the neuromorphic hardware. Finally, we also work on explainable machine learning. </p><p>",
"times": [
"1",
"1",
"2",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.thphys.uni-heidelberg.de\/~pawlowski\/"
},
"ZHC": {
"name": "Ultracold",
"field": "AMO",
"contact": "[email protected]",
"profs": "Prof. Selim Jochim, Dr. Philipp Preiss",
"room": 36,
"text": {
"de": "Wenn Ihr mit einzelnen Atomen spielen wollt, beobachten wollt, wie ein Phasen\u00fcbergang entsteht, wenn die Anzahl der Atome vergr\u00f6\u00dfert wird, dann kommt zu uns!",
"en": "If you would like to play with individual atoms and see how a phase transition emerges as the the number of atoms is increased, then come to us!"
},
"times": [
"1",
"1",
"1",
"1",
"1"
],
"total_times": "3",
"link": "http:\/\/ultracold.physi.uni-heidelberg.de\/",
"image": "uploads\/cover_image_ZHC.jpg"
},
"VMU": {
"name": "Many-Body Quantum Dynamics",
"field": "COM",
"contact": "[email protected]",
"profs": "PD Dr. Martin G\u00e4rttner",
"room": 37,
"text": {
"de": "Die Dynamik von Quanten-Vielteilchen Systemen ist auf herk\u00f6mmlichen Computern extrem schwer zu simulieren. Ein Weg um dieses Hindernis herum, welcher auf Richard Feynman zur\u00fcckgeht, ist es Computer zu verwenden, die selbst auf der Basis quantenmechanischer Gesetze funktionieren, sogenannte Quantensimulatoren. Die rasanten experimentellen Fortschritte der letzten Jahrzehnte haben diese Vision Realit\u00e4t werden lassen. Unsere Forschung besch\u00e4ftigt sich mit den Herausforderungen, die zu bew\u00e4ltigen sind damit Quantensimulationsexperimente wirklich die Grenzen unseres Verst\u00e4ndnisses von Quanten-Vielteichenphysik hinausschieben k\u00f6nnen. Eine dieser Herausforderungen ist die Suche Wegen um Probleme aus der Physik der kondensierten Materie und Hochenergiephysik mit Quantensimulatoren zu emulieren. Au\u00dferdem m\u00fcssen Quantensimulationsexperimente gegengetestet werden durch Simulationen auf herk\u00f6mmlichen Computern, wof\u00fcr wir effiziente numerische Algorithmen entwickeln. Desweiteren ist das Auslesen, also das extrahieren von relevanten Informationen aus den erzeugten Quantenzust\u00e4nden, oftmals nur eingeschr\u00e4nkt m\u00f6glich durch begrenzte Messm\u00f6glichkeiten und endliche Messstatistik. Um hier Abhilfe zu schaffen entwickeln wir effiziente Auslesemethoden die es erlauben nicht direkt messbare Gr\u00f6\u00dfen wie ungleichzeitige Korrelationen und Verschr\u00e4nkung zu extrahieren.",
"en": "The quantum dynamics of many-particle systems is a problem that is notoriously hard to solve numerically on conventional computers. One way of overcoming this challenge, which goes back to Richard Feynman, is to use devices that themselves function based on the laws of quantum mechanics, so called quantum simulators. Recent experimental progress in has let this vision become reality in labs around the world. Our research is centered around the challenges that arise on the way towards using quantum simulation experiments to push the borders of our understanding of many-body physics. One of these challenges is the search for ways in which quantum many-body problems that arise in other research field such as condensed matter and high energy physics can be emulated on quantum simulators. Also these quantum simulation experiments need to be benchmarked or verified by comparing to simulations on conventional computers, for which we develop efficient numerical methods. Finally, the readout, or extraction of the relevant information from the prepared quantum states is often limited due to limited detection capabilities or statistics. To alleviate this problem we develop efficient readout schemes for accessing quantities like unequal-time correlations or entanglement quantifiers."
