-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
293 lines (252 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Import necessary libraries
import os # For operating system related functionalities
import numpy as np # Numerical operations library
from PIL import Image # Python Imaging Library for image processing
import torch # PyTorch deep learning framework
import torchvision.models as models # Pre-trained models from torchvision
import torchvision.transforms as transforms # Data transformations for images
from sklearn.model_selection import train_test_split # Splitting dataset
from sklearn.preprocessing import (
StandardScaler,
) # Standardize features by removing the mean and scaling to unit variance
from sklearn.svm import SVC # Support Vector Classifier from scikit-learn
from sklearn.pipeline import (
make_pipeline,
) # Constructing a pipeline from transformers and estimator
from sklearn.metrics import (
accuracy_score,
) # Evaluation metric for classification accuracy
import joblib # Save and load Python objects (including sklearn models) to and from disk
import time # Time-related functionalities
import ssl # SSL certificate handling
from efficientnet_pytorch import EfficientNet # EfficientNet model
from defaults import * # Import constants from defaults.py
# Fix SSL certificate verification issues
ssl._create_default_https_context = ssl._create_unverified_context
print("\n") # Print newline for better readability
appStartTime = time.time() # Record start time for app
# Define the directory where the dataset is stored and the class names
dataDir = DATA_PATH # Directory containing the dataset
classes = [OBJECT_NAME, NOT_OBJECT_NAME] # Class names for classification
# Define the target image size for resizing
imageSize = (256, 256)
# Define the data augmentation and preprocessing transformations
dataTransforms = transforms.Compose(
[
transforms.RandomResizedCrop(
256
), # Crop the image to random size and aspect ratio
transforms.RandomHorizontalFlip(), # Randomly flip the image horizontally
transforms.RandomRotation(
10
), # Rotate the image by a random angle within [-10, 10] degrees
transforms.ColorJitter(
brightness=0.2, contrast=0.2, saturation=0.2, hue=0.001
), # Randomly change the brightness, contrast, saturation, and hue of the image
transforms.RandomGrayscale(
p=0.1
), # Randomly convert the image to grayscale with a probability of 10%
transforms.GaussianBlur(
kernel_size=5, sigma=(0.1, 2.0)
), # Apply Gaussian blur with a random kernel size and sigma
transforms.ToTensor(), # Convert the image to PyTorch tensor
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
), # Normalize image with specific mean and std
]
)
# Function to load images and their corresponding labels
def loadImages(dataDir, classes, imageSize):
"""
Load images from the specified directory and resize them to the given image size.
Args:
dataDir (str): The directory path where the images are located.
classes (list): A list of class names.
imageSize (tuple): The desired size of the images after resizing.
Returns:
list: A list of tuples containing the loaded images and their corresponding labels.
"""
images = [] # List to store images and their labels
startTime = time.time() # Record start time for loading images
print(f"Loading images from '{dataDir}'...") # Print progress message
for label, cls in enumerate(classes): # Iterate through each class
clsDir = os.path.join(dataDir, cls) # Path to class directory
classImages = os.listdir(clsDir) # List of images in the class directory
print(
f"Found {len(classImages)} images in class '{cls}'"
) # Print number of images found
for filename in classImages: # Iterate through each image in the class
filepath = os.path.join(clsDir, filename) # Full path to the image file
if os.path.isfile(filepath): # Check if it's a file (not a directory)
img = Image.open(filepath).convert(
"RGB"
) # Open image and convert to RGB mode
img = img.resize(imageSize) # Resize image to predefined size
images.append((img, label)) # Append tuple of image and its label
endTime = time.time() # Record end time for loading images
print(
f"Loaded {len(images)} images in {(endTime - startTime):.2f} seconds."
) # Print loading time
return images # Return list of loaded images and labels
# Load the images and their labels
imageLabelPairs = loadImages(dataDir, classes, imageSize) # Call loadImages function
print("\n") # Print newline for better readability
# Load a pre-trained MobileNet model for feature extraction
startTime = time.time() # Record start time for loading MobileNet model
print(
f"Loading pre-trained {MODEL_NAME} model..."
) # Inform the user which model is being loading.
if MODEL_NAME == "resnet": # Check if the model name is "resnet".
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
elif MODEL_NAME == "efficientnet": # Check if the model name is "efficientnet".
model = models.efficientnet_b0(
weights=models.EfficientNet_B0_Weights.DEFAULT
) # Load pre-trained EfficientNet model
elif MODEL_NAME == "vgg": # Check if the model name is "vgg".
model = models.vgg16(
weights=models.VGG16_Weights.DEFAULT
) # Load pre-trained VGG model
elif MODEL_NAME == "densenet": # Check if the model name is "densenet".
model = models.densenet201(
weights=models.DenseNet201_Weights.DEFAULT
) # Load pre-trained DenseNet model
elif MODEL_NAME == "mobilenet": # Check if the model name is "mobilenet".
model = models.mobilenet_v2(
weights=models.MobileNet_V2_Weights.DEFAULT
) # Load pre-trained MobileNet model
else: # If the model name is neither "resnet" nor "efficientnet".
raise ValueError(
"Model not found!"
) # Raise an error indicating the model was not found.
model.eval() # Set model to evaluation mode (not training mode)
featureExtractor = torch.nn.Sequential(
*list(model.children())[:-1]
) # Extract feature extractor from MobileNet model
endTime = time.time() # Record end time for loading MobileNet model
print(
f"Loaded {MODEL_NAME} model in {(endTime - startTime):.2f} seconds."
