-
Notifications
You must be signed in to change notification settings - Fork 42
/
2063.c
1107 lines (1018 loc) · 23.9 KB
/
2063.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Another Z80 and Zilog peripherals build
*
* Z80 at 10MHz
*
* 8bit GPIO input at 0x00
* 8bit GPIO output at 0x10
* Printer data at 0x20
* SIO at 0x30
* CTC at 0x40
* Flash disable at 0x70
*
* Bitbang SD
*
* Boots from a flash which is then kicked out. Flash is
* write through.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <signal.h>
#include <termios.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>
#include <sys/select.h>
#include "serialdevice.h"
#include "ttycon.h"
#include "16x50.h"
#include "sdcard.h"
#include "system.h"
#include "joystick.h"
#include "tms9918a.h"
#include "tms9918a_render.h"
#include "libz80/z80.h"
#include "z80dis.h"
static uint8_t fast = 0;
static uint8_t int_recalc = 0;
static uint8_t gpio_out;
static uint8_t gpio_in = 0xFF; /* SD not present, printer floating */
static uint8_t flash_in = 1;
static struct sdcard *sdcard;
static struct tms9918a *vdp;
static struct tms9918a_renderer *vdprend;
static struct uart16x50 *uart;
int sdl_live;
static uint8_t ram[16 * 32768];
static uint8_t rom[65536];
static uint16_t rom_mask = 0x3FFF;
static uint16_t tstate_steps = 50; /* 10MHz speed */
/* IRQ source that is live in IM2 */
static uint8_t live_irq;
#define IRQ_SIOA 1
#define IRQ_SIOB 2
#define IRQ_CTC 3 /* 3 4 5 6 */
#define INT_UART 4
/* TOOD: PIO */
#define VDP_J7 (1 << 1) /* A8_1, U6, pin 4 (D1) */
static Z80Context cpu_z80;
volatile int emulator_done;
#define TRACE_MEM 0x000001
#define TRACE_IO 0x000002
#define TRACE_ROM 0x000004
#define TRACE_UNK 0x000008
#define TRACE_CPU 0x000010
#define TRACE_BANK 0x000020
#define TRACE_SIO 0x000040
#define TRACE_CTC 0x000080
#define TRACE_IRQ 0x000100
#define TRACE_SPI 0x000200
#define TRACE_SD 0x000400
#define TRACE_TMS9918A 0x000800
#define TRACE_JOY 0x001000
#define TRACE_UART 0x002000
static int trace = 0;
static void reti_event(void);
static uint8_t *map_addr(uint16_t addr, unsigned is_write)
{
unsigned bank;
if (flash_in && !is_write)
return rom + (addr & rom_mask);
if (addr >= 0x8000)
bank = 15;
else
bank = gpio_out >> 4;
return ram + (bank * 0x8000) + (addr & 0x7FFF);
}
static uint8_t do_mem_read(uint16_t addr, int quiet)
{
uint8_t *p = map_addr(addr, 0);
uint8_t r = *p;
if ((trace & TRACE_MEM) && !quiet)
fprintf(stderr, "R %04x = %02X\n", addr, r) ;
return r;
}
void mem_write(int unused, uint16_t addr, uint8_t val)