},
"times": [
"1",
"2",
"2",
"2",
"2"
],
"total_times": "1",
"link": "http:\/\/www.kip.uni-heidelberg.de\/user\/marting\/",
"image": "uploads\/cover_image_VMU.png"
},
"YQI": {
"name": "Abteilung Medizinische Physik in der Radiologie am Deutschen Krebsforschungszentrum (DKFZ)",
"field": "MED",
"contact": "[email protected]",
"profs": "Prof. Mark E. Ladd",
"room": 38,
"text": {
"de": "Fortschrittliche radiologische Bildgebung nimmt eine zentrale Rolle ein bei der Versorgung von Krebspatienten im Rahmen der Fr\u00fcherkennung, der Bestimmung des Krankheitsstadiums sowie der Therapieplanung und \u2013\u00fcberwachung. In den letzten Jahren hat die Magnetresonanz-Tomographie (MRT) in diesem Zusammenhang zunehmend an Bedeutung gewonnen. Daher ist die Entwicklung neuer MRT-Methoden der Hauptfokus der Abteilung Medizinische Physik in der Radiologie am Deutschen Krebsforschungszentrum (DKFZ). Die umfasst Hardwareentwicklung f\u00fcr Ganzk\u00f6rper-7T-MR-Bildgebung, X-Kern-Bildgebung, die Erforschung molekularer Eigenschaften von Gewebe mittels Spektroskopie und der Messung chemischen Austauschs von Protonen zwischen Molek\u00fclen (CEST), der Bestimmung von magnetischen Eigenschaften von Gewebe mittels quantitativer Suszeptibilit\u00e4tsbildgebung, der Untersuchung von Zellmembranen in vivo mittels diffusionsgewichteter Bildgebung sowie der Erzeugung hyperpolarisierter MR-Kontrastmittel. Weitere Themen sind die optische Bildgebung, die MR-gef\u00fchrte Strahlentherapie und die Kombination von Positronen-Emissions-Tomographie und MRT.</p><p>Bitte melden Sie sich bei Interesse bei [email protected]; wir werden Sie hinsichtlich der M\u00f6glichkeiten f\u00fcr Abschlussarbeiten kontaktieren.",
"en": "Advanced radiological imaging plays a crucial role in clinical cancer care for early detection, staging, therapy planning and follow-up. In recent years, Magnetic Resonance Imaging (MRI) has gained increasing importance for these tasks. Therefore, the development of new MRI methods is the main focus of the Department Medical Physics in Radiology at the German Cancer Research Center (DKFZ). This includes hardware development for whole-body 7T MRI, X-nuclei imaging, investigating the molecular properties of tissue using spectroscopy and Chemical Exchange Saturation Transfer (CEST) imaging, assessing magnetic properties of tissue using Quantitative Susceptibility Mapping (QSM), probing cell membranes in vivo using Diffusion-Weighted Imaging (DWI), and generating hyperpolarized MRI contrast media. Further topics are optical imaging, MR-guided radiation therapy, and the combination of Positron Emission Tomography (PET) and MRI.</p><p> </p><p>If you are interested, please write to [email protected] and we will contact you regarding possibilities for theses."
},
"times": [
"1",
"0",
"1",
"0",
"1"
],
"total_times": "3",
"link": "https:\/\/www.dkfz.de\/de\/medphysrad\/",
"image": "uploads\/cover_image_YQI.jpg"
},
"KMP": {
"name": "Computer Vision Group",
"field": "COM",
"contact": "[email protected]",
"profs": "Prof. Bj\u00f6rn Ommer",
"room": 39,
"text": "The Computer Vision Group conducts research in the fields of machine vision and learning. Esp.:</p><p>semantic scene understanding, visual synthesis & interpretable AI, deep learning & self-supervision, deep metric & representation learning, object recognition in images and videos, and their interdisciplinary applications. ",
"times": [
"1",
"2",
"0",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/hci.iwr.uni-heidelberg.de\/compvis",
"video": "https:\/\/compvis.github.io\/taming-transformers\/images\/taming.mp4",
"video_url": "https:\/\/compvis.github.io\/taming-transformers\/images\/taming.mp4"
},
"VEW": {
"name": "LHC Physics and New Particles",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Tilman Plehn",
"room": 40,
"text": {
"de": "Unsere Arbeitsgruppe besch\u00e4ftigt sich mit der Phenomenologie der Teilchenphysik. Dabei interessieren wir uns insbesondere f\u00fcr </p><p>- QCD</p><p>- Physik jenseits des Standard Models inklusive dunkler Materie, </p><p>- Globale Analysen von LHC und Kosmologie Daten</p><p>- Machine learning",
"en": "Our group is working on particle physics phenomenology. We are particularly interested in </p><p>- QCD</p><p>- Physics beyond the Standard Model including dark matter</p><p>- Global analyses of LHC and cosmologie data</p><p>- Machine learning"
},
"times": [
"1",
"1",
"0",
"0",
"1"
],
"total_times": "1",
"link": "https:\/\/www.thphys.uni-heidelberg.de\/~plehn\/",
"image": "uploads\/cover_image_VEW.png"
},
"NND": {
"name": "ANP",
"field": "PP",
"contact": "[email protected]; [email protected]",
"profs": "Dr. Markus K\u00f6hli, Prof. Ulrich Schmidt",
