-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAdaptive_HIDMSPSO.m
289 lines (259 loc) · 15.7 KB
/
Adaptive_HIDMSPSO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
% ----------------------------------------------------------------------- %
% HIDMS-PSO Algorithm with an Adaptive Topological Structure %
%
% Implemented by Fevzi Tugrul Varna - University of Sussex %
% -------------------------------------------------------------------------%
% Cite as: ----------------------------------------------------------------%
% F. T. Varna and P. Husbands, "HIDMS-PSO Algorithm with an Adaptive %
% Topological Structure," 2021 IEEE Symposium Series on Computational %
% Intelligence (SSCI), Orlando, FL, USA, 2021, pp. 1-8, doi: %
% 10.1109/SSCI50451.2021.9660115. %
% ----------------------------------------------------------------------- %
function [fmin] = Adaptive_HIDMSPSO(fhd,fId,n,d,range)
if rem(n,4)~=0, error("** Input Error: Swarm population must be divisible by 4 **"), end
rand('seed',sum(100*clock));
showProgress=true;
Fmax=10^4*d; %maximum number function evaluations
Tmax=Fmax/n; %maximum number of iterations
LB=range(1);
UB=range(2);
%% Parameters of Adaptive-HIDMS-PSO
w1 = 0.99 + (0.2-0.99)*(1./(1 + exp(-5*(2*(1:Tmax)/Tmax - 1)))); %nonlinear decrease inertia weight - Sigmoid function
c1=2.5-(1:Tmax)*2/Tmax; %personal acceleration coefficient
c2=0.5+(1:Tmax)*2/Tmax; %social acceleration coefficient
UPn=4; %unit pop size (constant)
U_n=(n/2)/UPn; %number of units (constant)
U=reshape(randperm(n/2),U_n,UPn); %units (U_n-by-UPn matrix)
unit_T=zeros(1,U_n);
[master,s1,s2,s3] = feval(@(x) x{:}, num2cell([1,2,3,4])); %unit members' codes
formation=[1 1 1 1; 1 1 4 3; 1 1 2 2; 1 1 1 3; 1 1 randi([1 4]) randi([1 4])];
%velocity clamp
MaxV = 0.15*(UB-LB);
MinV = -MaxV;
%% Initialisation
V=zeros(n,d); %initial velocities
X=unifrnd(LB,UB,[n,d]); %initial positions
S=zeros(1,n); %subordinate status, 0 particle has no subordinate, 1 has.
PX=X; %initial pbest positions
F=feval(fhd,X',fId); %function evaluation
PF=F; %initial pbest cost
GX=[]; %gbest solution vector
GF=inf; %gbest cost
%update gbest
for i=1:n
if PF(i)<GF, GF=PF(i); GX=PX(i,:); end
end
M_phase=true; %master-dominated units phase
S_phase=false; %slave-dominated units phase
gamma=100; %number of iterations for each phase e.g. master-dominated or slave-dominated
%% Main Loop of PSO
for t=1:Tmax
%switch between the master-dominated and slave-dominated units every 100 iterations
if mod(t,gamma)==0
if M_phase==true
M_phase=false;
S_phase=true;
formation=[1 2 3 4; 1 2 2 3; 2 2 3 4; 1 3 4 4; 2 3 randi([2 4]) randi([2 4])];
elseif S_phase==true
S_phase=false;
M_phase=true;
formation=[1 1 1 1; 1 1 4 3; 1 1 2 2; 1 1 1 3; 1 1 randi([1 4]) randi([1 4])];
end
end
for i=1:n
if F(i) >= mean(F)
w = w1(t) + 0.15;
if w>0.99, w=0.99; end
else
w = w1(t) - 0.15;
if w<0.20, w=0.20; end
end
if t<=Tmax*0.9
if ~isempty(find(U==i)) %if agent is part of a unit
[uId,pId]=find(U==i); %get unit id and particle id
unit_formation=formation(uId,:); %get formation
topology=GT(unit_formation); %get topology
unit_T(uId)=topology; %update topology
%if ith particle is subordinate, it may switch its role
if S(i)==1
if randi([0 1])==0
roles=getRoles(1); %get random role for the subordinate
formation(uId,pId)= roles; %new role of the subordinate particle
topology=GT(formation(uId,:)); %get the new topology (incase it changed)
unit_T(uId)=topology; %update topology of the unit
S(U(uId,:))=0; %reset subordinates after new topology
if unit_T(uId)==2 || unit_T(uId)==3 || unit_T(uId)==4 || unit_T(uId)==7 %check if any unit has subordinate member
subIds=FS(unit_T(uId),formation(uId,:));
