Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

语义分割炼丹技巧:mean std #16

Open
gemfield opened this issue May 29, 2021 · 0 comments
Open

语义分割炼丹技巧:mean std #16

gemfield opened this issue May 29, 2021 · 0 comments

Comments

@gemfield
Copy link
Contributor

不同mean std的pk

数据集

  • 训练集:clothes std 2.1
  • 验证集:LIP986

炼丹参数

TRAIN

config.core.mean = config.data['mean'] && config.core.std = config.data['std']

Epoch No.: 0    TRAIN Loss = 0.8305      TRAIN mIOU = 0.6219
Epoch No.: 1    TRAIN Loss = 0.6207      TRAIN mIOU = 0.6758
Epoch No.: 2    TRAIN Loss = 0.5139      TRAIN mIOU = 0.7286
Epoch No.: 3    TRAIN Loss = 0.4646      TRAIN mIOU = 0.7510
Epoch No.: 4    TRAIN Loss = 0.4634      TRAIN mIOU = 0.7521
Epoch No.: 5    TRAIN Loss = 0.4377      TRAIN mIOU = 0.7588
Epoch No.: 6    TRAIN Loss = 0.4065      TRAIN mIOU = 0.7717
Epoch No.: 7    TRAIN Loss = 0.4041      TRAIN mIOU = 0.7728
Epoch No.: 8    TRAIN Loss = 0.4023      TRAIN mIOU = 0.7758
Epoch No.: 9    TRAIN Loss = 0.3936      TRAIN mIOU = 0.7782
Epoch No.: 10   TRAIN Loss = 0.3864      TRAIN mIOU = 0.7768
Epoch No.: 11   TRAIN Loss = 0.3854      TRAIN mIOU = 0.7785
Epoch No.: 12   TRAIN Loss = 0.3883      TRAIN mIOU = 0.7790
Epoch No.: 13   TRAIN Loss = 0.3796      TRAIN mIOU = 0.7800
Epoch No.: 14   TRAIN Loss = 0.3667      TRAIN mIOU = 0.7873
Epoch No.: 15   TRAIN Loss = 0.3524      TRAIN mIOU = 0.7932
Epoch No.: 16   TRAIN Loss = 0.3539      TRAIN mIOU = 0.7935
Epoch No.: 17   TRAIN Loss = 0.3466      TRAIN mIOU = 0.7947
Epoch No.: 18   TRAIN Loss = 0.3523      TRAIN mIOU = 0.7939
Epoch No.: 19   TRAIN Loss = 0.3518      TRAIN mIOU = 0.7919
Epoch No.: 20   TRAIN Loss = 0.3384      TRAIN mIOU = 0.8006
Epoch No.: 21   TRAIN Loss = 0.3494      TRAIN mIOU = 0.7959
Epoch No.: 22   TRAIN Loss = 0.3488      TRAIN mIOU = 0.7953
Epoch No.: 23   TRAIN Loss = 0.3383      TRAIN mIOU = 0.8008
Epoch No.: 24   TRAIN Loss = 0.3317      TRAIN mIOU = 0.8019
Epoch No.: 25   TRAIN Loss = 0.3454      TRAIN mIOU = 0.7980
Epoch No.: 26   TRAIN Loss = 0.3399      TRAIN mIOU = 0.8008
Epoch No.: 27   TRAIN Loss = 0.3283      TRAIN mIOU = 0.8043
Epoch No.: 28   TRAIN Loss = 0.3313      TRAIN mIOU = 0.8052
Epoch No.: 29   TRAIN Loss = 0.3149      TRAIN mIOU = 0.8144
Epoch No.: 30   TRAIN Loss = 0.3252      TRAIN mIOU = 0.8099
Epoch No.: 31   TRAIN Loss = 0.3250      TRAIN mIOU = 0.8086
Epoch No.: 32   TRAIN Loss = 0.3217      TRAIN mIOU = 0.8123
Epoch No.: 33   TRAIN Loss = 0.3145      TRAIN mIOU = 0.8153