{
uint8_t *p = map_addr(addr, 1);
if (trace & TRACE_MEM)
fprintf(stderr, "W %04x = %02X\n",
addr, val);
*p = val;
}
uint8_t mem_read(int unused, uint16_t addr)
{
static uint8_t rstate = 0;
uint8_t r = do_mem_read(addr, 0);
if (cpu_z80.M1) {
/* DD FD CB see the Z80 interrupt manual */
if (r == 0xDD || r == 0xFD || r == 0xCB) {
rstate = 2;
return r;
}
/* Look for ED with M1, followed directly by 4D and if so trigger
the interrupt chain */
if (r == 0xED && rstate == 0) {
rstate = 1;
return r;
}
}
if (r == 0x4D && rstate == 1)
reti_event();
rstate = 0;
return r;
}
static unsigned int nbytes;
uint8_t z80dis_byte(uint16_t addr)
{
uint8_t r = do_mem_read(addr, 1);
fprintf(stderr, "%02X ", r);
nbytes++;
return r;
}
uint8_t z80dis_byte_quiet(uint16_t addr)
{
return do_mem_read(addr, 1);
}
static void z80_trace(unsigned unused)
{
static uint32_t lastpc = -1;
char buf[256];
if ((trace & TRACE_CPU) == 0)
return;
nbytes = 0;
/* Spot XXXR repeating instructions and squash the trace */
if (cpu_z80.M1PC == lastpc && z80dis_byte_quiet(lastpc) == 0xED &&
(z80dis_byte_quiet(lastpc + 1) & 0xF4) == 0xB0) {
return;
}
lastpc = cpu_z80.M1PC;
fprintf(stderr, "%04X: ", lastpc);
z80_disasm(buf, lastpc);
while(nbytes++ < 6)
fprintf(stderr, " ");
fprintf(stderr, "%-16s ", buf);
fprintf(stderr, "[ %02X:%02X %04X %04X %04X %04X %04X %04X ]\n",
cpu_z80.R1.br.A, cpu_z80.R1.br.F,
cpu_z80.R1.wr.BC, cpu_z80.R1.wr.DE, cpu_z80.R1.wr.HL,
cpu_z80.R1.wr.IX, cpu_z80.R1.wr.IY, cpu_z80.R1.wr.SP);
}
unsigned int check_chario(void)
{
fd_set i, o;
struct timeval tv;
unsigned int r = 0;
FD_ZERO(&i);
FD_SET(0, &i);
FD_ZERO(&o);
FD_SET(1, &o);
tv.tv_sec = 0;
tv.tv_usec = 0;
if (select(2, &i, &o, NULL, &tv) == -1) {
if (errno == EINTR)
return 0;
perror("select");
exit(1);
}
if (FD_ISSET(0, &i))
r |= 1;
if (FD_ISSET(1, &o))
r |= 2;
return r;
}
unsigned int next_char(void)
{
char c;
if (read(0, &c, 1) != 1) {
printf("(tty read without ready byte)\n");
return 0xFF;
}
if (c == 0x0A)
c = '\r';
return c;
}
void recalc_interrupts(void)
{
int_recalc = 1;
}
void uart16x50_signal_change(struct uart16x50 *uart, uint8_t bits)
{
}
struct z80_sio_chan {
uint8_t wr[8];
uint8_t rr[3];
uint8_t data[3];
uint8_t dptr;
uint8_t irq;
uint8_t rxint;
uint8_t txint;
uint8_t intbits;
#define INT_TX 1
#define INT_RX 2
#define INT_ERR 4
uint8_t pending; /* Interrupt bits pending as an IRQ cause */
uint8_t vector; /* Vector pending to deliver */
};
static int sio2_input;
static struct z80_sio_chan sio[2];
/*
* Interrupts. We don't handle IM2 yet.
*/
static void sio2_clear_int(struct z80_sio_chan *chan, uint8_t m)
{
if (trace & TRACE_IRQ) {
fprintf(stderr, "Clear intbits %d %x\n",
(int)(chan - sio), m);
}
chan->intbits &= ~m;
chan->pending &= ~m;
/* Check me - does it auto clear down or do you have to reti it ? */
if (!(sio->intbits | sio[1].intbits)) {
sio->rr[1] &= ~0x02;
chan->irq = 0;
}
recalc_interrupts();
}
static void sio2_raise_int(struct z80_sio_chan *chan, uint8_t m)
{
uint8_t new = (chan->intbits ^ m) & m;
chan->intbits |= m;
if ((trace & TRACE_SIO) && new)
fprintf(stderr, "SIO raise int %x new = %x\n", m, new);
if (new) {
if (!sio->irq) {
chan->irq = 1;
sio->rr[1] |= 0x02;
recalc_interrupts();
}
}
}
static void sio2_reti(struct z80_sio_chan *chan)
{
/* Recalculate the pending state and vectors */
/* FIXME: what really goes here */
sio->irq = 0;
recalc_interrupts();
}
static int sio2_check_im2(struct z80_sio_chan *chan)
{
uint8_t vector = sio[1].wr[2];
/* See if we have an IRQ pending and if so deliver it and return 1 */
if (chan->irq) {
/* Do the vector calculation in the right place */
/* FIXME: move this to other platforms */
if (sio[1].wr[1] & 0x04) {
/* This is a subset of the real options. FIXME: add
external status change */
if (sio[1].wr[1] & 0x04) {
vector &= 0xF1;
if (chan == sio)
vector |= 1 << 3;
if (chan->intbits & INT_RX)
vector |= 4;
else if (chan->intbits & INT_ERR)
vector |= 2;
}
if (trace & TRACE_SIO)
fprintf(stderr, "SIO2 interrupt %02X\n", vector);
chan->vector = vector;
} else {
chan->vector = vector;
}
if (trace & (TRACE_IRQ|TRACE_SIO))
fprintf(stderr, "New live interrupt pending is SIO (%d:%02X).\n",
(int)(chan - sio), chan->vector);
if (chan == sio)
live_irq = IRQ_SIOA;
else
live_irq = IRQ_SIOB;
Z80INT(&cpu_z80, chan->vector);
return 1;
}
return 0;
}
/*
* The SIO replaces the last character in the FIFO on an
* overrun.
*/
static void sio2_queue(struct z80_sio_chan *chan, uint8_t c)
{
if (trace & TRACE_SIO)
fprintf(stderr, "SIO %d queue %d: ", (int) (chan - sio), c);
/* Receive disabled */
if (!(chan->wr[3] & 1)) {
fprintf(stderr, "RX disabled.\n");
return;
}
/* Overrun */
if (chan->dptr == 2) {
if (trace & TRACE_SIO)
fprintf(stderr, "Overrun.\n");
chan->data[2] = c;
chan->rr[1] |= 0x20; /* Overrun flagged */
/* What are the rules for overrun delivery FIXME */
sio2_raise_int(chan, INT_ERR);
} else {
/* FIFO add */
if (trace & TRACE_SIO)
fprintf(stderr, "Queued %d (mode %d)\n", chan->dptr, chan->wr[1] & 0x18);
chan->data[chan->dptr++] = c;
chan->rr[0] |= 1;
switch (chan->wr[1] & 0x18) {
case 0x00:
break;
case 0x08:
if (chan->dptr == 1)
sio2_raise_int(chan, INT_RX);
break;
case 0x10:
case 0x18:
sio2_raise_int(chan, INT_RX);
break;
}
}
/* Need to deal with interrupt results */
}
static void sio2_channel_timer(struct z80_sio_chan *chan, uint8_t ab)
{
if (ab == 0) {
int c = check_chario();
if (sio2_input) {
if (c & 1)
sio2_queue(chan, next_char());
}
if (c & 2) {
if (!(chan->rr[0] & 0x04)) {
chan->rr[0] |= 0x04;
if (chan->wr[1] & 0x02)
sio2_raise_int(chan, INT_TX);
}
}
} else {
if (!(chan->rr[0] & 0x04)) {
