|
| 1 | +# Learner: Nguyen Truong Thinh |
| 2 | +# Contact me: [email protected] || +84393280504 |
| 3 | +# |
| 4 | +# Topic: Deep Learning: Convolutional Neural Networks (CNNs) |
| 5 | +# A CNN that trains on Keras's CIFAR-10 images dataset |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +from keras.datasets import cifar10 |
| 10 | +from keras.models import Sequential |
| 11 | +from keras.layers import BatchNormalization, Conv2D, Dense, Dropout, Flatten |
| 12 | +from keras.optimizers import Adam |
| 13 | +from keras.utils import to_categorical |
| 14 | + |
| 15 | +from ml.deep_learning.neural_network_keras.decision_boundaries import decision_boundary_2dimensional as boundary |
| 16 | + |
| 17 | +# Hyperparameters we can adjust |
| 18 | +DROPOUT_PROBABILITY = 0.5 |
| 19 | + |
| 20 | +(X_train_raw, Y_train_raw), (X_test_raw, Y_test_raw) = cifar10.load_data() |
| 21 | + |
| 22 | +X_train = X_train_raw / 255 |
| 23 | +X_test_all = X_test_raw / 255 |
| 24 | +X_validation, X_test = np.split(X_test_all, 2) |
| 25 | +Y_train_encoded = to_categorical(Y_train_raw) |
| 26 | +Y_validation_encoded, Y_test = np.split(to_categorical(Y_test_raw), 2) |
| 27 | + |
| 28 | +# Create a sequential model |
| 29 | +model = Sequential() |
| 30 | + |
| 31 | +# Convolutional layers |
| 32 | +model.add(Conv2D(16, (3, 3), activation='relu')) |
| 33 | +model.add(BatchNormalization()) # To improve accuracy |
| 34 | +model.add(Dropout(DROPOUT_PROBABILITY)) # To reduce over-fitting |
| 35 | + |
| 36 | +model.add(Conv2D(32, (3, 3), activation='relu')) |
| 37 | +model.add(BatchNormalization()) |
| 38 | +model.add(Dropout(DROPOUT_PROBABILITY)) |
| 39 | + |
| 40 | +# Four-dimensional tensor => bi-dimensional matrix of flat data. |
| 41 | +model.add(Flatten()) |
| 42 | + |
| 43 | +# Fully connected layers - Dense |
| 44 | +model.add(Dense(1000, activation='relu')) |
| 45 | +model.add(BatchNormalization()) |
| 46 | +model.add(Dropout(DROPOUT_PROBABILITY)) |
| 47 | + |
| 48 | +model.add(Dense(512, activation='relu')) |
| 49 | +model.add(BatchNormalization()) |
| 50 | +model.add(Dropout(DROPOUT_PROBABILITY)) |
| 51 | + |
| 52 | +model.add(Dense(10, activation='softmax')) |
| 53 | + |
| 54 | +# Compile a model |
| 55 | +model.compile( |
| 56 | + loss='categorical_crossentropy', |
| 57 | + optimizer=Adam(), |
| 58 | + metrics=['accuracy'] |
| 59 | +) |
| 60 | + |
| 61 | +# Train a network |
| 62 | +history = model.fit( |
| 63 | + X_train, |
| 64 | + Y_train_encoded, |
| 65 | + validation_data=(X_validation, Y_validation_encoded), |
| 66 | + epochs=20, |
| 67 | + batch_size=32 |
| 68 | +) |
| 69 | + |
| 70 | +# Draw a decision boundary |
| 71 | +boundary.plot(history) |
0 commit comments