S(U(uId,subIds))=1; %update subordinate status for the new formation
end
end
end
if topology==1
if pId==master %if particle is master, always use outward-oriented movement
behaviour=randi([1 3]);
if behaviour==1 %master moves towards the avg position of another unit
x_unit_avg=mean(X(U(GRU(U_n,uId),:),:));
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(x_unit_avg - X(i,:));
elseif behaviour==2 %master moves towards the master of a randomly selected unit
x_unit_m=X(U(GRU(U_n,uId),master),:);
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(x_unit_m - X(i,:));
elseif behaviour==3
x_unit_m=X(U(GRU(U_n,uId),master),:); %master of a randomly selected unit
x_avg=mean(X(U(uId,s1:s3),:)); %avg position of own slave particles
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(x_avg - X(i,:)) + c2(t)*rand([1 d]).*(x_unit_m - X(i,:));
end
else %for slave particles randomly select a behaviour
behaviour=randi([0 1]);
if behaviour==0
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(uId,find(formation(uId,:)==master)),:) - X(i,:)); %inward-oriented - position of the master
else
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(GRU(U_n,uId),pId),:) - X(i,:)); %outward-oriented - slave moves towards another slave of the same type in random unit
end
end
elseif topology==2 || topology==3
if pId==master %if particle is master, always use outward-oriented movement
behaviour=randi([1 3]);
if behaviour==1 %master moves towards avg position of another unit
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(mean(X(U(GRU(U_n,uId)),:)) - X(i,:));
elseif behaviour==2 %master moves towards the master of a random unit
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(GRU(U_n,uId),master),:) - X(i,:));
elseif behaviour==3
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(mean(X(U(uId,s1:s3),:)) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(GRU(U_n,uId),master),:) - X(i,:));
end
else %for slave particles randomly select a behaviour
if S(i)==1 %if slave is subordinate, move towards superior
%find the superior particle
fcopy=formation(uId,:);
roleVal=fcopy(pId);
fcopy(pId)=-1;
[~,idx]=find(fcopy==roleVal);
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(uId,idx),:) - X(i,:));
else %if slave particle has no subordinate
behaviour=randi([0 1]);
if behaviour==0 %inward-oriented movement
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(uId,find(formation(uId,:)==master)),:) - X(i,:)); %move towards the position of the master
else %outward-oriented movement
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(GRU(U_n,uId),pId),:) - X(i,:)); %slave moves towards another slave of the same type in random unit
end
end
end
elseif topology==6 || topology==7 || topology==8
if pId==master %if particle is master, use outward-oriented movement
behaviour=randi([1 3]);
if behaviour==1 %master particle moves towards the most dissimilar slave particle
x_dis=X(U(uId,GDS(X(U(uId,pId),:),X(find(U(2,:)>master),:))),:); %position of the most dissimilar slave
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(x_dis - X(i,:));
elseif behaviour==2 %master particle moves towards the slave with lowest cost
slaves=U(uId,find(formation(uId,:)>master)); %only get slave particles in the same unit
[~,bestId]=min(F(slaves)); %find the slave particle with the lowest cost in the unit
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(slaves(bestId),:) - X(i,:)); %move towards the position of the slave with lowest cost in the unit
elseif behaviour==3 %master particle moves towards avg slave positions
slaves=U(uId,find(formation(uId,:)>master)); %only get slave particles in the unit
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(mean(X(slaves,:)) - X(i,:)); %move towards the avg position of slaves
