-
Notifications
You must be signed in to change notification settings - Fork 0
/
q3_word2vec.py
268 lines (207 loc) · 10.4 KB
/
q3_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import numpy as np
import random
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q2_sigmoid import sigmoid, sigmoid_grad
def normalizeRows(x):
""" Row normalization function """
# Implement a function that normalizes each row of a matrix to have unit length
### YOUR CODE HERE
# Create the array of sums of squares by row
aux = np.sqrt(np.sum(x**2, axis = 1))
# Shape it to a column
aux = aux.reshape((x.shape[0], 1))
# Normalize the rows
x /= aux
### END YOUR CODE
return x
def test_normalize_rows():
print("Testing normalizeRows...")
x = normalizeRows(np.array([[3.0,4.0],[1, 2]]))
# the result should be [[0.6, 0.8], [0.4472, 0.8944]]
print(x)
assert (x.all() == np.array([[0.6, 0.8], [0.4472, 0.8944]]).all())
print("")
def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
""" Softmax cost function for word2vec models """
# Implement the cost and gradients for one predicted word vector
# and one target word vector as a building block for word2vec
# models, assuming the softmax prediction function and cross
# entropy loss.
# Inputs:
# - predicted: numpy ndarray, predicted word vector (\hat{v} in
# the written component or \hat{r} in an earlier version)
# - target: integer, the index of the target word
# - outputVectors: "output" vectors (as rows) for all tokens
# - dataset: needed for negative sampling, unused here.
# Outputs:
# - cost: cross entropy cost for the softmax word prediction
# - gradPred: the gradient with respect to the predicted word
# vector
# - grad: the gradient with respect to all the other word
# vectors
# We will not provide starter code for this function, but feel
# free to reference the code you previously wrote for this
# assignment!
### YOUR CODE HERE
proba = softmax(prredicted.dot(outputVectors.T))
# Compte cost
cost = -np.log(proba[target])
# Compute the deltaç_0
delta_0 = proba
delta_0[target] -= 1 # to be consistent with the formulas we demonstrated in Part 1
# Use previous expression for gradients
grad = delta_0.reshape((delta_0.shape[0], 1)) * predicted.reshape((1, predicted.shape[0]))
gradPred = (delta_0.reshape((1, delta.shape[0])).dot(outputVectors)).flatten()
### END YOUR CODE
return cost, gradPred, grad
def negSamplingCostAndGradient(predicted, target, outputVectors, dataset,
K=10):
""" Negative sampling cost function for word2vec models """
# Implement the cost and gradients for one predicted word vector
# and one target word vector as a building block for word2vec
# models, using the negative sampling technique. K is the sample
# size. You might want to use dataset.sampleTokenIdx() to sample
# a random word index.
#
# Note: See test_word2vec below for dataset's initialization.
#
# Input/Output Specifications: same as softmaxCostAndGradient
# We will not provide starter code for this function, but feel
# free to reference the code you previously wrote for this
# assignment!
### YOUR CODE HERE
grad = np.zeros(outputVectors.shape)
gradPred = np.zeros(predicted.shape)
indices = [target]
for k in range(K):
newidx = dataset.sampleTokenIdx()
while newidx == target:
newidx = dataset.sampleTokenIdx()
indices += [newidx]
labels = np.array([1] + [-1 for k in range(K)])
vecs = outputVectors[indices,:]
t = sigmoid(vecs.dot(predicted) * labels)
cost = -np.sum(np.log(t))
delta = labels * (t - 1)
gradPred = delta.reshape((1,K+1)).dot(vecs).flatten()
gradtemp = delta.reshape((K+1,1)).dot(predicted.reshape(
(1,predicted.shape[0])))
for k in range(K+1):
grad[indices[k]] += gradtemp[k,:]
### END YOUR CODE
return cost, gradPred, grad
def skipgram(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient = softmaxCostAndGradient):
""" Skip-gram model in word2vec """
