You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Jul 1, 2021. It is now read-only.
I have a GPU card RTX3090, so I chose to use deeplabcutcore.
I got a TypeError: unhashable type: 'CommentedMap' while running deeplabcut.triangulate(config3d_path, video_path, videotype='avi', gputouse=0, filterpredictions=True) (already import deeplabcutcore as deeplabcut).
And I found that if I set filterpredictions=False, I got another error IndexError: list index out of range.
If I use import deeplabcut, it works well but really slowly!
Hope you can help.
IndexError: list index out of range
Analyzing video D:\deeplabcut-video\3dvideos\finger-camera-1.avi using config_file_camera-1
Using snapshot-2000 for model D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1
Initializing ResNet
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1\train\snapshot-2000
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1\train\snapshot-2000
Starting to analyze % D:\deeplabcut-video\3dvideos\finger-camera-1.avi
Video already analyzed! D:\deeplabcut-video\3dvideos\finger-camera-1DLC_resnet50_finger3d-camera1Mar5shuffle1_2000.h5
The videos are analyzed. Now your research can truly start!
You can create labeled videos with 'create_labeled_video'.
If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!
D:\deeplabcut-video\3dvideos finger-camera-1 DLC_resnet50_finger3d-camera1Mar5shuffle1_2000
Analyzing video D:\deeplabcut-video\3dvideos\finger-camera-5.avi using config_file_camera-5
Snapshotindex is set to 'all' in the config.yaml file. Running video analysis with all snapshots is very costly! Use the function 'evaluate_network' to choose the best the snapshot. For now, changing snapshot index to -1!
Using snapshot-2000 for model D:/deeplabcut-video/finger3d-camera5-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera5Mar5-trainset95shuffle1
Initializing ResNet
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera5-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera5Mar5-trainset95shuffle1\train\snapshot-2000
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera5-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera5Mar5-trainset95shuffle1\train\snapshot-2000
Starting to analyze % D:\deeplabcut-video\3dvideos\finger-camera-5.avi
Video already analyzed! D:\deeplabcut-video\3dvideos\finger-camera-5DLC_resnet50_finger3d-camera5Mar5shuffle1_2000.h5
The videos are analyzed. Now your research can truly start!
You can create labeled videos with 'create_labeled_video'.
If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!
D:\deeplabcut-video\3dvideos finger-camera-5 DLC_resnet50_finger3d-camera5Mar5shuffle1_2000
Undistorting...
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-24-682fd20e3c04> in <module>
4 video_path = 'D:\\deeplabcut-video\\3dvideos'
5
----> 6 deeplabcut.triangulate(config3d_path, video_path, videotype='avi', gputouse=0, filterpredictions=False)
~\.conda\envs\deeplabcutcore\lib\site-packages\deeplabcutcore\pose_estimation_3d\triangulation.py in triangulate(config, video_path, videotype, filterpredictions, filtertype, gputouse, destfolder, save_as_csv)
212 #undistort points for this pair
213 print("Undistorting...")
--> 214 dataFrame_camera1_undistort,dataFrame_camera2_undistort,stereomatrix,path_stereo_file = undistort_points(config,dataname,str(cam_names[0]+'-'+cam_names[1]),destfolder)
215 if len(dataFrame_camera1_undistort) != len(dataFrame_camera2_undistort):
216 import warnings
~\.conda\envs\deeplabcutcore\lib\site-packages\deeplabcutcore\pose_estimation_3d\triangulation.py in undistort_points(config, dataframe, camera_pair, destfolder)
314 if True:
315 # Create an empty dataFrame to store the undistorted 2d coordinates and likelihood
--> 316 dataframe_cam1 = pd.read_hdf(dataframe[0])
317 dataframe_cam2 = pd.read_hdf(dataframe[1])
318 scorer_cam1 = dataframe_cam1.columns.get_level_values(0)[0]
IndexError: list index out of range
TypeError: unhashable type: 'CommentedMap'
Analyzing video D:\deeplabcut-video\3dvideos\finger-camera-1.avi using config_file_camera-1
Using snapshot-2000 for model D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1
Initializing ResNet
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1\train\snapshot-2000
INFO:tensorflow:Restoring parameters from D:/deeplabcut-video/finger3d-camera1-cshh-2021-03-05\dlc-models\iteration-0\finger3d-camera1Mar5-trainset95shuffle1\train\snapshot-2000
0it [00:00, ?it/s]
Starting to analyze % D:\deeplabcut-video\3dvideos\finger-camera-1.avi
Video already analyzed! D:\deeplabcut-video\3dvideos\finger-camera-1DLC_resnet50_finger3d-camera1Mar5shuffle1_2000.h5
The videos are analyzed. Now your research can truly start!
You can create labeled videos with 'create_labeled_video'.
If the tracking is not satisfactory for some videos, consider expanding the training set. You can use the function 'extract_outlier_frames' to extract any outlier frames!
