forked from open-compass/opencompass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_hellobench.py
96 lines (85 loc) · 3.3 KB
/
eval_hellobench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.subjective.hellobench.hellobench import hellobench_datasets
from opencompass.models import HuggingFacewithChatTemplate, OpenAI
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import DefaultSubjectiveSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
# make sure your models' generation parameters are set properly, for example, if you set temperature=0.8, make sure you set all models' temperature to 0.8
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='glm-4-9b-chat-hf',
path='THUDM/glm-4-9b-chat',
max_out_len=16384,
generation_kwargs=dict(
temperature=0.8,
do_sample=True, #For subjective evaluation, we suggest you do set do_sample when running model inference!
),
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
batch_size=1,
run_cfg=dict(num_gpus=2, num_procs=1),
stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'],
)
]
datasets = [*hellobench_datasets] # add datasets you want
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
# ------------- JudgeLLM Configuration
# we recommand to use gpt4o-mini as the judge model
# if you want to use open-source LLMs as judge models, you can uncomment the following code
# judge_models = [
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='glm-4-9b-chat-hf',
# path='THUDM/glm-4-9b-chat',
# max_out_len=16384,
# generation_kwargs=dict(
# temperature=0.8,
# do_sample=True, #For subjective evaluation, we suggest you do set do_sample when running model inference!
# ),
# model_kwargs=dict(
# device_map='auto',
# trust_remote_code=True,
# ),
# batch_size=1,
# run_cfg=dict(num_gpus=2, num_procs=1),
# stop_words=['<|endoftext|>', '<|user|>', '<|observation|>'],
# )
# ]
judge_models = [dict(
abbr='GPT4o',
type=OpenAI,
path='gpt-4o',
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=4096,
batch_size=1,
temperature=0.8,
seed=42,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models,),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=DefaultSubjectiveSummarizer)
work_dir = 'outputs/hellobench/'