diff --git a/keras_export/convert_model.py b/keras_export/convert_model.py index fe78b910..976eb653 100755 --- a/keras_export/convert_model.py +++ b/keras_export/convert_model.py @@ -385,7 +385,8 @@ def show_gru_layer(layer): def transform_cudnn_weights(input_weights, recurrent_weights, n_gates): - return transform_kernels(input_weights, n_gates, transform_input_kernel), transform_kernels(recurrent_weights, n_gates, transform_recurrent_kernel) + return transform_kernels(input_weights, n_gates, transform_input_kernel), \ + transform_kernels(recurrent_weights, n_gates, transform_recurrent_kernel) def show_cudnn_lstm_layer(layer): @@ -440,16 +441,17 @@ def get_transform_func(layer): return input_transform_func, recurrent_transform_func, bias_transform_func - def show_bidirectional_layer(layer): """Serialize Bidirectional layer to dict""" forward_weights = layer.forward_layer.get_weights() assert len(forward_weights) == 2 or len(forward_weights) == 3 - forward_input_transform_func, forward_recurrent_transform_func, forward_bias_transform_func = get_transform_func(layer.forward_layer) + forward_input_transform_func, forward_recurrent_transform_func, forward_bias_transform_func = get_transform_func( + layer.forward_layer) backward_weights = layer.backward_layer.get_weights() assert len(backward_weights) == 2 or len(backward_weights) == 3 - backward_input_transform_func, backward_recurrent_transform_func, backward_bias_transform_func = get_transform_func(layer.backward_layer) + backward_input_transform_func, backward_recurrent_transform_func, backward_bias_transform_func = get_transform_func( + layer.backward_layer) result = {'forward_weights': encode_floats(forward_input_transform_func(forward_weights[0])), 'forward_recurrent_weights': encode_floats(forward_recurrent_transform_func(forward_weights[1])), diff --git a/keras_export/generate_test_models.py b/keras_export/generate_test_models.py index 9e36d247..e915e90e 100644 --- a/keras_export/generate_test_models.py +++ b/keras_export/generate_test_models.py @@ -347,12 +347,12 @@ def get_test_model_lstm(): inputs = [Input(shape=s) for s in input_shapes] outputs = [] - for input in inputs: + for inp in inputs: lstm_sequences = LSTM( units=8, recurrent_activation='relu', return_sequences=True - )(input) + )(inp) lstm_regular = LSTM( units=3, recurrent_activation='sigmoid', @@ -366,7 +366,7 @@ def get_test_model_lstm(): recurrent_activation='hard_sigmoid', return_sequences=True ) - )(input) + )(inp) lstm_bidi = Bidirectional( LSTM( units=6, @@ -381,13 +381,13 @@ def get_test_model_lstm(): # run GPU-enabled mode if GPU is available lstm_gpu_regular = keras.layers.CuDNNLSTM( units=3 - )(input) + )(inp) lstm_gpu_bidi = Bidirectional( keras.layers.CuDNNLSTM( units=3 ) - )(input) + )(inp) else: # fall back to equivalent regular LSTM for CPU-only mode lstm_gpu_regular = LSTM( @@ -395,7 +395,7 @@ def get_test_model_lstm(): activation='tanh', recurrent_activation='sigmoid', use_bias=True - )(input) + )(inp) lstm_gpu_bidi = Bidirectional( LSTM( @@ -404,7 +404,7 @@ def get_test_model_lstm(): recurrent_activation='sigmoid', use_bias=True ) - )(input) + )(inp) outputs.append(lstm_gpu_regular) outputs.append(lstm_gpu_bidi) @@ -430,14 +430,14 @@ def get_test_model_gru(): inputs = [Input(shape=s) for s in input_shapes] outputs = [] - for input in inputs: + for inp in inputs: gru_sequences = GRU( units=8, recurrent_activation='relu', reset_after=True, return_sequences=True, use_bias=True - )(input) + )(inp) gru_regular = GRU( units=3, recurrent_activation='sigmoid', @@ -455,7 +455,7 @@ def get_test_model_gru(): return_sequences=True, use_bias=True ) - )(input) + )(inp) gru_bidi = Bidirectional( GRU( units=6, @@ -472,13 +472,13 @@ def get_test_model_gru(): # run GPU-enabled mode if GPU is available gru_gpu_regular = keras.layers.CuDNNGRU( units=3 - )(input) + )(inp) gru_gpu_bidi = Bidirectional( keras.layers.CuDNNGRU( units=3 ) - )(input) + )(inp) else: # fall back to equivalent regular GRU for CPU-only mode gru_gpu_regular = GRU( @@ -487,7 +487,7 @@ def get_test_model_gru(): recurrent_activation='sigmoid', reset_after=True, use_bias=True - )(input) + )(inp) gru_gpu_bidi = Bidirectional( GRU( @@ -497,7 +497,7 @@ def get_test_model_gru(): reset_after=True, use_bias=True ) - )(input) + )(inp) outputs.append(gru_gpu_regular) outputs.append(gru_gpu_bidi)