D:\deeplabcut-video\3dvideos finger-camera-1 DLC_resnet50_finger3d-camera1Mar5shuffle1_2000
Filtering with median model D:\deeplabcut-video\3dvideos\finger-camera-1.avi
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\arrays\categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
342 try:
--> 343 codes, categories = factorize(values, sort=True)
344 except TypeError as err:
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\algorithms.py in factorize(values, sort, na_sentinel, size_hint)
677 codes, uniques = _factorize_array(
--> 678 values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
679 )
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\algorithms.py in _factorize_array(values, na_sentinel, size_hint, na_value, mask)
500 uniques, codes = table.factorize(
--> 501 values, na_sentinel=na_sentinel, na_value=na_value, mask=mask
502 )
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.factorize()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable._unique()
TypeError: unhashable type: 'CommentedMap'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-25-3fd320d1d100> in <module>
4 video_path = 'D:\\deeplabcut-video\\3dvideos'
5
----> 6 deeplabcut.triangulate(config3d_path, video_path, videotype='avi', gputouse=0, filterpredictions=True)
~\.conda\envs\deeplabcutcore\lib\site-packages\deeplabcutcore\pose_estimation_3d\triangulation.py in triangulate(config, video_path, videotype, filterpredictions, filtertype, gputouse, destfolder, save_as_csv)
205 print(destfolder, vname , DLCscorer)
206 if filterpredictions:
--> 207 filtering.filterpredictions(config_2d,[video],videotype=videotype,shuffle=shuffle,trainingsetindex=trainingsetindex,filtertype=filtertype,destfolder=destfolder)
208 dataname.append(os.path.join(destfolder,vname + DLCscorer + '.h5'))
209
~\.conda\envs\deeplabcutcore\lib\site-packages\deeplabcutcore\post_processing\filtering.py in filterpredictions(config, video, videotype, shuffle, trainingsetindex, filtertype, windowlength, p_bound, ARdegree, MAdegree, alpha, save_as_csv, destfolder)
108 Dataframe = pd.read_hdf(sourcedataname,'df_with_missing')
109 for bpindex,bp in tqdm(enumerate(cfg['bodyparts'])):
--> 110 pdindex = pd.MultiIndex.from_product([[scorer], [bp], ['x', 'y','likelihood']],names=['scorer', 'bodyparts', 'coords'])
111 x,y,p=Dataframe[scorer][bp]['x'].values,Dataframe[scorer][bp]['y'].values,Dataframe[scorer][bp]['likelihood'].values
112
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\indexes\multi.py in from_product(cls, iterables, sortorder, names)
558 iterables = list(iterables)
559
--> 560 codes, levels = factorize_from_iterables(iterables)
561 if names is lib.no_default:
562 names = [getattr(it, "name", None) for it in iterables]
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\arrays\categorical.py in factorize_from_iterables(iterables)
2723 # For consistency, it should return a list of 2 lists.
2724 return [[], []]
-> 2725 return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\arrays\categorical.py in <genexpr>(.0)
2723 # For consistency, it should return a list of 2 lists.
2724 return [[], []]
-> 2725 return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\arrays\categorical.py in factorize_from_iterable(values)
2695 # but only the resulting categories, the order of which is independent
2696 # from ordered. Set ordered to False as default. See GH #15457
-> 2697 cat = Categorical(values, ordered=False)
2698 categories = cat.categories
2699 codes = cat.codes
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\arrays\categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
343 codes, categories = factorize(values, sort=True)
344 except TypeError as err:
--> 345 codes, categories = factorize(values, sort=False)
346 if dtype.ordered:
347 # raise, as we don't have a sortable data structure and so
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\algorithms.py in factorize(values, sort, na_sentinel, size_hint)
676
677 codes, uniques = _factorize_array(
--> 678 values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
679 )
680
~\.conda\envs\deeplabcutcore\lib\site-packages\pandas\core\algorithms.py in _factorize_array(values, na_sentinel, size_hint, na_value, mask)
499 table = hash_klass(size_hint or len(values))
500 uniques, codes = table.factorize(
--> 501 values, na_sentinel=na_sentinel, na_value=na_value, mask=mask
502 )
503
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.factorize()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable._unique()
TypeError: unhashable type: 'CommentedMap'
The text was updated successfully, but these errors were encountered:
Sign up for freeto subscribe to this conversation on GitHub.
Already have an account?
Sign in.
I have a GPU card RTX3090, so I chose to use deeplabcutcore.
I got a
TypeError: unhashable type: 'CommentedMap'
while runningdeeplabcut.triangulate(config3d_path, video_path, videotype='avi', gputouse=0, filterpredictions=True)
(alreadyimport deeplabcutcore as deeplabcut)
.And I found that if I set
filterpredictions=False
, I got another errorIndexError: list index out of range
.If I use
import deeplabcut
, it works well but really slowly!Hope you can help.
IndexError: list index out of range
TypeError: unhashable type: 'CommentedMap'
The text was updated successfully, but these errors were encountered: