Skip to content

DarthMouthStudentSimulator/Demo-web

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM Agent-Based Simulation of Student Activities and Mental Health

Project Website Paper

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher
  • Node.js 16 or higher
  • npm or yarn

Installation

  1. Clone the repository:

    git clone https://github.com/DarthMouthStudentSimulator/Demo-web.git
    cd Demo
  2. Install Python dependencies:

    pip install -r requirements.txt
  3. Install frontend dependencies:

    cd web
    npm install
    cd ..
  4. Set up your Gemini API key:

    You have two options:

    Option A: Environment Variables (Recommended)

    # Create a .env file in the root directory
    echo "GEMINI_API_KEY=your_actual_gemini_api_key_here" > .env

    Option B: Enter API key in the web interface

    • Start the application without setting environment variables
    • Enter your API key directly in the web interface
  5. Get your Gemini API key:

    • Visit Google AI Studio
    • Sign in with your Google account
    • Create a new API key
    • Copy the key and add it to your .env file or enter it in the web interface

Running the Application

  1. Start the API Server:

    python -m scripts.api_server

    The API server will be available at http://127.0.0.1:8089

  2. Start the Web Frontend (in a new terminal):

    cd web
    npm run dev

    The web application will be available at http://localhost:5173

  3. Access the Application:

    • Open your browser and navigate to http://localhost:5173
    • Select a student from the available users (u01, u02, u04, etc.)
    • Explore the dashboard with student activities, mental health data, and chat functionality

🎯 Features

  • Student Dashboard: Visualize student activities, locations, and mental health patterns
  • LLM Chat Interface: Interact with AI agents representing students with realistic personalities
  • Mental Health Tracking: Monitor sleep, social activities, and stress levels over time
  • Personality-Based Simulation: Agents behave according to Big Five personality traits
  • Temporal Analysis: Explore data across different weeks and days of the semester

📊 Data Structure

The project uses data from the StudentLife Dataset with the following structure:

  • User directories (u01/, u02/, etc.): Contain weekly activity data and status files
  • Weekly data: data_per_week{X}.csv files with location and activity information
  • Status files: sleep_week_.csv, social_week_.csv, stress_week_.csv
  • Emotion history: {user_id}_emotion_status_history.jsonl files
  • Personality data: result_pre_bigfive.csv with Big Five personality scores

📚 Citation

If you use this work in your research, please cite our paper:

@misc{2508.02679,
Author = {Wayupuk Sommuang and Kun Kerdthaisong and Pasin Buakhaw and Aslan B. Wong and Nutchanon Yongsatianchot},
Title = {LLM Agent-Based Simulation of Student Activities and Mental Health Using Smartphone Sensing Data},
Year = {2025},
Eprint = {arXiv:2508.02679},
}

🔗 Links