"room": 41,
"text": {
"de": "Detektion von Wasser mit Hilfe kosmischer Strahlung - mit unserer Expertise in Kern- und Teilchenphysik arbeiten wir zusammen mit den Umweltwissenschaften an einem interdisziplin\u00e4ren Forschungsprojekt. Die neuartige Methode auf die wir uns konzentrieren misst die Menge an Wasserstoff in der Umgebung durch kosmische Neutronen, welche vom Boden entweder reflektiert werden oder welche darin verschwinden. Wir bieten als Projekte an, mit Hilfe von Monte Carlo Simulationsmodellen das Verst\u00e4ndnis von Transportprozessen zu verbessern, ebenso praktische Laborarbeit an Detektoren oder auch kreative L\u00f6sungen mit unserer Arduino-basierten Ausleseelektronik zu finden.</p><p>",
"en": "Detecting water using the cosmic radiation - with our expertise in nuclear and particle physics we are working together with environmental scientists in an interdisciplinary research project. The novel method we are focusing on measures the amount of hydrogen in the environment by cosmic-ray neutrons which are either reflected or absorbed by the ground. We offer to work on Monte-Carlo-based simulation models to understand transport processes, hands-on experience with detectors or creative solutions with our Arduino-based front-end electronics </p><p>"
},
"times": [
"1",
"1",
"2",
"2",
"2"
],
"total_times": "2",
"link": "https:\/\/www.physi.uni-heidelberg.de\/Forschung\/PAT\/Cosmic-Sense\/",
"image": "uploads\/cover_image_NND.jpg"
},
"DNW": {
"name": "ANP",
"field": "PP",
"contact": "[email protected]",
"profs": "Prof. Ulrich Schmidt",
"room": 42,
"text": {
"de": "Wir besch\u00e4ftigen uns mit der Suche nach Physik jenseits des Standardmodells mit Hilfe von Pr\u00e4zisionsexperimenten. Unsere Methoden sind Uhrenvergleichsexperimente, genauer vergleichen wir die Larmorpr\u00e4zession von 129-Xe mit 3-He. Je nach Versuchsaufbau suchen wir nach einem elektrischen Dipolmoment des 129-Xenon-Kerns (CP-Verletzung), Axionen oder einer Vorzugrichtung im Universum (Verletzung von CPT und Relativit\u00e4tstheorie). F\u00fcr den Aufbau dieser Experimente suchen wir Studierende, die Spa\u00df daran habe mit am Aufbaue eines Experiments dabei zu sein und sich in eines der folgenden Felder einzuarbeiten: Pr\u00e4zise Mechanik, analoge Messelektronik und Sensorauslese und Experimentsteuerung mit Hilfe von Mikrocontrollern.",
"en": "We use precision experiment to search for physics beyond the Standard Model. Our methods are clock comparison experiments, more specific, we compare the Larmor precession of 129-XE with 3-He. Depending on the setup we search for an electric dipole moment of the 129-Xe nucleus (CP-Violation), Axions or a preferred direction in our universe (Violation of CPT and relativity theory). To setup these experiment we search for students who enjoy to part of setting up an experiment and are willing to develop skills in: Precise mechanics, analog measurement electronics and sensor readout, and experiment control using microcontrollers.</p><p>"
},
"times": [
"1",
"1",
"1",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.physi.uni-heidelberg.de\/\/Forschung\/ANP\/XenonEDM\/",
"image": "uploads\/cover_image_DNW.jpg"
},
"XLA": {
"name": "AG Schaltungstechnik",
"field": "TI",
"contact": "[email protected]",
"profs": "Prof. Fischer",
"room": 43,
"text": {
"de": "In der Arbeitsgruppe werden mikroelektronische Schaltungen ('Chips') und Sensoren f\u00fcr den Nachweis von Teilchen oder Photonen entwickelt. Neben dem analogem und digitalem Schaltungsentwurf wird Firm- und Software f\u00fcr Messungen entwickelt und diese dann durchgef\u00fchrt und ausgewertet. Schwerpunkte liegen derzeit auf der Auslese von SiPM f\u00fcr PET (mit ETH, Z\u00fcrich und Stanford University), der Entwicklung von hybriden Pixeldetektoren f\u00fcr mittelenergetischen R\u00f6ntgenstrahlen (mit ESRF, Frankreich) sowie der Entwicklung mehrerer neuartiger Auslesekonzepte und Chips zum Nachweise einzelner Photonen, z.B. f\u00fcr das geplante DARWIN Experiment.",
"en": "The group develops microelectronic circuits ('chips') and sensors for the detection of particles or photons. After analogue and digital circuit design, test setups requiring FPGA firmware and readout software are developed. Measurements using radioactive sources of light pulses are carried out and analysed. The focus at the moment is on readout ASICs for SiPMs for PET applications (with ETH, Z\u00fcrich and Stanford University), on the design of a hybrid pixel detector system for medium energy X-rays (with ESRF, France) and on the development of various novel readout architectures and chips for the detection of single photons, for instance for the planned DARWIN experiment."
},
"times": [
"0",
"1",
"1",
"1",
"2"
],
"total_times": "1",
"link": "https:\/\/sus.ziti.uni-heidelberg.de",
"image": "uploads\/cover_image_XLA.jpg"
},
"BYI": {
"name": "Application Specific Computing",
"field": "TI",
"contact": "[email protected]",
"profs": "Prof. Dr. Robert Strzodka",
"room": 44,
"text": {
"de": "Unsere Forschung zielt auf eine signifikante Verbesserung der Performanz und Genauigkeit im anwendungsspezifischen Rechnen durch eine globale Optimierung \u00fcber das gesamte Spektrum von numerischen Methoden, Algorithmen, Software Implementierung und Hardware Beschleunigung. Das Potenzial hief\u00fcr ist enorm, denn typische Anwendungen nutzen nur 0.1% der Leistungsf\u00e4higkeit heutiger Computer.",
"en": "Our research focuses on significant improvements of performance and accuracy in application specific computing through a global optimization across the entire spectrum of numerical methods, algorithm design, software implementation and hardware acceleration. The potential is enormous, as typical scientific applications utilize only 0.1% of the peak performance of todays computers."
},
"times": [
"0",
"0",
"0",
"1",
"1"
],
"total_times": "1",
"link": "https://asc.ziti.uni-heidelberg.de",
"image": "uploads\/cover_image_BYI.png"
},
"ZOO": {
"name": "Far-from-equilibrium quantum dynamics",
"field": "COM",
"contact": "[email protected]",
"profs": "Thomas Gasenzer",
"room": 45,
"text": {
"de": "In vieler Hinsicht ist Natur im Gleichgewicht: Kräfte, die auf ein jedes Objekt wirken, auf jedes einzelne Molekül oder Atom, halten sich gegenseitig die Waage. Was aber wäre das Gleichgewicht ohne Bewegung? Die Natur „lebt“ geradezu dadurch, dass sie aus dem Gleichgewicht gerät und sich wieder in es zurückbewegt. Der ständige Wechsel von „Stop“ und „Go“ lässt fragen, wie sich Gleichgewichtszustände überhaupt einstellen. Oder gibt es vielleicht sogar Bedingungen, unter denen der Zustand des Gleichgewichts nicht zu erreichen ist? Was passiert genau, wenn eine Tasse Kaffee abkühlt? Diese vordergründig unscheinbaren Fragen eröffnen Einblicke in bislang unbekannte Phänomene von weitreichender praktischer Bedeutung. Extrem kalte Atomgase erlauben es heute, Modellsysteme gezielt im Nicht-Gleichgewicht zu realisieren. An ihnen lassen sich präzise Messungen durchführen, deren Ergebnisse helfen können, auch andere physikalische Systeme zu verstehen. In besonders interessanten Fällen läuft die Bewegung ins Gleichgewicht extrem langsam ab, so daß dieses in realistischen Zeiträumen gar nicht erreicht wird, man denke z.B. über Glas als eine Flüssigkeit nach. Langsam zu sein ist also ganz nach unserem Geschmack - wenn auch nicht in jeder Hinsicht. Unsere Computer empfinden wir beispielsweise irgendwie immer als *zu* langsam. Dem arbeiten wir aktiv entgegen, damit wir uns dann an der Langsamkeit des Seins erfreuen können. Wir nutzen z.B. Parallel Computing auf Grafikkarten, aber auch formale, mathematische, quantenfeldtheoretische Argumentation. Und zunehmend sind wir an neuen analogen Computing Architekturen im Bereich neuromorpher Hardware interessiert, deren Nutzung wir zusammen mit unseren Kolleg*innen am Institut entwickeln. Unsere Gruppe ist am Kirchhoff-Institut inmitten experimenteller Arbeitsgruppen aktiv, der physikalische, anwendungs-orientierte Blickwinkel bestimmt unser Tun. Zur nebenstehenden Illustration: (a) Unter der ultralangsam fließenden Glasscheibe die kritisch verlangsamte Bewegung eines Suprafluids. (b) Kühlprozess eines Nicht-Suprafluids. (c) Wir lieben die Quanten und lassen gleichzeitig die Katzen am Leben. ",
"en": "Equilibrium is a dominating characteristic of nature: Forces acting on every object, on every molecule or atom, mutually balance each other. But in fact, nature literally \u2018lives\u2019 on overcoming equilibrium \u2013 if it did not, life as we know it would not be possible. The constant change between \u2018stop\u2019 and \u2018go\u2019 leads us to the interesting question of how equilibrium states \u2013 e.g. of gaseous or liquid matter \u2013 form, and whether they invariably form at all. What exactly happens in a cup of coffee that is cooling down? Although these questions have been on the table not only since last week, some intricate problems remain unsolved. Today, ultra-cold atomic quantum gases, prepared in the lab at temperatures very close to absolute zero, allow us to construct specific model systems that enable us to perform precision measurements of their dynamic properties. We can use them to study how an equilibrium state is reached when starting from a particular, well-defined non-equilibrium state. In especially interesting cases, this equilibration proceeds extremely slowly, so that equilibrium is de facto never reached. Thinking of an exemplary illustration of such slowness try to think of glass as a fluid. So, slow is lit - but not under any circumstances. Our computers, e.g., we find, are notoriously too slow, whatever we invest in them. So we are working on overcoming this, to enjoy and understand the slowness in nature. For this, we seek, e.g., the help of clusters of graphics processing units, but also that of formal quantum field theoretical and mathematical arguments. And we are increasingly interested in looking for new analog computing systems in the realm of neuromorphic computing devices, collaborating with the experts at the institute, who are developing these. Our group is located at the Kirchhoff-Institute, doing theory in the midst of experimental physicists and always thinking from a physical, application-oriented point of view. Illustration: (a) Superfluid showing slowing flow on glass tablet showing super slow flow (b) Cooling non-super fluid (c) We love quantum but strive to keep cats alive. "
},
"times": [
"0",
"0",
"0",
"1",
"1"
],
"total_times": "2",
"link": "http:\/\/www.kip.uni-heidelberg.de\/gasenzer",
"image": "uploads\/cover_image_ZOO.jpg"
},
"ANT": {
"name": "cosmostatistics",
"field": "AST",
"contact": "[email protected]",
"profs": "Bjoern Malte Schaefer",
"room": 46,
"text": {
"de": "Die Bildung und Entwicklung von Strukturen im Universum ist eine Reflektion der Naturgesetze, vor allem der Schwerkraft. Wir untersuchen, wie Tests fuer die gravitative Wechselwirkung konstruiert werden koennen und ob Abweichungen von den Vorhersagen der allgemeinen Relativitaetstheorie gefunden werden koennen durch die Analyse der Verteilung von Materie auf den groessten Skalen.",
"en": "The formation and evolution of structures in the Universe is a reflection of the laws of physics, most notably those of gravity. We investigate how gravity can be tested and if deviations from general relativity can be found by analysing the distribution of matter on the largest scales."
},
"times": [
"0",
"0",
"1",
"1",
"0"
],
"total_times": "2",
"link": "https:\/\/www.ita.uni-heidelberg.de\/~spirou\/",
"image": "uploads\/cover_image_ANT.jpg"
},
"XLK": {
"name": "Nanomaterials for Optoelectronics",
"field": "CM",
"contact": "[email protected]",
"profs": "Prof. Jana Zaumseil",
"room": 47,
"text": "Our research is mainly focused on the synthesis, functionalization, characterization and application of nanomaterials (mostly carbon nanotubes) and organic semiconductors for optoelectronic devices. We are particularly interested in charge transport, excitation transfer and light-matter interaction (especially strong coupling: exciton-poalritons) in these materials. We use a wide range of experimental techniques from chemical synthesis, optical spectroscopy (e.g. fluorescence spectroscopy, Raman microscopy etc.), surface characterization (e.g. atomic force microscopy), device fabrication (e.g. under inert conditions, by aerosol jet printing etc.) to electrical and optical device characterization (transport measurements, electroluminescence etc.) also at crygenic temperatures.",
"times": [
"2",
"0",
"0",
"0",
"1"
],
"total_times": "2",
"link": "https:\/\/www.pci.uni-heidelberg.de\/apc\/zaumseil\/index.html",
"image": "uploads\/cover_image_XLK.png"
},
"VUM": {
"name": "CBM ",
"field": "NUC",
"contact": "[email protected]",
"profs": "Prof. Norbert Herrmann",
"room": 48,
"text": {
"de": "Die AG entwickelt und baut das Flugzeit - Detektorsystem f\u00fcr das zuk\u00fcnftige FAIR Experiment CBM (Compressed Baryonic Matter) mit dem das QCD Phasendiagramm bei hohen Baryonendichten untersucht werden soll. Die geplanten MRPC -Z\u00e4hler haben eine Zeitaufl\u00e4sung von besser als 60 ps und m\u00fcssen hohe Raten erlauben. Dies wird experimentell untersucht und entwickelt.",
"en": "Our local working group at PI in Heidelberg develops and coordinates the contruction of the Time - of - Flight system of the future FAIR experiment CBM (Compressed Baryonic Matter) that will allow to study the QCD phase diagram in the region of high baryon densities. This form of matter is expected to exist in the core of heavy neutron stars. Our contribution is the characterization and operation of a system of MRPC counters that have to have a time resolution of better that 60ps over an area of 100 m2. This performance is being verified in several test experiments."
},
"times": [
"1",
"1",
"2",
"2",
"2"
],
"total_times": "2",
"link": "https:\/\/www.cbm.gsi.de",
"image": "uploads\/cover_image_VUM.jpg"
},
"GLT": {
"name": "Star Formation and Dynamics of the Interstellar Medium",
"field": "AST",
"contact": "[email protected]",
"profs": "Prof. Ralf Klessen",
"room": 49,
"text": {
"de": "Wir besch\u00e4ftigen uns mit verschiedenen Aspekten der Sternentstehung in der Milchstra\u00dfe und im fr\u00fchen Universum. Wir untersuchen interstellare Turbulenz und die Entstehung und Entwicklung von Galaktischen Gaswolken. Dar\u00fcber hinaus besch\u00e4ftigen wir uns mit der Frage nach dem Ursprung kosmischer Magnetfelder, und wir versuchen die dynamische Entwicklung der Milchstra\u00dfe und anderer Galaxien zu verstehen. Da unsere Arbeit sehr stark numerisch gepr\u00e4gt ist, besch\u00e4ftigen wir uns auch mit der Entwicklung und Verbesserung numerischer Algorithmen. ",
"en": "We work on different aspects of star formation in the Galaxy as well as in the early universe. We study interstellar turbulence and formation and evolution of molecular clouds. In addition, we are interested in understanding the origin of cosmic magnetic fields by studying dynamo processes. We are also investigate in the dynamical evolution of the Milky Way and other galaxies. As our work relies heavily on computer simulations, we also work on developing and improving numerical methods for astrophysics. "
},
"times": [
"1",
"0",
"0",
"0",
"0"
],
"total_times": "1",
"link": "https:\/\/www.ita.uni-heidelberg.de\/research\/klessen\/index.shtml?lang=en",
"image": "uploads\/cover_image_GLT.jpeg"
},
"AXC": {
"name": "Low Temperature Detector for Astroparticle Physics ",
"field": "PP",
"contact": "[email protected]",
"profs": "JProf. Dr. Loredana Gastaldo",
"room": 50,
"text": "The people in the \"Low temperature detector for Astroparticle Physics\" are mainly interested in the development of detector systems based on the technology of low temperature metallic magnetic calorimeters (MMCs) to be applied in experiments designed to better understand the properties of neutrinos and for the search of axions. The two major experiments we are bringing forwards are the ECHo (Electron Capture in Ho-163) experiment and the development of the focal plane detector system for IAXO (International AXion Observatory). The ECHo experiment is running at KIP while IAXO will be installed at DESY-Hamburg. \r\nFor ECHo, we develope and characterize detector arrays, run measurements and develop analysis tools for data reduction and spectral shape analysis. For IAXO, we are working on the optimization of a low background MMC detector system. In addition, we like to test new ideas for experiments and perform R&D for the optimal detectors. \r\nWe are always happy to welcome Bachelor and Master students interested in detector development and understanding of data!",
"times": [
"1",
"1",
"2",
"0",
"0"
],
"total_times": "2",
"image": "uploads\/cover_image_AXC.png"
},
"MZW": {
"name": "Condensed Matter at Low Temperatures",
"field": "CM",
"contact": "[email protected]",
"profs": "C. Enss, A. Reiser, A. Fleischmann",
"room": 51,
"text": {
"de": "The presence of disorder strongly influences the dynamics of non-equilibrium quantum systems and leads to a multitude of unique phenomena which are investigated at extremely low temperatures with new methods. The focus is on physical realizations of such systems like amorphous solids, disordered crystals and spin glasses. Fundamental questions regarding the interplay of disorder and many-particle interaction, the microscopic nature of low-lying states, the relaxation and decoherence channels, the dissipative dynamics, as well as the occurrence of complex collective modes are studied. Current projects focus on the surprising influence of nuclear degrees of freedom on the dynamics of atomic tunneling systems in structural disordered system like multicomponent glasses and polymers. In particular, the non-linear response and phase coherence of such systems are investigated.",
"en": "The presence of disorder strongly influences the dynamics of non-equilibrium quantum systems and leads to a multitude of unique phenomena which are investigated at extremely low temperatures with new methods. The focus is on physical realizations of such systems like amorphous solids, disordered crystals and spin glasses. Fundamental questions regarding the interplay of disorder and many-particle interaction, the microscopic nature of low-lying states, the relaxation and decoherence channels, the dissipative dynamics, as well as the occurrence of complex collective modes are studied. Current projects focus on the surprising influence of nuclear degrees of freedom on the dynamics of atomic tunneling systems in structural disordered system like multicomponent glasses and polymers. In particular, the non-linear response and phase coherence of such systems are investigated."
