Skip to content

Latest commit

 

History

History

communication

Communication Benchmarks

The intent of these benchmarks is to measure communication latency/bandwidth of DeepSpeed and/or pytorch distributed communication operations at the Python layer. These benchmarks are complementary to C-level comms benchmarks like OSU Micro-Benchmarks and NCCL Tests in that users can:

  • Easily debug which layer of the communication software stack hangs or performance degradations originate from.
  • Measure the expected communication performance of either DeepSpeed comms or pure PyTorch distributed

To run benchmarks, there are two options:

  1. Run a single communication operation:

For example, run with a single large message size (calculated to barely fit within GPU mem):

mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python all_reduce.py

Scan across message sizes:

mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python all_reduce.py --scan

Benchmark pure PyTorch distributed comms (without importing or using MCR-DL) by launching with MPI

mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python all_reduce.py --scan --dist="torch"

or Slurm

srun -n 16 python all_reduce.py --scan --dist="torch"

or the DeepSpeed launcher

deepspeed all_reduce.py --scan --dist="deepspeed"
  1. Run all available communication benchmarks:
mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python run_all.py

Like the individual benchmarks, run_all.py supports scanning arguments for the max message size, bandwidth-unit, etc. Simply pass the desired arguments to run_all.py and they'll be propagated to each comm op.

Finally, users can choose specific communication operations to run in run_all.py by passing them as arguments (all operations are run by default). For example:

mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python run_all.py --scan --all-reduce --all-to-all --broadcast

There is a wide range of arguments available:

usage: run_all.py [-h] [--local_rank LOCAL_RANK] [--trials TRIALS] [--warmups WARMUPS] [--maxsize MAXSIZE]
                  [--async-op] [--bw-unit {Gbps,GBps}] [--backend {nccl,ccl,mpi}] [--dist {deepspeed,torch}] [--scan]
                  [--raw] [--all-reduce] [--all-gather] [--all-to-all] [--pt2pt] [--broadcast] [--dtype DTYPE]
                  [--mem-factor MEM_FACTOR] [--debug]

options:
  -h, --help            show this help message and exit
  --local_rank LOCAL_RANK
  --trials TRIALS       Number of timed iterations
  --warmups WARMUPS     Number of warmup (non-timed) iterations
  --maxsize MAXSIZE     Max message size as a power of 2
  --async-op            Enables non-blocking communication
  --bw-unit {Gbps,GBps}
  --backend {nccl,ccl,mpi}
                        Communication library to use
  --dist {deepspeed,torch}
                        Distributed DL framework to use
  --scan                Enables scanning all message sizes
  --raw                 Print the message size and latency without units
  --all-reduce          Run all_reduce
  --all-gather          Run all_gather
  --all-to-all          Run all_to_all
  --pt2pt               Run pt2pt
  --broadcast           Run broadcast
  --dtype DTYPE         PyTorch tensor dtype
  --mem-factor MEM_FACTOR
                        Proportion of max available GPU memory to use for single-size evals
  --debug               Enables all_to_all debug prints

Adding Communication Benchmarks

To add new communication benchmarks, follow this general procedure:

  1. Copy a similar benchmark file (e.g. to add reduce_scatter, copy all_reduce.py as a template)
  2. Add a new bandwidth formula in utils.get_bandwidth, a new maximum tensor element formula in utils.max_numel, and a new arg in utils.benchmark_parser
  3. Replace comm op calls in new file with find-replace
  4. Find a good default mem_factor for use in run_<collective>_single() function
  5. Add new comm op to run_all.py