Epoch No.: 34   TRAIN Loss = 0.3095      TRAIN mIOU = 0.8145
Epoch No.: 35   TRAIN Loss = 0.3217      TRAIN mIOU = 0.8118
Epoch No.: 36   TRAIN Loss = 0.3023      TRAIN mIOU = 0.8188
Epoch No.: 37   TRAIN Loss = 0.3479      TRAIN mIOU = 0.8003
Epoch No.: 38   TRAIN Loss = 0.3139      TRAIN mIOU = 0.8162
Epoch No.: 39   TRAIN Loss = 0.3228      TRAIN mIOU = 0.8084
Epoch No.: 40   TRAIN Loss = 0.3105      TRAIN mIOU = 0.8169
Epoch No.: 41   TRAIN Loss = 0.3098      TRAIN mIOU = 0.8176
Epoch No.: 42   TRAIN Loss = 0.3020      TRAIN mIOU = 0.8221
Epoch No.: 43   TRAIN Loss = 0.3232      TRAIN mIOU = 0.8106
Epoch No.: 44   TRAIN Loss = 0.3113      TRAIN mIOU = 0.8178
Epoch No.: 45   TRAIN Loss = 0.3171      TRAIN mIOU = 0.8139
Epoch No.: 46   TRAIN Loss = 0.3011      TRAIN mIOU = 0.8238
Epoch No.: 47   TRAIN Loss = 0.3028      TRAIN mIOU = 0.8196
Epoch No.: 48   TRAIN Loss = 0.2992      TRAIN mIOU = 0.8217
Epoch No.: 49   TRAIN Loss = 0.3661      TRAIN mIOU = 0.7944
Epoch No.: 50   TRAIN Loss = 0.2963      TRAIN mIOU = 0.8231
Epoch No.: 51   TRAIN Loss = 0.2979      TRAIN mIOU = 0.8209
Epoch No.: 52   TRAIN Loss = 0.2880      TRAIN mIOU = 0.8268
Epoch No.: 53   TRAIN Loss = 0.3200      TRAIN mIOU = 0.8141
Epoch No.: 54   TRAIN Loss = 0.2867      TRAIN mIOU = 0.8280
Epoch No.: 55   TRAIN Loss = 0.2851      TRAIN mIOU = 0.8299
Epoch No.: 56   TRAIN Loss = 0.2963      TRAIN mIOU = 0.8249
Epoch No.: 57   TRAIN Loss = 0.2867      TRAIN mIOU = 0.8282
Epoch No.: 58   TRAIN Loss = 0.2872      TRAIN mIOU = 0.8284
Epoch No.: 59   TRAIN Loss = 0.2830      TRAIN mIOU = 0.8283
Epoch No.: 60   TRAIN Loss = 0.2824      TRAIN mIOU = 0.8320
Epoch No.: 61   TRAIN Loss = 0.2788      TRAIN mIOU = 0.8347
Epoch No.: 62   TRAIN Loss = 0.3024      TRAIN mIOU = 0.8256
Epoch No.: 63   TRAIN Loss = 0.2851      TRAIN mIOU = 0.8298
Epoch No.: 64   TRAIN Loss = 0.2906      TRAIN mIOU = 0.8269
Epoch No.: 65   TRAIN Loss = 0.2852      TRAIN mIOU = 0.8279
Epoch No.: 66   TRAIN Loss = 0.2748      TRAIN mIOU = 0.8362
Epoch No.: 67   TRAIN Loss = 0.2889      TRAIN mIOU = 0.8313
Epoch No.: 68   TRAIN Loss = 0.2904      TRAIN mIOU = 0.8271
Epoch No.: 69   TRAIN Loss = 0.2932      TRAIN mIOU = 0.8270
Epoch No.: 70   TRAIN Loss = 0.2758      TRAIN mIOU = 0.8387
Epoch No.: 71   TRAIN Loss = 0.2819      TRAIN mIOU = 0.8336

config.core.mean = np.array([0.406, 0.456, 0.485]) * 255 && config.core.std = np.array([0.224, 0.225, 0.229]) * 255

Epoch No.: 0    TRAIN Loss = 0.8366      TRAIN mIOU = 0.6301
Epoch No.: 1    TRAIN Loss = 0.5948      TRAIN mIOU = 0.6986
Epoch No.: 2    TRAIN Loss = 0.5243      TRAIN mIOU = 0.7221
Epoch No.: 3    TRAIN Loss = 0.4927      TRAIN mIOU = 0.7373
Epoch No.: 4    TRAIN Loss = 0.4506      TRAIN mIOU = 0.7494
Epoch No.: 5    TRAIN Loss = 0.4363      TRAIN mIOU = 0.7573
Epoch No.: 6    TRAIN Loss = 0.4201      TRAIN mIOU = 0.7674
Epoch No.: 7    TRAIN Loss = 0.4050      TRAIN mIOU = 0.7667
Epoch No.: 8    TRAIN Loss = 0.3794      TRAIN mIOU = 0.7790
Epoch No.: 9    TRAIN Loss = 0.4004      TRAIN mIOU = 0.7725
Epoch No.: 10   TRAIN Loss = 0.3861      TRAIN mIOU = 0.7744
Epoch No.: 11   TRAIN Loss = 0.3822      TRAIN mIOU = 0.7762
Epoch No.: 12   TRAIN Loss = 0.3700      TRAIN mIOU = 0.7805
Epoch No.: 13   TRAIN Loss = 0.3603      TRAIN mIOU = 0.7861
Epoch No.: 14   TRAIN Loss = 0.3559      TRAIN mIOU = 0.7890
Epoch No.: 15   TRAIN Loss = 0.3692      TRAIN mIOU = 0.7817
Epoch No.: 16   TRAIN Loss = 0.3653      TRAIN mIOU = 0.7813
Epoch No.: 17   TRAIN Loss = 0.3682      TRAIN mIOU = 0.7851
Epoch No.: 18   TRAIN Loss = 0.3405      TRAIN mIOU = 0.7950
Epoch No.: 19   TRAIN Loss = 0.3447      TRAIN mIOU = 0.7958
Epoch No.: 20   TRAIN Loss = 0.3428      TRAIN mIOU = 0.7926
Epoch No.: 21   TRAIN Loss = 0.3439      TRAIN mIOU = 0.7919
Epoch No.: 22   TRAIN Loss = 0.3546      TRAIN mIOU = 0.7839
Epoch No.: 23   TRAIN Loss = 0.3414      TRAIN mIOU = 0.7954
Epoch No.: 24   TRAIN Loss = 0.3426      TRAIN mIOU = 0.7926
Epoch No.: 25   TRAIN Loss = 0.3539      TRAIN mIOU = 0.7960
Epoch No.: 26   TRAIN Loss = 0.3400      TRAIN mIOU = 0.7940
Epoch No.: 27   TRAIN Loss = 0.3334      TRAIN mIOU = 0.7996
Epoch No.: 28   TRAIN Loss = 0.3527      TRAIN mIOU = 0.7933
Epoch No.: 29   TRAIN Loss = 0.3269      TRAIN mIOU = 0.8054
Epoch No.: 30   TRAIN Loss = 0.3221      TRAIN mIOU = 0.8070
Epoch No.: 31   TRAIN Loss = 0.3345      TRAIN mIOU = 0.7999
Epoch No.: 32   TRAIN Loss = 0.3271      TRAIN mIOU = 0.8024
Epoch No.: 33   TRAIN Loss = 0.3218      TRAIN mIOU = 0.8073
Epoch No.: 34   TRAIN Loss = 0.3178      TRAIN mIOU = 0.8121
Epoch No.: 35   TRAIN Loss = 0.3109      TRAIN mIOU = 0.8157