chan->rr[0] |= 0x04;
if (chan->wr[1] & 0x02)
sio2_raise_int(chan, INT_TX);
}
}
}
static void sio2_timer(void)
{
sio2_channel_timer(sio, 0);
sio2_channel_timer(sio + 1, 1);
}
static void sio2_channel_reset(struct z80_sio_chan *chan)
{
chan->rr[0] = 0x2C;
chan->rr[1] = 0x01;
chan->rr[2] = 0;
sio2_clear_int(chan, INT_RX | INT_TX | INT_ERR);
}
static void sio_reset(void)
{
sio2_channel_reset(sio);
sio2_channel_reset(sio + 1);
}
static uint8_t sio2_read(uint16_t addr)
{
struct z80_sio_chan *chan = (addr & 1) ? sio + 1 : sio;
if (addr & 2) {
/* Control */
uint8_t r = chan->wr[0] & 007;
chan->wr[0] &= ~007;
chan->rr[0] &= ~2;
if (chan == sio && (sio[0].intbits | sio[1].intbits))
chan->rr[0] |= 2;
if (trace & TRACE_SIO)
fprintf(stderr, "sio%c read reg %d = ", (addr & 1) ? 'b' : 'a', r);
switch (r) {
case 0:
case 1:
if (trace & TRACE_SIO)
fprintf(stderr, "%02X\n", chan->rr[r]);
return chan->rr[r];
case 2:
if (chan != sio) {
if (trace & TRACE_SIO)
fprintf(stderr, "%02X\n", chan->rr[2]);
return chan->rr[2];
}
case 3:
/* What does the hw report ?? */
fprintf(stderr, "INVALID(0xFF)\n");
return 0xFF;
}
} else {
uint8_t c = chan->data[0];
chan->data[0] = chan->data[1];
chan->data[1] = chan->data[2];
if (chan->dptr)
chan->dptr--;
if (chan->dptr == 0)
chan->rr[0] &= 0xFE; /* Clear RX pending */
sio2_clear_int(chan, INT_RX);
chan->rr[0] &= 0x3F;
chan->rr[1] &= 0x3F;
if (trace & TRACE_SIO)
fprintf(stderr, "sio%c read data %d\n", (addr & 1) ? 'b' : 'a', c);
if (chan->dptr && (chan->wr[1] & 0x10))
sio2_raise_int(chan, INT_RX);
return c;
}
return 0xFF;
}
static void sio2_write(uint16_t addr, uint8_t val)
{
struct z80_sio_chan *chan = (addr & 1) ? sio + 1 : sio;
uint8_t r;
if (addr & 2) {
if (trace & TRACE_SIO)
fprintf(stderr, "sio%c write reg %d with %02X\n", (addr & 1) ? 'b' : 'a', chan->wr[0] & 7, val);
switch (chan->wr[0] & 007) {
case 0:
chan->wr[0] = val;
/* FIXME: CRC reset bits ? */
switch (val & 070) {
case 000: /* NULL */
break;
case 010: /* Send Abort SDLC */
/* SDLC specific no-op for async */
break;
case 020: /* Reset external/status interrupts */
sio2_clear_int(chan, INT_ERR);
chan->rr[1] &= 0xCF; /* Clear status bits on rr0 */
break;
case 030: /* Channel reset */
if (trace & TRACE_SIO)
fprintf(stderr, "[channel reset]\n");
sio2_channel_reset(chan);
break;
case 040: /* Enable interrupt on next rx */
chan->rxint = 1;
break;
case 050: /* Reset transmitter interrupt pending */
chan->txint = 0;
sio2_clear_int(chan, INT_TX);
break;
case 060: /* Reset the error latches */
chan->rr[1] &= 0x8F;
break;
case 070: /* Return from interrupt (channel A) */
if (chan == sio) {
sio->irq = 0;
sio->rr[1] &= ~0x02;
sio2_clear_int(sio, INT_RX | INT_TX | INT_ERR);
sio2_clear_int(sio + 1, INT_RX | INT_TX | INT_ERR);
}
break;
}
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
r = chan->wr[0] & 7;
if (trace & TRACE_SIO)
fprintf(stderr, "sio%c: wrote r%d to %02X\n",
(addr & 1) ? 'b' : 'a', r, val);
chan->wr[r] = val;
if (chan != sio && r == 2)
chan->rr[2] = val;
chan->wr[0] &= ~007;
break;
}
/* Control */
} else {
