-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolver.py
273 lines (227 loc) · 10.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
from tqdm import tqdm
import numpy as np
import model
import os
from utils import early_stopping
class Solver(object):
""" Solver for training and testing """
def __init__(self, train_data_loader, val_data_loader, device, writer, args, n_classes, n_authors):
""" Initialize configuration """
self.args = args
self.n_classes = n_classes
self.n_authors = n_authors
self.model_name = self.args.file_name
# model definition
self.model = model.create_model(self.n_classes, self.n_authors, self.args).to(device)
'''
If the model is pretrained, select only the model parameters that require the gradient calculation.
Else, all model parameters are updated during training.
'''
if self.args.pretrained:
params = [p for p in self.model.parameters() if p.requires_grad]
names = [n for n,p in self.model.named_parameters() if p.requires_grad]
else:
for p in self.model.parameters():
p.requires_grad=True
params = [p for p in self.model.parameters()]
names = [n for n,p in self.model.named_parameters()]
# print(names)
# choose optimizer
if self.args.optimizer == "SGD":
self.optimizer = torch.optim.SGD(params, lr=self.args.learning_rate, momentum=0.9)
elif self.args.optimizer == "Adam":
self.optimizer = torch.optim.Adam(params, lr=self.args.learning_rate)
# other training parameters
self.epochs = self.args.num_epochs
self.train_loader = train_data_loader
self.val_loader = val_data_loader
self.device = device
self.writer = writer
def save_model(self):
# function to save the model
ext = os.path.splitext(self.model_name)[1].lower()
if ext == ".pth":
check_path = os.path.join(self.args.checkpoint_path, self.model_name)
torch.save(self.model.state_dict(), check_path)
elif ext == ".pt":
torch.save(self.model, self.model_name)
print("Model saved!")
def load_model(self, device):
# function to load the model
check_path = os.path.join(self.args.checkpoint_path, self.model_name)
self.model.load_state_dict(torch.load(check_path, map_location = torch.device(device)))
print("Model loaded!")
def train(self):
""" Method used to train the model with early stopping implementatinon. """
print("Training...")
# put the model in training mode
self.model.train()
# keep track of average validation loss
avg_val_losses = []
for epoch in range(0, self.epochs):
# record the training losses for each batch in this epoch
train_losses = []
# classifier_losses = []
# create a terminal progress bar
progress_bar = tqdm(self.train_loader, total=len(self.train_loader))
# iterate over training data
for i, data in enumerate(progress_bar):
# clear the gradients of all optimized variables
self.optimizer.zero_grad()
images, targets = data
images = list(image.to(self.device) for image in images)
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
# return the losses
loss_dict = self.model(images, targets)
# loss classifier
# loss_classifier = loss_dict["loss_classifier"]
# classifier_losses.append(loss_classifier.item())
# calculate the sum of the losses to obtain the main loss
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
train_losses.append(loss_value)
# backward pass: compute gradient of the loss with respect to model parameters
losses.backward()
# perform a single optimization step
self.optimizer.step()
# save metrics on tensorboard
if i % self.args.print_every == (self.args.print_every-1):
self.writer.add_scalar("epoch_avg_train_loss", np.average(train_losses), epoch*len(self.train_loader) + i)
#self.writer.add_scalar("epoch_avg_classifier_train_loss", np.average(classifier_losses), epoch*len(self.train_loader) + i)
progress_bar.set_description(desc=f"Loss: {loss_value:.4f}")
# return the validation loss
val_loss=self.validate(epoch)
val_loss = np.average(val_loss)
avg_val_losses.append(val_loss)
print(f"Epoch #{epoch+1} train loss: {np.average(train_losses):.3f}")
print(f"Epoch #{epoch+1} validation loss: {val_loss:.3f}")
# early stopping
if self.args.early_stopping:
# check if the minimum number of training epochs is reached before enabling early stopping
if epoch > self.args.num_min_epochs:
if early_stopping(avg_val_losses, self.args.early_stopping):
# if early stopping is triggered, exit from training
break
else:
if val_loss == min(avg_val_losses):
self.save_model()
else:
if val_loss == min(avg_val_losses):
self.save_model()
else:
if val_loss == min(avg_val_losses):
self.save_model()
self.writer.flush()
self.writer.close()
print("Finished training")
def validate(self, epoch):
# record the validation losses for each batch in this epoch
val_losses = []
#classifier_losses = []
# create a terminal progress bar
progress_bar = tqdm(self.val_loader, total=len(self.val_loader))
# iterate over validation data
for i, data in enumerate(progress_bar):
images, targets = data
images = list(image.to(self.device) for image in images)
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
# no need to calculate the gradients for outputs
with torch.no_grad():
# return the losses
loss_dict = self.model(images, targets)
# obtain the main loss
losses = sum(loss for loss in loss_dict.values())
#loss_classifier = loss_dict["loss_classifier"]
#classifier_losses.append(loss_classifier.item())
loss_value = losses.item()
val_losses.append(loss_value)
#
if i % self.args.print_every == (self.args.print_every-1):
self.writer.add_scalar("epoch_avg_val_loss", np.average(val_losses), epoch*len(self.val_loader) + i)
#self.writer.add_scalar("epoch_avg_classifier_train_loss", np.average(classifier_losses), epoch*len(self.val_loader) + i)
progress_bar.set_description(desc=f"Loss: {loss_value:.4f}")
print("Finished validating")
return val_losses
"""
The following training and validation functions are similar to the previous ones.