Epoch No.: 36   TRAIN Loss = 0.3431      TRAIN mIOU = 0.8027
Epoch No.: 37   TRAIN Loss = 0.3178      TRAIN mIOU = 0.8111
Epoch No.: 38   TRAIN Loss = 0.3020      TRAIN mIOU = 0.8208
Epoch No.: 39   TRAIN Loss = 0.3194      TRAIN mIOU = 0.8142
Epoch No.: 40   TRAIN Loss = 0.3122      TRAIN mIOU = 0.8157
Epoch No.: 41   TRAIN Loss = 0.3096      TRAIN mIOU = 0.8186
Epoch No.: 42   TRAIN Loss = 0.2946      TRAIN mIOU = 0.8237
Epoch No.: 43   TRAIN Loss = 0.3123      TRAIN mIOU = 0.8167
Epoch No.: 44   TRAIN Loss = 0.2982      TRAIN mIOU = 0.8211
Epoch No.: 45   TRAIN Loss = 0.3216      TRAIN mIOU = 0.8107
Epoch No.: 46   TRAIN Loss = 0.3048      TRAIN mIOU = 0.8212
Epoch No.: 47   TRAIN Loss = 0.2985      TRAIN mIOU = 0.8211
Epoch No.: 48   TRAIN Loss = 0.3184      TRAIN mIOU = 0.8148
Epoch No.: 49   TRAIN Loss = 0.2981      TRAIN mIOU = 0.8221
Epoch No.: 50   TRAIN Loss = 0.2956      TRAIN mIOU = 0.8196
Epoch No.: 51   TRAIN Loss = 0.3136      TRAIN mIOU = 0.8112
Epoch No.: 52   TRAIN Loss = 0.3168      TRAIN mIOU = 0.8119
Epoch No.: 53   TRAIN Loss = 0.2957      TRAIN mIOU = 0.8197
Epoch No.: 54   TRAIN Loss = 0.2979      TRAIN mIOU = 0.8232
Epoch No.: 55   TRAIN Loss = 0.3038      TRAIN mIOU = 0.8206
Epoch No.: 56   TRAIN Loss = 0.2890      TRAIN mIOU = 0.8256
Epoch No.: 57   TRAIN Loss = 0.2870      TRAIN mIOU = 0.8271
Epoch No.: 58   TRAIN Loss = 0.2857      TRAIN mIOU = 0.8259
Epoch No.: 59   TRAIN Loss = 0.2945      TRAIN mIOU = 0.8229
Epoch No.: 60   TRAIN Loss = 0.2899      TRAIN mIOU = 0.8265
Epoch No.: 61   TRAIN Loss = 0.2808      TRAIN mIOU = 0.8332
Epoch No.: 62   TRAIN Loss = 0.2891      TRAIN mIOU = 0.8296
Epoch No.: 63   TRAIN Loss = 0.2807      TRAIN mIOU = 0.8308
Epoch No.: 64   TRAIN Loss = 0.2798      TRAIN mIOU = 0.8298
Epoch No.: 65   TRAIN Loss = 0.2956      TRAIN mIOU = 0.8232
Epoch No.: 66   TRAIN Loss = 0.2755      TRAIN mIOU = 0.8371
Epoch No.: 67   TRAIN Loss = 0.2910      TRAIN mIOU = 0.8253
Epoch No.: 68   TRAIN Loss = 0.2880      TRAIN mIOU = 0.8264
Epoch No.: 69   TRAIN Loss = 0.2793      TRAIN mIOU = 0.8322
Epoch No.: 70   TRAIN Loss = 0.2931      TRAIN mIOU = 0.8288
Epoch No.: 71   TRAIN Loss = 0.3069      TRAIN mIOU = 0.8180