# Implement the skip-gram model in this function.
# Inputs:
# - currrentWord: a string of the current center word
# - C: integer, context size
# - contextWords: list of no more than 2*C strings, the context words
# - tokens: a dictionary that maps words to their indices in
# the word vector list
# - inputVectors: "input" word vectors (as rows) for all tokens
# - outputVectors: "output" word vectors (as rows) for all tokens
# - word2vecCostAndGradient: the cost and gradient function for
# a prediction vector given the target word vectors,
# could be one of the two cost functions you
# implemented above
# Outputs:
# - cost: the cost function value for the skip-gram model
# - grad: the gradient with respect to the word vectors
# We will not provide starter code for this function, but feel
# free to reference the code you previously wrote for this
# assignment!
### YOUR CODE HERE
currentI = tokens[currentWord]
predicted = inputVectors[currentI, :]
cost = 0.0
gradIn = np.zeros(inputVectors.shape)
gradOut = np.zeros(outputVectors.shape)
for cwd in contextWords:
idx = tokens[cwd]
cc, gp, gg = word2vecCostAndGradient(predicted, idx, outputVectors, dataset)
cost += cc
gradOut += gg
gradIn[currentI, :] += gp
### END YOUR CODE
return cost, gradIn, gradOut
def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
dataset, word2vecCostAndGradient = softmaxCostAndGradient):
""" CBOW model in word2vec """
# Implement the continuous bag-of-words model in this function.
# Input/Output specifications: same as the skip-gram model
# We will not provide starter code for this function, but feel
# free to reference the code you previously wrote for this
# assignment!
#################################################################
# IMPLEMENTING CBOW IS EXTRA CREDIT, DERIVATIONS IN THE WRIITEN #
# ASSIGNMENT ARE NOT! #
#################################################################
cost = 0
gradIn = np.zeros(inputVectors.shape)
gradOut = np.zeros(outputVectors.shape)
### YOUR CODE HERE
D = inputVectors.shape[1]
predicted = np.zeros((D,))
indices = [tokens[cwd] for cwd in contextWords]
for idx in indices:
predicted += inputVectors[idx, :]
cost, gp, gradOut = word2vecCostAndGradient(predicted, tokens[currentWord], outputVectors, dataset)
gradIn = np.zeros(inputVectors.shape)
for idx in indices:
gradIn[idx, :] += gp
### END YOUR CODE
return cost, gradIn, gradOut
#############################################
# Testing functions below. DO NOT MODIFY! #
#############################################
def word2vec_sgd_wrapper(word2vecModel, tokens, wordVectors, dataset, C, word2vecCostAndGradient = softmaxCostAndGradient):
batchsize = 50
cost = 0.0
grad = np.zeros(wordVectors.shape)
N = wordVectors.shape[0]
inputVectors = wordVectors[:N/2,:]
outputVectors = wordVectors[N/2:,:]
for i in range(batchsize):
C1 = random.randint(1,C)
centerword, context = dataset.getRandomContext(C1)
if word2vecModel == skipgram:
denom = 1
else:
denom = 1
c, gin, gout = word2vecModel(centerword, C1, context, tokens, inputVectors, outputVectors, dataset, word2vecCostAndGradient)
cost += c / batchsize / denom
grad[:N/2, :] += gin / batchsize / denom
grad[N/2:, :] += gout / batchsize / denom
return cost, grad
def test_word2vec():
# Interface to the dataset for negative sampling
dataset = type('dummy', (), {})()
def dummySampleTokenIdx():
return random.randint(0, 4)
def getRandomContext(C):
tokens = ["a", "b", "c", "d", "e"]
return tokens[random.randint(0,4)], [tokens[random.randint(0,4)] \
for i in range(2*C)]
dataset.sampleTokenIdx = dummySampleTokenIdx
dataset.getRandomContext = getRandomContext
random.seed(31415)
np.random.seed(9265)
dummy_vectors = normalizeRows(np.random.randn(10,3))
dummy_tokens = dict([("a",0), ("b",1), ("c",2),("d",3),("e",4)])
print("==== Gradient check for skip-gram ====")
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5), dummy_vectors)
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)
print("\n==== Gradient check for CBOW ====")
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5), dummy_vectors)
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)
print("\n=== Results ===")
print(skipgram("c", 3, ["a", "b", "e", "d", "b", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset))
print(skipgram("c", 1, ["a", "b"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset, negSamplingCostAndGradient))
print(cbow("a", 2, ["a", "b", "c", "a"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset))
print(cbow("a", 2, ["a", "b", "a", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset, negSamplingCostAndGradient))
if __name__ == "__main__":
test_normalize_rows()
test_word2vec()