/* Strictly we should emulate this as two bytes, one going out and
the visible queue - FIXME */
/* FIXME: irq handling */
chan->rr[0] &= ~(1 << 2); /* Transmit buffer no longer empty */
chan->txint = 1;
/* Should check chan->wr[5] & 8 */
sio2_clear_int(chan, INT_TX);
if (trace & TRACE_SIO)
fprintf(stderr, "sio%c write data %d\n", (addr & 1) ? 'b' : 'a', val);
if (chan == sio)
write(1, &val, 1);
else {
// write(1, "\033[1m;", 5);
write(1, &val,1);
// write(1, "\033[0m;", 5);
}
}
}
/*
* Z80 CTC
*/
struct z80_ctc {
uint16_t count;
uint16_t reload;
uint8_t vector;
uint8_t ctrl;
#define CTC_IRQ 0x80
#define CTC_COUNTER 0x40
#define CTC_PRESCALER 0x20
#define CTC_RISING 0x10
#define CTC_PULSE 0x08
#define CTC_TCONST 0x04
#define CTC_RESET 0x02
#define CTC_CONTROL 0x01
uint8_t irq; /* Only valid for channel 0, so we know
if we must wait for a RETI before doing
a further interrupt */
};
#define CTC_STOPPED(c) (((c)->ctrl & (CTC_TCONST|CTC_RESET)) == (CTC_TCONST|CTC_RESET))
struct z80_ctc ctc[4];
uint8_t ctc_irqmask;
static void ctc_reset(struct z80_ctc *c)
{
c->vector = 0;
c->ctrl = CTC_RESET;
}
static void ctc_init(void)
{
ctc_reset(ctc);
ctc_reset(ctc + 1);
ctc_reset(ctc + 2);
ctc_reset(ctc + 3);
}
static void ctc_interrupt(struct z80_ctc *c)
{
int i = c - ctc;
if (c->ctrl & CTC_IRQ) {
if (!(ctc_irqmask & (1 << i))) {
ctc_irqmask |= 1 << i;
recalc_interrupts();
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d wants to interrupt.\n", i);
}
}
}
static void ctc_reti(int ctcnum)
{
if (ctc_irqmask & (1 << ctcnum)) {
ctc_irqmask &= ~(1 << ctcnum);
if (trace & TRACE_IRQ)
fprintf(stderr, "Acked interrupt from CTC %d.\n", ctcnum);
}
}
/* After a RETI or when idle compute the status of the interrupt line and
if we are head of the chain this time then raise our interrupt */
static int ctc_check_im2(void)
{
if (ctc_irqmask) {
int i;
for (i = 0; i < 4; i++) { /* FIXME: correct order ? */
if (ctc_irqmask & (1 << i)) {
uint8_t vector = ctc[0].vector & 0xF8;
vector += 2 * i;
if (trace & TRACE_IRQ)
fprintf(stderr, "New live interrupt is from CTC %d vector %x.\n", i, vector);
live_irq = IRQ_CTC + i;
Z80INT(&cpu_z80, vector);
return 1;
}
}
}
return 0;
}
/* Model the chains between the CTC devices */
static void ctc_pulse(int i)
{
}
#if 0
/* We don't worry about edge directions just a logical pulse model */
static void ctc_receive_pulse(int i)
{
struct z80_ctc *c = ctc + i;
if (c->ctrl & CTC_COUNTER) {
if (CTC_STOPPED(c))
return;
if (c->count >= 0x0100)
c->count -= 0x100; /* No scaling on pulses */
if ((c->count & 0xFF00) == 0) {
ctc_interrupt(c);
ctc_pulse(i);
c->count = c->reload << 8;
}
} else {
if (c->ctrl & CTC_PULSE)
c->ctrl &= ~CTC_PULSE;
}
}
#endif
/* Model counters */
static void ctc_tick(unsigned int clocks)
{
struct z80_ctc *c = ctc;
int i;
int n;
int decby;
for (i = 0; i < 4; i++, c++) {
/* Waiting a value */
if (CTC_STOPPED(c))
continue;
/* Pulse trigger mode */
if (c->ctrl & CTC_COUNTER)
continue;
/* 256x downscaled */
decby = clocks;
/* 16x not 256x downscale - so increase by 16x */
if (!(c->ctrl & CTC_PRESCALER))
decby <<= 4;