VAL

config.core.mean = config.data['mean'] && config.core.std = config.data['std']

Epoch No.: 0    VAL Loss = 0.5173        VAL mIOU = 0.6432
Epoch No.: 1    VAL Loss = 0.7352        VAL mIOU = 0.6698
Epoch No.: 2    VAL Loss = 0.9506        VAL mIOU = 0.6749
Epoch No.: 3    VAL Loss = 0.4759        VAL mIOU = 0.7032
Epoch No.: 4    VAL Loss = 0.4187        VAL mIOU = 0.6993
Epoch No.: 5    VAL Loss = 0.5501        VAL mIOU = 0.6915
Epoch No.: 6    VAL Loss = 0.5055        VAL mIOU = 0.6912
Epoch No.: 7    VAL Loss = 0.3540        VAL mIOU = 0.7052
Epoch No.: 8    VAL Loss = 0.3820        VAL mIOU = 0.7039
Epoch No.: 9    VAL Loss = 0.4253        VAL mIOU = 0.6960
Epoch No.: 10   VAL Loss = 0.3428        VAL mIOU = 0.7053
Epoch No.: 11   VAL Loss = 0.3238        VAL mIOU = 0.7105
Epoch No.: 12   VAL Loss = 0.4548        VAL mIOU = 0.7008
Epoch No.: 13   VAL Loss = 0.2605        VAL mIOU = 0.7088
Epoch No.: 14   VAL Loss = 0.2577        VAL mIOU = 0.7024
Epoch No.: 15   VAL Loss = 0.4431        VAL mIOU = 0.6901
Epoch No.: 16   VAL Loss = 0.6530        VAL mIOU = 0.7028
Epoch No.: 17   VAL Loss = 0.3773        VAL mIOU = 0.7138
Epoch No.: 18   VAL Loss = 0.3961        VAL mIOU = 0.7098
Epoch No.: 19   VAL Loss = 0.5007        VAL mIOU = 0.7003
Epoch No.: 20   VAL Loss = 0.4277        VAL mIOU = 0.7065
Epoch No.: 21   VAL Loss = 0.3111        VAL mIOU = 0.7018
Epoch No.: 22   VAL Loss = 0.4636        VAL mIOU = 0.7042
Epoch No.: 23   VAL Loss = 0.3106        VAL mIOU = 0.7164
Epoch No.: 24   VAL Loss = 0.4415        VAL mIOU = 0.7028
Epoch No.: 25   VAL Loss = 0.4288        VAL mIOU = 0.7096
Epoch No.: 26   VAL Loss = 0.4786        VAL mIOU = 0.7097
Epoch No.: 27   VAL Loss = 0.2658        VAL mIOU = 0.7024
Epoch No.: 28   VAL Loss = 0.3159        VAL mIOU = 0.7124
Epoch No.: 29   VAL Loss = 0.2794        VAL mIOU = 0.6917
Epoch No.: 30   VAL Loss = 0.4634        VAL mIOU = 0.7142
Epoch No.: 31   VAL Loss = 0.3339        VAL mIOU = 0.7104
Epoch No.: 32   VAL Loss = 0.3904        VAL mIOU = 0.7146
Epoch No.: 33   VAL Loss = 0.1813        VAL mIOU = 0.7036
Epoch No.: 34   VAL Loss = 0.2867        VAL mIOU = 0.7112
Epoch No.: 35   VAL Loss = 0.3358        VAL mIOU = 0.7012
Epoch No.: 36   VAL Loss = 0.3156        VAL mIOU = 0.7102
Epoch No.: 37   VAL Loss = 0.6730        VAL mIOU = 0.7118
Epoch No.: 38   VAL Loss = 0.3842        VAL mIOU = 0.7124
Epoch No.: 39   VAL Loss = 0.2802        VAL mIOU = 0.7041
Epoch No.: 40   VAL Loss = 0.3072        VAL mIOU = 0.7008
Epoch No.: 41   VAL Loss = 0.2515        VAL mIOU = 0.7058
Epoch No.: 42   VAL Loss = 0.3218        VAL mIOU = 0.7141
Epoch No.: 43   VAL Loss = 0.3874        VAL mIOU = 0.7141
Epoch No.: 44   VAL Loss = 0.3264        VAL mIOU = 0.7046
Epoch No.: 45   VAL Loss = 0.2222        VAL mIOU = 0.7133
Epoch No.: 46   VAL Loss = 0.2573        VAL mIOU = 0.7175
Epoch No.: 47   VAL Loss = 0.2777        VAL mIOU = 0.7070
Epoch No.: 48   VAL Loss = 0.2893        VAL mIOU = 0.7089
Epoch No.: 49   VAL Loss = 0.3707        VAL mIOU = 0.7077
Epoch No.: 50   VAL Loss = 0.2880        VAL mIOU = 0.7086
Epoch No.: 51   VAL Loss = 0.2251        VAL mIOU = 0.7092
Epoch No.: 52   VAL Loss = 0.2015        VAL mIOU = 0.7095
Epoch No.: 53   VAL Loss = 0.3612        VAL mIOU = 0.7125
Epoch No.: 54   VAL Loss = 0.4589        VAL mIOU = 0.7110
Epoch No.: 55   VAL Loss = 0.1923        VAL mIOU = 0.7142
Epoch No.: 56   VAL Loss = 0.3266        VAL mIOU = 0.7219
Epoch No.: 57   VAL Loss = 0.4174        VAL mIOU = 0.7158
Epoch No.: 58   VAL Loss = 0.2626        VAL mIOU = 0.7116
Epoch No.: 59   VAL Loss = 0.2723        VAL mIOU = 0.7077
Epoch No.: 60   VAL Loss = 0.2446        VAL mIOU = 0.7148
Epoch No.: 61   VAL Loss = 0.2165        VAL mIOU = 0.7193
Epoch No.: 62   VAL Loss = 0.2425        VAL mIOU = 0.7183
Epoch No.: 63   VAL Loss = 0.1794        VAL mIOU = 0.7070
Epoch No.: 64   VAL Loss = 0.2505        VAL mIOU = 0.7088
Epoch No.: 65   VAL Loss = 0.2996        VAL mIOU = 0.7113
Epoch No.: 66   VAL Loss = 0.2840        VAL mIOU = 0.7256
Epoch No.: 67   VAL Loss = 0.1732        VAL mIOU = 0.7209
Epoch No.: 68   VAL Loss = 0.3359        VAL mIOU = 0.7211
Epoch No.: 69   VAL Loss = 0.2815        VAL mIOU = 0.7205
Epoch No.: 70   VAL Loss = 0.3863        VAL mIOU = 0.7236
Epoch No.: 71   VAL Loss = 0.4573        VAL mIOU = 0.7125

