Skip to content

Commit 3f232bf

Browse files
authored
Merge pull request #43 from EiffL/UdeM2021
minor differences
2 parents 0cd2ba5 + a1d1212 commit 3f232bf

File tree

1 file changed

+7
-5
lines changed

1 file changed

+7
-5
lines changed

UdeM2021/index.html

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -805,7 +805,6 @@ <h3 class="slide-title">Going one step further: generative models as data-driven
805805
<br>
806806
<br>
807807
$\mathbf{A}$ is known and encodes our physical understanding of the problem.
808-
<span class="fragment"><br>$\Longrightarrow$ When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution $x$</span>
809808
<br>
810809
<br>
811810
<div class="container fragment fade-up">
@@ -1294,14 +1293,17 @@ <h3 class="slide-title">Annealed Langevin samples from DSM model in Song & Ermon
12941293

12951294
<section>
12961295
<h3 class="slide-title">Back to the convergence map log posterior</h3>
1297-
1296+
<br>
1297+
<br>
12981298
$$ \log p( \kappa | e) = \underbrace{\log p(e | \kappa)}_{\simeq -\frac{1}{2} \parallel e - P \kappa \parallel_\Sigma^2} + \log p(\kappa) +cst $$
1299-
1299+
<br>
1300+
<br>
1301+
<br>
13001302
<ul>
13011303
<li> The likelihood term (and its score) are known analytically.
13021304
</li>
13031305

1304-
<li> There is <b class="alert">no close form expression for the full non-Gaussian prior</b> of the convergence.
1306+
<!-- <li> There is <b class="alert">no close form expression for the full non-Gaussian prior</b> of the convergence.
13051307
<br> However:
13061308
<ul>
13071309
<li> <b>We do have an analytic prior on its 2pt function</b>, and that prior is accurate on large scales.
@@ -1311,7 +1313,7 @@ <h3 class="slide-title">Back to the convergence map log posterior</h3>
13111313
<li> <b>We do have access to samples of full prior</b> through simulations.
13121314
</li>
13131315
</ul>
1314-
</li>
1316+
</li> -->
13151317
<br>
13161318
<li class="fragment fade-up"><b class="alert">Learning a Hybrid score</b>: theoretical Gaussian on large scale, data-driven on small scales using N-body simulations.
13171319
$$\underbrace{\nabla_{\boldsymbol{\kappa}} \log p(\boldsymbol{\kappa})}_\text{full prior} = \underbrace{\nabla_{\boldsymbol{\kappa}} \log p_{th}(\boldsymbol{\kappa})}_\text{gaussian prior} +

0 commit comments

Comments
 (0)