/* Now iterate over the events. We need to deal with wraps
because we might have something counters chained */
n = c->count - decby;
while (n < 0) {
ctc_interrupt(c);
ctc_pulse(i);
if (c->reload == 0)
n += 256 << 8;
else
n += c->reload << 8;
}
c->count = n;
}
}
static void ctc_write(uint8_t channel, uint8_t val)
{
struct z80_ctc *c = ctc + channel;
if (c->ctrl & CTC_TCONST) {
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d constant loaded with %02X\n", channel, val);
c->reload = val;
if ((c->ctrl & (CTC_TCONST|CTC_RESET)) == (CTC_TCONST|CTC_RESET)) {
c->count = (c->reload - 1) << 8;
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d constant reloaded with %02X\n", channel, val);
}
c->ctrl &= ~CTC_TCONST|CTC_RESET;
} else if (val & CTC_CONTROL) {
/* We don't yet model the weirdness around edge wanted
toggling and clock starts */
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d control loaded with %02X\n", channel, val);
c->ctrl = val;
if ((c->ctrl & (CTC_TCONST|CTC_RESET)) == CTC_RESET) {
c->count = (c->reload - 1) << 8;
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d constant reloaded with %02X\n", channel, val);
}
/* Undocumented */
if (!(c->ctrl & CTC_IRQ) && (ctc_irqmask & (1 << channel))) {
ctc_irqmask &= ~(1 << channel);
if (ctc_irqmask == 0) {
if (trace & TRACE_IRQ)
fprintf(stderr, "CTC %d irq reset.\n", channel);
if (live_irq == IRQ_CTC + channel)
live_irq = 0;
}
}
} else {
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d vector loaded with %02X\n", channel, val);
/* Only works on channel 0 */
if (channel == 0)
c->vector = val;
}
}
static uint8_t ctc_read(uint8_t channel)
{
uint8_t val = ctc[channel].count >> 8;
if (trace & TRACE_CTC)
fprintf(stderr, "CTC %d reads %02x\n", channel, val);
return val;
}
static uint8_t bitcnt;
static uint8_t txbits, rxbits;
static void spi_clock_high(void)
{
txbits <<= 1;
txbits |= gpio_out & 1;
bitcnt++;
if (bitcnt == 8) {
rxbits = sd_spi_in(sdcard, txbits);
if (trace & TRACE_SPI)
fprintf(stderr, "spi %02X | %02X\n", rxbits, txbits);
bitcnt = 0;
}
}
static void spi_clock_low(void)
{
gpio_in &= 0x7F;
gpio_in |= (rxbits & 0x80);
rxbits <<= 1;
rxbits |= 1;
}
/* GPIO output lines. The bank map is handled directly
whilst we handle bits 2-0 here. 3 is the printer
strobe but we don't emulate a printer */
static void gpio_write(uint16_t addr, uint8_t val)
{
uint8_t delta = gpio_out ^ val;
gpio_out = val;
if ((delta & 0xF0) && (trace & TRACE_BANK))
fprintf(stderr, "bank: %d\n", val >> 4);
if (delta & 4) {
if (gpio_out & 4)
sd_spi_raise_cs(sdcard);
else {
sd_spi_lower_cs(sdcard);
bitcnt = 0;
}
}
if (delta & 2) {
if (gpio_out & 2)
spi_clock_high();
else
spi_clock_low();
}
}
uint8_t io_read(int unused, uint16_t addr)
{
if (trace & TRACE_IO)
fprintf(stderr, "read %02x\n", addr);
addr &= 0xFF;
switch(addr & 0xF0) {
case 0x00:
return gpio_in;
case 0x30:
return sio2_read(addr & 3);
case 0x40:
return ctc_read(addr & 3);
case 0x50:
if (uart && (addr & 8))
return uart16x50_read(uart, addr & 7);
break;
case 0x70:
flash_in = 0;
return 0xFF;
case 0x80:
if (vdp)
return tms9918a_read(vdp, addr & 1);
break;
case 0xA0:
if (vdp) {
if ( addr == 0xA8 ) {
uint8_t joy0port;
joy0port = joystick_read(0);
if (tms9918a_irq_pending(vdp)) {
joy0port &= ~VDP_J7;
if (trace & TRACE_IRQ)
fprintf (stderr,"VDP IRQ pending via J7: %02X\n", joy0port);
}
return joy0port;
} else if ( addr == 0xA9 )
return joystick_read(1);
}
}
if (trace & TRACE_UNK)
fprintf(stderr, "Unknown read from port %04X\n", addr);
/* 2063 has pullups on the data bus */
return 0xFF;
}
void io_write(int unused, uint16_t addr, uint8_t val)
{
if (trace & TRACE_IO)
fprintf(stderr, "write %02x <- %02x\n", addr, val);
addr &= 0xFF;
switch(addr & 0xF0) {
case 0x10:
gpio_write(addr, val);
return;
case 0x20:
/* Printer */
break;
case 0x30:
sio2_write(addr & 3, val);
return;
case 0x40:
ctc_write(addr & 3, val);
return;
case 0x50:
if (uart && (addr & 8)) {
uart16x50_write(uart, addr & 7, val);
return;
}
break;
case 0x80:
if (vdp){
tms9918a_write(vdp, addr & 1, val);
return;
}
break;
}
if (addr == 0xFD) {
trace &= 0xFF00;
trace |= val;
fprintf(stderr, "trace set to %04X\n", trace);
} else if (addr == 0xFE) {
trace &= 0xFF;
trace |= val << 8;
printf("trace set to %04X\n", trace);
} else if (trace & TRACE_UNK)
fprintf(stderr, "Unknown write to port %04X of %02X\n", addr, val);
}
static void poll_irq_event(void)
{
if (!live_irq)
if (!sio2_check_im2(sio))
if (!sio2_check_im2(sio + 1))
if (!ctc_check_im2()) {
if (uart && uart16x50_irq_pending(uart))
Z80INT(&cpu_z80, 0xFF);
}
/* If a real IM2 source is live then the serial int won't be seen */
}
static void reti_event(void)
{
if (live_irq && (trace & TRACE_IRQ))
fprintf(stderr, "RETI\n");
switch(live_irq) {
case IRQ_SIOA:
sio2_reti(sio);
break;
case IRQ_SIOB:
sio2_reti(sio + 1);
break;
case IRQ_CTC:
case IRQ_CTC + 1:
case IRQ_CTC + 2:
case IRQ_CTC + 3:
ctc_reti(live_irq - IRQ_CTC);
break;
}
live_irq = 0;
poll_irq_event();
}
static struct termios saved_term, term;
static void cleanup(int sig)
{
tcsetattr(0, TCSADRAIN, &saved_term);
emulator_done = 1;
}
static void exit_cleanup(void)
{
tcsetattr(0, TCSADRAIN, &saved_term);
}
static void usage(void)
{
fprintf(stderr, "2063: [-1] [-r rompath] [-S sdcard] [-T] [-f] [-d debug]\n");
exit(EXIT_FAILURE);
}
int main(int argc, char *argv[])
{
static struct timespec tc;
int opt;
int fd;
char *rompath = "2063.rom";
char *sdpath = NULL;
unsigned have_tms = 0;
unsigned have_16x50 = 0;
unsigned rsize;
while ((opt = getopt(argc, argv, "d:fr:S:T")) != -1) {
switch (opt) {
case 1:
have_16x50 = 1;
break;
case 'r':
rompath = optarg;
break;
case 'S':
sdpath = optarg;
break;
case 'd':
trace = atoi(optarg);
break;
case 'f':
fast = 1;
break;
case 'T':
have_tms = 1;
break;
default:
usage();
}
}
if (optind < argc)
usage();
fd = open(rompath, O_RDONLY);
if (fd == -1) {
perror(rompath);
exit(EXIT_FAILURE);
}
rsize = read(fd, rom, sizeof(rom));
if (rsize == 0 || (rsize & (rsize - 1))) {
fprintf(stderr, "2063: rom image should be a power of 2.\n");
exit(EXIT_FAILURE);
}
close(fd);
rom_mask = rsize - 1;
sdcard = sd_create("sd0");
if (sdpath) {