config.core.mean = np.array([0.406, 0.456, 0.485]) * 255 && config.core.std = np.array([0.224, 0.225, 0.229]) * 255

Epoch No.: 0    VAL Loss = 1.0027        VAL mIOU = 0.6609
Epoch No.: 1    VAL Loss = 0.4098        VAL mIOU = 0.6891
Epoch No.: 2    VAL Loss = 0.4527        VAL mIOU = 0.6816
Epoch No.: 3    VAL Loss = 0.4802        VAL mIOU = 0.6926
Epoch No.: 4    VAL Loss = 0.4131        VAL mIOU = 0.7090
Epoch No.: 5    VAL Loss = 0.3669        VAL mIOU = 0.6910
Epoch No.: 6    VAL Loss = 0.3852        VAL mIOU = 0.7039
Epoch No.: 7    VAL Loss = 0.4639        VAL mIOU = 0.7010
Epoch No.: 8    VAL Loss = 0.2421        VAL mIOU = 0.7056
Epoch No.: 9    VAL Loss = 0.3121        VAL mIOU = 0.7064
Epoch No.: 10   VAL Loss = 0.4149        VAL mIOU = 0.6891
Epoch No.: 11   VAL Loss = 0.4101        VAL mIOU = 0.6920
Epoch No.: 12   VAL Loss = 0.5366        VAL mIOU = 0.7054
Epoch No.: 13   VAL Loss = 0.2483        VAL mIOU = 0.7016
Epoch No.: 14   VAL Loss = 0.3290        VAL mIOU = 0.7000
Epoch No.: 15   VAL Loss = 0.4951        VAL mIOU = 0.7046
Epoch No.: 16   VAL Loss = 0.2388        VAL mIOU = 0.7102
Epoch No.: 17   VAL Loss = 0.4184        VAL mIOU = 0.7130
Epoch No.: 18   VAL Loss = 0.2305        VAL mIOU = 0.6993
Epoch No.: 19   VAL Loss = 0.2024        VAL mIOU = 0.7130
Epoch No.: 20   VAL Loss = 0.2712        VAL mIOU = 0.7119
Epoch No.: 21   VAL Loss = 0.3688        VAL mIOU = 0.7067
Epoch No.: 22   VAL Loss = 0.2932        VAL mIOU = 0.7037
Epoch No.: 23   VAL Loss = 0.3351        VAL mIOU = 0.7116
Epoch No.: 24   VAL Loss = 0.3120        VAL mIOU = 0.6907
Epoch No.: 25   VAL Loss = 0.3701        VAL mIOU = 0.7075
Epoch No.: 26   VAL Loss = 0.2840        VAL mIOU = 0.7055
Epoch No.: 27   VAL Loss = 0.1913        VAL mIOU = 0.7009
Epoch No.: 28   VAL Loss = 0.3571        VAL mIOU = 0.7058
Epoch No.: 29   VAL Loss = 0.2842        VAL mIOU = 0.6992
Epoch No.: 30   VAL Loss = 0.2221        VAL mIOU = 0.6947
Epoch No.: 31   VAL Loss = 0.4760        VAL mIOU = 0.7040
Epoch No.: 32   VAL Loss = 0.3142        VAL mIOU = 0.7053
Epoch No.: 33   VAL Loss = 0.3420        VAL mIOU = 0.7011
Epoch No.: 34   VAL Loss = 0.2332        VAL mIOU = 0.7141
