-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_rigveda_book6.py
53 lines (43 loc) · 1.53 KB
/
preprocess_rigveda_book6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import re
import unicodedata
from indicnlp.tokenize import indic_tokenize
# Directory containing the downloaded hymns
input_dir = "."
# Directory to save the preprocessed hymns
output_dir = "./preprocessed"
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
def load_text(file_path):
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
return text
def save_text(text, file_path):
with open(file_path, "w", encoding="utf-8") as file:
file.write(text)
def remove_metadata(text):
# Remove metadata and navigation links
text = re.sub(r'Sacred Texts.*?Next', '', text, flags=re.DOTALL)
text = re.sub(r'Next: Hymn \d+', '', text)
return text.strip()
def normalize_text(text):
# Normalize Unicode characters
return unicodedata.normalize("NFC", text)
def tokenize_text(text):
# Tokenize the text using Indic NLP Library
return " ".join(indic_tokenize.trivial_tokenize(text))
def preprocess_text(file_path):
text = load_text(file_path)
text = remove_metadata(text)
text = normalize_text(text)
text = tokenize_text(text)
return text
def main():
for i in range(1, 51):
input_file = os.path.join(input_dir, f"rigveda_hymn_book6_hymn_{i}.txt")
output_file = os.path.join(output_dir, f"rigveda_hymn_book6_hymn_{i}.txt")
preprocessed_text = preprocess_text(input_file)
save_text(preprocessed_text, output_file)
print(f"Hymn {i} preprocessed and saved.")
if __name__ == "__main__":
main()