forked from IntelligenzaArtificiale/Free-Auto-GPT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMetaPrompt.py
196 lines (158 loc) · 6.74 KB
/
MetaPrompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
from dotenv import load_dotenv
from pathlib import Path
from json import JSONDecodeError
from langchain import LLMChain, PromptTemplate
from FreeLLM import ChatGPTAPI # FREE CHATGPT API
from FreeLLM import HuggingChatAPI # FREE HUGGINGCHAT API
from FreeLLM import BingChatAPI # FREE BINGCHAT API
from FreeLLM import BardChatAPI # FREE GOOGLE BARD API
from langchain.memory import ConversationBufferWindowMemory
import os
load_dotenv()
#### LOG IN FOR CHATGPT FREE LLM
select_model = input(
"Select the model you want to use (1, 2, 3 or 4) \n \
1) ChatGPT \n \
2) HuggingChat \n \
3) BingChat \n \
4) Google Bard \n \
>>> "
)
if select_model == "1":
CG_TOKEN = os.getenv("CHATGPT_TOKEN", "your-chatgpt-token")
if CG_TOKEN != "your-chatgpt-token":
os.environ["CHATGPT_TOKEN"] = CG_TOKEN
else:
raise ValueError(
"ChatGPT Token EMPTY. Edit the .env file and put your ChatGPT token"
)
start_chat = os.getenv("USE_EXISTING_CHAT", False)
if os.getenv("USE_GPT4") == "True":
model = "gpt4"
else:
model = "default"
if start_chat:
chat_id = os.getenv("CHAT_ID")
if chat_id == None:
raise ValueError("You have to set up your chat-id in the .env file")
llm = ChatGPTAPI.ChatGPT(
token=os.environ["CHATGPT_TOKEN"], conversation=chat_id, model=model
)
else:
llm = ChatGPTAPI.ChatGPT(token=os.environ["CHATGPT_TOKEN"], model=model)
elif select_model == "2":
emailHF = os.getenv("emailHF", "your-emailHF")
pswHF = os.getenv("pswHF", "your-pswHF")
if emailHF != "your-emailHF" or pswHF != "your-pswHF":
os.environ["emailHF"] = emailHF
os.environ["pswHF"] = pswHF
else:
raise ValueError(
"HuggingChat Token EMPTY. Edit the .env file and put your HuggingChat credentials"
)
llm = HuggingChatAPI.HuggingChat(email=os.environ["emailHF"], psw=os.environ["pswHF"])
elif select_model == "3":
if not os.path.exists("cookiesBing.json"):
raise ValueError(
"File 'cookiesBing.json' not found! Create it and put your cookies in there in the JSON format."
)
cookie_path = Path() / "cookiesBing.json"
with open("cookiesBing.json", "r") as file:
try:
file_json = json.loads(file.read())
except JSONDecodeError:
raise ValueError(
"You did not put your cookies inside 'cookiesBing.json'! You can find the simple guide to get the cookie file here: https://github.com/acheong08/EdgeGPT/tree/master#getting-authentication-required."
)
llm = BingChatAPI.BingChat(
cookiepath=str(cookie_path), conversation_style="creative"
)
elif select_model == "4":
GB_TOKEN = os.getenv("BARDCHAT_TOKEN", "your-googlebard-token")
if GB_TOKEN != "your-googlebard-token":
os.environ["BARDCHAT_TOKEN"] = GB_TOKEN
else:
raise ValueError(
"GoogleBard Token EMPTY. Edit the .env file and put your GoogleBard token"
)
cookie_path = os.environ["BARDCHAT_TOKEN"]
llm = BardChatAPI.BardChat(cookie=cookie_path)
####
def initialize_chain(instructions, memory=None):
if memory is None:
memory = ConversationBufferWindowMemory()
memory.ai_prefix = "Assistant"
template = f"""
Instructions: {instructions}
{{{memory.memory_key}}}
Human: {{human_input}}
Assistant:"""
prompt = PromptTemplate(
input_variables=["history", "human_input"], template=template
)
chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(),
)
return chain
def initialize_meta_chain():
meta_template = """
Assistant has just had the below interactions with a User. Assistant followed their "Instructions" closely. Your job is to critique the Assistant's performance and then revise the Instructions so that Assistant would quickly and correctly respond in the future.
####
{chat_history}
####
Please reflect on these interactions.
You should first critique Assistant's performance. What could Assistant have done better? What should the Assistant remember about this user? Are there things this user always wants? Indicate this with "Critique: ...".
You should next revise the Instructions so that Assistant would quickly and correctly respond in the future. Assistant's goal is to satisfy the user in as few interactions as possible. Assistant will only see the new Instructions, not the interaction history, so anything important must be summarized in the Instructions. Don't forget any important details in the current Instructions! Indicate the new Instructions by "Instructions: ...".
"""
meta_prompt = PromptTemplate(
input_variables=["chat_history"], template=meta_template
)
meta_chain = LLMChain(
llm=llm,
prompt=meta_prompt,
verbose=True,
)
return meta_chain
def get_chat_history(chain_memory):
memory_key = chain_memory.memory_key
chat_history = chain_memory.load_memory_variables(memory_key)[memory_key]
return chat_history
def get_new_instructions(meta_output):
delimiter = "Instructions: "
new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :]
return new_instructions
def main(task, max_iters=3, max_meta_iters=5):
failed_phrase = "task failed"
success_phrase = "task succeeded"
key_phrases = [success_phrase, failed_phrase]
instructions = "None"
for i in range(max_meta_iters):
print(f"[Episode {i+1}/{max_meta_iters}]")
chain = initialize_chain(instructions, memory=None)
output = chain.predict(human_input=task)
for j in range(max_iters):
print(f"(Step {j+1}/{max_iters})")
print(f"Assistant: {output}")
print(f"Human: ")
human_input = input()
if any(phrase in human_input.lower() for phrase in key_phrases):
break
output = chain.predict(human_input=human_input)
if success_phrase in human_input.lower():
print(f"You succeeded! Thanks for playing!")
return
meta_chain = initialize_meta_chain()
meta_output = meta_chain.predict(chat_history=get_chat_history(chain.memory))
print(f"Feedback: {meta_output}")
instructions = get_new_instructions(meta_output)
print(f"New Instructions: {instructions}")
print("\n" + "#" * 80 + "\n")
print(f"You failed! Thanks for playing!")
task = input("Enter the objective of the AI system: (Be realistic!) ")
max_iters = int(input("Enter the maximum number of interactions per episode: "))
max_meta_iters = int(input("Enter the maximum number of episodes: "))
main(task, max_iters, max_meta_iters)