Epoch No.: 35   VAL Loss = 0.3380        VAL mIOU = 0.7150
Epoch No.: 36   VAL Loss = 0.3132        VAL mIOU = 0.6955
Epoch No.: 37   VAL Loss = 0.2566        VAL mIOU = 0.7078
Epoch No.: 38   VAL Loss = 0.3091        VAL mIOU = 0.7179
Epoch No.: 39   VAL Loss = 0.2164        VAL mIOU = 0.7153
Epoch No.: 40   VAL Loss = 0.2183        VAL mIOU = 0.7151
Epoch No.: 41   VAL Loss = 0.3004        VAL mIOU = 0.7105
Epoch No.: 42   VAL Loss = 0.2718        VAL mIOU = 0.7142
Epoch No.: 43   VAL Loss = 0.2290        VAL mIOU = 0.7099
Epoch No.: 44   VAL Loss = 0.3576        VAL mIOU = 0.7211
Epoch No.: 45   VAL Loss = 0.4168        VAL mIOU = 0.7007
Epoch No.: 46   VAL Loss = 0.3234        VAL mIOU = 0.7180
Epoch No.: 47   VAL Loss = 0.4667        VAL mIOU = 0.6993
Epoch No.: 48   VAL Loss = 0.4768        VAL mIOU = 0.6966
Epoch No.: 49   VAL Loss = 0.2444        VAL mIOU = 0.7161
Epoch No.: 50   VAL Loss = 0.2509        VAL mIOU = 0.7061
Epoch No.: 51   VAL Loss = 0.3836        VAL mIOU = 0.7025
Epoch No.: 52   VAL Loss = 0.2030        VAL mIOU = 0.7112
Epoch No.: 53   VAL Loss = 0.3260        VAL mIOU = 0.7081
Epoch No.: 54   VAL Loss = 0.5848        VAL mIOU = 0.7049
Epoch No.: 55   VAL Loss = 0.2594        VAL mIOU = 0.7151
Epoch No.: 56   VAL Loss = 0.2592        VAL mIOU = 0.7108
Epoch No.: 57   VAL Loss = 0.2903        VAL mIOU = 0.7142
Epoch No.: 58   VAL Loss = 0.2276        VAL mIOU = 0.7182
Epoch No.: 59   VAL Loss = 0.2374        VAL mIOU = 0.7116
Epoch No.: 60   VAL Loss = 0.2516        VAL mIOU = 0.7113
Epoch No.: 61   VAL Loss = 0.4056        VAL mIOU = 0.7084
Epoch No.: 62   VAL Loss = 0.2798        VAL mIOU = 0.7176
Epoch No.: 63   VAL Loss = 0.4840        VAL mIOU = 0.7171
Epoch No.: 64   VAL Loss = 0.2694        VAL mIOU = 0.7125
Epoch No.: 65   VAL Loss = 0.2726        VAL mIOU = 0.7120
Epoch No.: 66   VAL Loss = 0.2584        VAL mIOU = 0.7047
Epoch No.: 67   VAL Loss = 0.2813        VAL mIOU = 0.7164
Epoch No.: 68   VAL Loss = 0.2304        VAL mIOU = 0.7129
Epoch No.: 69   VAL Loss = 0.2463        VAL mIOU = 0.7255
Epoch No.: 70   VAL Loss = 0.2372        VAL mIOU = 0.7171
Epoch No.: 71   VAL Loss = 0.3434        VAL mIOU = 0.7097
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant