Table of Contents
This is the original runnable object dection python3 scripts and its running environment container on ppc64le. To get the ppc64le chrisapp version, click here:
https://github.com/FNNDSC/pl-objectdetection_moc_ppc64
check the parent scripts & amd64 container powered by nvidia:
https://github.com/NVIDIA/object-detection-tensorrt-example
Docker container published on dockerhub:
https://hub.docker.com/repository/docker/fnndsc/pl-objectdetection_moc_ppc64
For amd64 version scripts check here:
https://github.com/FNNDSC/object-detection-tensorrt-example
amd64 version Chris app:
https://github.com/FNNDSC/pl-object-detection
@PupilTong modified the original object detection for benchmarking usage & built runnable ppc64le running environment. @h4x0rMadness made it chris app & benchmarking outputs
An app to ...
python objectdetection.py \\ [-h] [--help] \\ [--json] \\ [--man] \\ [--meta] \\ [--savejson <DIR>] \\ [-v <level>] [--verbosity <level>] \\ [--version] \\ [--file <filename>] \\ <inputDir> \\ <outputDir>
objectdetection.py
is a ChRIS-based application that...
[-v <level>] [--verbosity <level>] Verbosity level for app. Not used currently. [--version] If specified, print version number. [--man] If specified, print (this) man page. [--meta] If specified, print plugin meta data.
To run using docker
, be sure to assign an "input" directory to /incoming
and an output directory to /outgoing
. Make sure that the $(pwd)/out
directory is world writable!
Now, prefix all calls with
docker run --security-opt label=type:nvidia_container_t
-v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing
docker.io/fnndsc/pl-objectdetection_x86
objectdetection.py -f filename.webm
/incoming /outgoing
Thus, getting inline help is:
mkdir in out && chmod 777 out
docker run --security-opt label=type:nvidia_container_t
-v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing
docker.io/fnndsc/pl-objectdetection_x86
objectdetection.py -f filename.webm
/incoming /outgoing