end
else %slave particles randomly select a behaviour
behaviour=randi([0 1]);
if behaviour==0 %inward-oriented movement
x_m=X(U(uId,find(formation(uId,:)==master)),:); %position of the master
[mN,~]=size(x_m); %number of masters unit has
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(x_m(randi([1 mN]),:) - X(i,:));
else %outward-oriented movement
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(X(U(GRU(U_n,uId),pId),:) - X(i,:)); %slave particle moves towards another slave of the same type in a randomly selected unit
end
end
elseif topology==4 || topology==5
members=U(uId,:);
members(pId)=[];
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(mean(X(members,:)) - X(i,:));
end
else %non unit member velocity update
V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(GX - X(i,:));
end
end
if t > Tmax*0.9, V(i,:) = w*V(i,:) + c1(t)*rand([1 d]).*(PX(i,:) - X(i,:)) + c2(t)*rand([1 d]).*(GX - X(i,:)); end
V(i,:)=max(V(i,:),MinV); V(i,:) = min(V(i,:),MaxV); %velocity clamp
X(i,:)=X(i,:) + V(i,:); %update position
if t <= Tmax*0.9, X(i,:) = MUT(X(i,:),0.1,t,Tmax,[LB UB]); end %use mutation operator in the final phase of the search
X(i,:)=max(X(i,:), LB); X(i,:) = min(X(i,:), UB); %apply lower and upper bound limits
end
F=feval(fhd,X',fId); %fitness evaluation
for j=1:n
if F(j)<PF(j), PF(j)=F(j); PX(j,:)=X(j,:); end %update pbests
if PF(j)<GF, GF=PF(j); GX=PX(j,:); end %update gbest
end
if showProgress, disp(['Iteration ' num2str(t) ': best cost = ' num2str(GF)]); end
end
fmin = GF;
end
%% generates and returns random roles
%% args: N: number of roles to generate
function [roles] = getRoles(N)
roles=randi([0 1],1,N);
for i=1:length(roles)
if roles(i)==0, roles(i)=randi([2 4]); end
end
end
%% returns the most dissimilar slave particle to master
%% args: m: master particle position, s: position of the slave particles
function [z] = GDS(m,s)
L=size(s);
score=zeros(1,L(1));
for i=1:L(1)
score(i)=immse(m,s(i,:));
end
[~,z]=max(score);
end
%% returns a random unit
%% args: U_n: number of units, uId: id of the current unit
function [z] = GRU(U_n,uId)
rndU=randperm(U_n);
self=find(rndU==uId);
rndU(self)=[];
z=rndU(1);
end
%% returns the topology of the given unit
function topId = GT(unit)
unit=sort(unit);
s=[2 3 4];
m=1;
if sum(unit==[1 2 3 4])==4, topId=1;
elseif unit(1)==m && length(unique(unit(2:4)))==2 && sum(unit(2:4)~=1)==3, topId=2;
elseif isempty(find(unit==m))==1, topId=4;
else
if sum(ismember(unit,[m m m m]))==4, topId=5; %topology with all masters
elseif sum(unit(1:2)==[m m]) && length(unique(unit(3:4)))==2 && unit(3)~=1, topId=6;
elseif sum(unit(1:2)==[m m]) && length(unique(unit(3:4)))==1, topId=7;
elseif sum(ismember(unit(1:3),[m m m]))==3 && ismember(unit(4),s)==1, topId=8;
end
end
end
%% returns the subordinate particle given the unit topology and unit formation
%% args: T: topology of the unit, UF: unit formation
%% returns a vector of 0's and 1' where 1's refer to id of the subordinate member
function [z] = FS(T,UF)
%z - returns a vector of 0's and 1', index of 1's refer to id of the subordinate member
z=ones(1,4); %0 or 1 for each unit member indicating weather member is sub or not
if T==2 || T==3 || T==4 || T==7
[~,idx]=unique(UF); %find duplicates
z(idx)=0; %change non-subordinates to 0
end
z=find(z==1); %find the id of the subordinates
end
%% non-uniform mutation
function [y] = MUT(x,p,t,Tmax,range)
b=5; %system parameter - 2~5
[m,n]=size(x);
y = x;
for i=1:m
for j=1:n
if rand<p
D = diag(rand(1,n));
if round(rand)==0
y(i,j) = x(i,j)+D(j,j)*(range(2)-x(i,j))*(1-t/Tmax)^b;
else
y(i,j) = x(i,j)-D(j,j)*(x(i,j) - range(1))*(1-t/Tmax)^b;
end
end
end
end
end