In this case, the losses relating to the author classificaation are also retrieved and printed.
"""
def train_with_authors(self):
""" Method used to train the model with author classification and early stopping implementatinon. """
self.model.train()
avg_val_losses=[]
print("Training...")
for epoch in range(0, self.epochs):
train_losses = []
classifier_losses = []
author_losses = []
progress_bar = tqdm(self.train_loader, total=len(self.train_loader))
for i, data in enumerate(progress_bar):
self.optimizer.zero_grad()
images, targets = data
images = list(image.to(self.device) for image in images)
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
loss_dict = self.model(images, targets) # return the loss
loss_classifier = loss_dict["loss_classifier"]
classifier_losses.append(loss_classifier.item())
author_loss = loss_dict["loss_authors"]
author_losses.append(author_loss.item())
losses = sum(loss for loss in loss_dict.values())
loss_value = losses.item()
train_losses.append(loss_value)
losses.backward()
self.optimizer.step()
if i % self.args.print_every == (self.args.print_every-1):
self.writer.add_scalar("epoch_avg_train_loss", np.average(train_losses), epoch*len(self.train_loader) + i)
self.writer.add_scalar("epoch_avg_author_train_loss", np.average(author_losses), epoch*len(self.train_loader) + i)
self.writer.add_scalar("epoch_avg_classifier_train_loss", np.average(classifier_losses), epoch*len(self.train_loader) + i)
progress_bar.set_description(desc=f"Loss: {loss_value:.4f}, Loss classifier: {loss_classifier:.4f}")
val_loss=self.validate_with_author(epoch)
val_loss = (np.average(val_loss))
avg_val_losses.append(val_loss)
print(f"Epoch #{epoch+1} train loss: {np.average(train_losses):.3f}")
print(f"Epoch #{epoch+1} validation loss: {val_loss:.3f}")
if self.args.early_stopping:
# check if the minimum number of training epochs is reached before enabling early stopping
if epoch > self.args.num_min_epochs:
if early_stopping(avg_val_losses, self.args.early_stopping):
# if early stopping is triggered, exit from training
break
else:
if val_loss == min(avg_val_losses):
self.save_model()
else:
if val_loss == min(avg_val_losses):
self.save_model()
else:
if val_loss == min(avg_val_losses):
self.save_model()
self.writer.flush()
self.writer.close()
print("Finished training")
def validate_with_author(self, epoch):
val_losses = []
author_losses = []
classifier_losses = []
progress_bar = tqdm(self.val_loader, total=len(self.val_loader))
for i, data in enumerate(progress_bar):
images, targets = data
images = list(image.to(self.device) for image in images)
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
with torch.no_grad():
loss_dict = self.model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_classifier = loss_dict["loss_classifier"]
classifier_losses.append(loss_classifier.item())
author_loss = loss_dict["loss_authors"]
author_losses.append(author_loss.item())
loss_value = losses.item()
val_losses.append(loss_value)
if i % self.args.print_every == (self.args.print_every-1):
self.writer.add_scalar("epoch_avg_val_loss", np.average(val_losses), epoch*len(self.val_loader) + i)
self.writer.add_scalar("epoch_avg_author_val_loss", np.average(author_losses), epoch*len(self.val_loader) + i)
self.writer.add_scalar("epoch_avg_classifier_val_loss", np.average(classifier_losses), epoch*len(self.val_loader) + i)
progress_bar.set_description(desc=f"Loss: {loss_value:.4f}, Loss classifier: {loss_classifier:.4f}, Loss author: {author_loss:.4f}")
print("Finished validating")
return val_losses