},
"times": [
"2",
"2",
"1",
"1",
"1"
],
"total_times": "4",
"link": "https:\/\/www.kip.uni-heidelberg.de\/glaeser\/ ",
"image": "uploads\/cover_image_MZW.png"
},
"UTK": {
"name": "Quantum Sensors",
"field": "CM",
"contact": "[email protected]",
"profs": "C. Enss, A. Fleischmann, L. Gastaldo",
"room": 52,
"text": {
"de": "Quantum sensors based on cryogenic microcalorimeters have reached a state of development in recent years that makes them a key technology for the detection of single photons and particles in many fields of physics and for a variety of applications. Metallic magnetic calorimeters (MMCs) are a special variant of such detectors that are able to measure the energy of single X-ray and gamma-ray photons with an accuracy better than one part per four thousand, while maintaining good quantum efficiency and spectral linearity. This makes them an ideal tool for ultra-high precision spectroscopy in a very wide energy range. Applications include X-ray astronomy, measurement of Lamb shifts of highly charged ions, nuclear forensics and quantum metrology. In addition, the MMCs developed in Heidelberg play a key role in particle physics experiments, such as the ECHo project, which aims to determine the neutrino mass via the electron capture spectrum of 163Ho, and AMoRE, which is searching for the neutrino-less double-beta decay of 100Mo.\r\n\r\nWork on MMCs includes detector design, development of the necessary microfabrication processes, design of the cryogenic environment, detector fabrication and characterization, and development of the necessary readout electronics. For the latter, superconducting electronics is a key component designed and produced for optimal adaptation to MMCs. In order to meet the demands for high spectral resolution, SQUID amplifiers with noise temperatures close to the quantum limit are necessary. Microwave SQUID multiplexers are developed for reading out large MMC detector arrays with several hundred pixels.",
"en": "Quantum sensors based on cryogenic microcalorimeters have reached a state of development in recent years that makes them a key technology for the detection of single photons and particles in many fields of physics and for a variety of applications. Metallic magnetic calorimeters (MMCs) are a special variant of such detectors that are able to measure the energy of single X-ray and gamma-ray photons with an accuracy better than one part per four thousand, while maintaining good quantum efficiency and spectral linearity. This makes them an ideal tool for ultra-high precision spectroscopy in a very wide energy range. Applications include X-ray astronomy, measurement of Lamb shifts of highly charged ions, nuclear forensics and quantum metrology. In addition, the MMCs developed in Heidelberg play a key role in particle physics experiments, such as the ECHo project, which aims to determine the neutrino mass via the electron capture spectrum of 163Ho, and AMoRE, which is searching for the neutrino-less double-beta decay of 100Mo.\r\n\r\nWork on MMCs includes detector design, development of the necessary microfabrication processes, design of the cryogenic environment, detector fabrication and characterization, and development of the necessary readout electronics. For the latter, superconducting electronics is a key component designed and produced for optimal adaptation to MMCs. In order to meet the demands for high spectral resolution, SQUID amplifiers with noise temperatures close to the quantum limit are necessary. Microwave SQUID multiplexers are developed for reading out large MMC detector arrays with several hundred pixels."
},
"times": [
"2",
"2",
"1",
"1",
"1"
],
"total_times": "4",
"link": "https:\/\/www.kip.uni-heidelberg.de\/tt-detektoren\/",
"image": "uploads\/cover_image_UTK.png"
},
"IMZ": {
"name": "Electron Beam Ion Trap (AG Crespo)",
"field": "AMO",
"contact": "[email protected]",
"profs": "Jos\u00e9 R. Crespo L\u00f3pez-Urrutia",
"room": 53,
"text": {
"de": "Im Inneren von Sternen, rund um galaktische Kerne und Schwarze L\u00f6cher herrschen Temperaturen von vielen Millionen Kelvin. Galaxienhaufen sind eingeschlossen in einem extrem verd\u00fcnnten, aber ebenso hei\u00dfen Plasmamedium; beides, Galaxien und Plasma, werden von der Gravitation der vorhandenen Dunklen Materie zusammengehalten. Atome befinden sich darin in sehr hohen positiven Ionisationszust\u00e4nden, k\u00f6nnen jedoch mit ihren noch gebundenen Elektronen effizient Strahlung absorbieren und emittieren. Die spektralen Linien solch \u201ehochgeladener Ionen\u201c sind f\u00fcr die Astrophysik sehr wichtig, weil sie aus dem hei\u00dfen Universum stammen. Wir erzeugen im Labor derartige Ionen, speichern sie \u00fcber lange Zeiten, und untersuchen ihre Spektren vom R\u00f6ntgenbereich bis zum Sichtbaren. Au\u00dferdem k\u00f6nnen wir sie mit Lasern und R\u00f6ntgenlasern anregen, oder bis nahe dem absoluten Nullpunkt der Temperatur k\u00fchlen. Wir entwickeln Experimente und Techniken, die \u00fcber einen Temperaturbereich von 12 Gr\u00f6\u00dfenordnungen die Gesetze der Physik bis an ihre Grenzen auf den Pr\u00fcfstand stellen:\r\n\r\nWo ist Atomtheorie verbesserbar? Werden astrophysikalische Daten genau verstanden? K\u00f6nnen wir Atomuhren bauen, die mit hochenergetischen Photonen arbeiten, wo Atome versagen, aber hochgeladene Ionen nicht? Sind fundamentale Konstanten der Natur vollkommen konstant?",
"en": "In the interior of stars, around galactic cores and black holes, temperatures of millions of Kelvins are prevailing. Galaxy clusters are enclosed in an extremely dilute, but similarly hot plasma medium; both galaxies and plasma are held together by the gravitational action of the present Dark Matter. In these environments, atoms are in very high positive ionization states, but can absorb and emit radiation with their remaining bound electrons. The spectral lines of such \u201chighly charged ions\u201d are very import in astrophysics, because they come from the hot Universe. In our laboratory, we produce such ions, store them for long time spans, and investigate their spectra from the x-ray to the visible range. Furthermore, we can excite them with lasers and x-ray lasers, or can cool them down to temperatures close to absolute zero. We are developing experiments and techniques to scrutinize the laws of physics to their limits over a temperature range of 12 orders of magnitude:\r\n\r\nWhere can atomic structure theory be improved? Do we understand astrophysical data correctly? Is it possible to design atomic clocks based on highly energetic photons, where atoms fail but highly charged ions do not? Are fundamental constants of nature perfectly constant?"