) # Print loading time
print("\n") # Print newline for better readability
# Function to extract features from images using the pre-trained model
def extractFeatures(images):
"""
Extracts features from a list of images.
Args:
images (list): A list of image-label pairs.
Returns:
tuple: A tuple containing two numpy arrays. The first array contains the extracted features,
and the second array contains the corresponding labels.
"""
features = [] # List to store extracted features
labels = [] # List to store corresponding labels
print(f"Extracting features from {len(images)} images...") # Print progress message
for idx, (image, label) in enumerate(
images, start=1
): # Iterate through each image-label pair
image = dataTransforms(image).unsqueeze(
0
) # Apply data transformations and add batch dimension
with torch.no_grad(): # Disable gradient calculation
feature = (
featureExtractor(image).numpy().flatten()
) # Extract features and convert to numpy array
features.append(feature) # Append extracted feature to list
labels.append(label) # Append corresponding label to list
if idx % 100 == 0 or idx == len(
images
): # Print progress every 100 images processed or at the end
print(f"Processed {idx}/{len(images)} images...") # Print progress message
return np.array(features), np.array(
labels
) # Convert lists to numpy arrays and return
# Extract features and labels from the images
startTime = time.time() # Record start time for feature extraction
features, labels = extractFeatures(imageLabelPairs) # Call extractFeatures function
endTime = time.time() # Record end time for feature extraction
print(
f"Extracted features and labels in {(endTime - startTime):.2f} seconds."
) # Print extraction time
print("\n") # Print newline for better readability
# Split the dataset into training and validation sets
startTime = time.time() # Record start time for dataset splitting
print("Splitting dataset into train and validation sets...") # Print progress message
XTrain, XVal, yTrain, yVal = train_test_split(
features, labels, test_size=0.1, random_state=42
) # Split dataset
endTime = time.time() # Record end time for dataset splitting
print(
f"Split dataset into train and validation sets in {(endTime - startTime):.2f} seconds."
) # Print splitting time
print("\n") # Print newline for better readability
# Create a pipeline with StandardScaler and SVM classifier
startTime = time.time() # Record start time for pipeline creation
print(
"Creating pipeline with StandardScaler and SVM classifier..."
) # Print progress message
pipeline = make_pipeline(
StandardScaler(), SVC(kernel="linear", probability=True)
) # Create pipeline
endTime = time.time() # Record end time for pipeline creation
print(
f"Created pipeline in {(endTime - startTime):.2f} seconds."
) # Print pipeline creation time
print("\n") # Print newline for better readability
# Train the classifier on the training set
startTime = time.time() # Record start time for training
print("Training SVM classifier...") # Print progress message
pipeline.fit(XTrain, yTrain) # Train pipeline on training set
endTime = time.time() # Record end time for training
print(
f"Trained classifier in {(endTime - startTime):.2f} seconds."
) # Print training time
print("\n") # Print newline for better readability
# Predict labels for the validation set
startTime = time.time() # Record start time for prediction
print("Predicting labels for validation set...") # Print progress message
yPred = pipeline.predict(XVal) # Predict labels for validation set
endTime = time.time() # Record end time for prediction
print(
f"Predicted labels for validation set in {(endTime - startTime):.2f} seconds."
) # Print prediction time
print("\n") # Print newline for better readability
# Calculate the accuracy of the classifier
startTime = time.time() # Record start time for accuracy calculation
accuracy = accuracy_score(yVal, yPred) # Calculate accuracy
endTime = time.time() # Record end time for accuracy calculation
print(
f"Calculated accuracy in {(endTime - startTime):.2f} seconds."
) # Print accuracy calculation time
print(f"Validation Accuracy: {accuracy:.4f}") # Print validation accuracy
print("\n") # Print newline for better readability
# Save the trained model to a file
startTime = time.time() # Record start time for model saving
print("Saving trained model to file...") # Print progress message
joblib.dump(pipeline, PKL_FILE_NAME) # Save pipeline to file
endTime = time.time() # Record end time for model saving
print(
f"Saved trained model to file in {(endTime - startTime):.2f} seconds."
) # Print model saving time
print("\n") # Print newline for better readability
# Load the model from the file (for demonstration purposes)
startTime = time.time() # Record start time for model loading
print("Loading model from file...") # Print progress message
pipeline = joblib.load(PKL_FILE_NAME) # Load pipeline from file
endTime = time.time() # Record end time for model loading
print(
f"Loaded model from file in {(endTime - startTime):.2f} seconds."
) # Print model loading time
print("\n") # Print newline for better readability
# Predict and print the first 10 predictions on the validation set
startTime = time.time() # Record start time for prediction
print("Predicting first 10 samples from validation set…") # Print progress message
print(pipeline.predict(XVal[:10])) # Predict and print first 10 samples
endTime = time.time() # Record end time for prediction
print(
f"Predicted first 10 samples in {(endTime - startTime):.2f} seconds."
) # Print prediction time
print("\n") # Print newline for better readability
appEndTime = time.time() # Record end time for app
print(
f"Training and testing completed successfully in {(appEndTime - appStartTime):.2f} seconds."
) # Print completion message
print("\n") # Print newline for better readability