},
"times": [
"1",
"1",
"1",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.mpi-hd.mpg.de\/mpi\/de\/forschung\/abteilungen-und-gruppen\/quantendynamik-und-kontrolle\/forschung\/dynamik-hochgeladener-ionen-ag-crespo",
"image": "uploads\/cover_image_IMZ.png"
},
"YVM": {
"name": "Electronic Vision(s) - Neuromorphic Computing",
"field": "COM",
"contact": "[email protected]",
"profs": "Dr. Johannes Schemmel",
"room": 54,
"text": {
"de": "In der Electronic Vision(s)-Gruppe untersuchen und implementieren wir neue Konzepte der Informationsverarbeitung in hochparallelen, gemischt analog-digitalen, selbst entworfenen Mikrochips. Unter anderen leiteten wir das Projekt BrainScaleS, das eine der Grundlagen f\u00fcr das Human Brain Project (HBP) bildet. Im Rahmen des BrainScaleS-Projekts haben wir Pionierarbeit bei der Integration neuromorpher Systeme auf Silizium-Wafer-Ebene und bei der Verbreitung der Meta-Programmiersprache PyNN geleistet - einer Programmiersprache, die eine vereinheitlichte Benutzung neuronaler Simulatoren in Software und Hardware erm\u00f6glicht.\r\n\r\nUnsere aktuellen neuromorphen Chips enthalten spike-basierte, analog implementierte Neuronen und Synapsen mit einer hochparallelen Anbindung an die SIMD-Erweiterung eines selbst entworfenen, Power-ISA basierten Mikroprozessors. Diese Architektur erlaubt eine softwarebasierte, fexible Implementierung von Lern- und Plastizit\u00e4tsmechanismen zum Training des neuronalen Netzes.\r\n\r\nWir haben immer wieder interessante Arbeiten in den verschiedenen Arbeitsbereichen der Gruppe zu vergeben - das reicht von der Hardware-Entwicklung, \u00fcber die Low-Level und User-Software-Entwicklung bis hin zu Experimentellen neurowissenschaftlichen Arbeiten auf der Hardware, und auch theoretischen Arbeiten im Bereich der Neurowissenschaften. Kommt vorbei, wir erz\u00e4hlen euch gerne mehr! (<a href='https://heibox.uni-heidelberg.de/f/14199ee4cc5642339063/'>Poster</a>)",
"en": "In the Electronic Vision(s) group, we investigate and implement new concepts of information processing in highly parallel, mixed analog-digital, self-designed microchips. Among others, we led the BrainScaleS project, which is one of the foundations for the Human Brain Project (HBP). In the BrainScaleS project, we pioneered the integration of neuromorphic systems at the silicon wafer level and the dissemination of the PyNN meta-programming language - a programming language that enables unified use of neural simulators in software and hardware.\r\n\r\nOur current neuromorphic chips incorporate spike-based, analog-implemented neurons and synapses with highly parallel interfacing to the SIMD extension of a self-designed, Power-ISA-based microprocessor. This architecture allows software-based, fexible implementation of learning and plasticity mechanisms to train the neural network.\r\n\r\nWe always have interesting thesis topics in the different work areas of the group - this ranges from hardware development, low-level and user software development to experimental neuroscience work on hardware, and also theoretical work in the field of neuroscience. Come by, we'll be happy to tell you more! (<a href='https://heibox.uni-heidelberg.de/f/14199ee4cc5642339063/'>Poster</a>)"
},
"times": [
"0",
"1",
"1",
"0",
"0"
],
"total_times": "2",
"link": "https:\/\/www.kip.uni-heidelberg.de\/vision\/",
"image": "uploads\/cover_image_YVM.jpg"
}
}
}