-
Notifications
You must be signed in to change notification settings - Fork 4
/
dataset.py
70 lines (57 loc) · 2.18 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import rasterio as rio
import torch
from torch.utils.data import Dataset
import numpy as np
def preprocess_inputs(x):
x = np.asarray(x, dtype="float32")
x /= 127
x -= 1
return x
class XViewDataset(Dataset):
"Dataset for xView"
def __init__(self, pairs, mode, return_geo=False):
"""
:param pre_chips: List of pre-damage chip filenames
:param post_chips: List of post_damage chip filenames
:param transform: PyTorch transforms to be used on each example
"""
self.pairs = pairs
self.return_geo = return_geo
self.mode = mode
def __len__(self):
return len(self.pairs)
def __getitem__(self, idx, return_img=False):
fl = self.pairs[idx]
# Only read in first three bands to remove alpha
pre_image = rio.open(fl.opts.in_pre_path).read([1, 2, 3])
pre_image = pre_image.transpose((1, 2, 0))
post_image = rio.open(fl.opts.in_post_path).read([1, 2, 3])
post_image = post_image.transpose((1, 2, 0))
if self.mode == "cls":
img = np.concatenate([pre_image, post_image], axis=2)
elif self.mode == "loc":
img = pre_image
else:
raise ValueError("Incorrect mode! Must be cls or loc")
img = preprocess_inputs(img)
inp = []
inp.append(img)
inp.append(img[::-1, ...])
inp.append(img[:, ::-1, ...])
inp.append(img[::-1, ::-1, ...])
inp = np.asarray(inp, dtype="float")
inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float()
out_dict = {}
out_dict["in_pre_path"] = str(fl.opts.in_pre_path)
out_dict["in_post_path"] = str(fl.opts.in_post_path)
out_dict["poly_chip"] = str(fl.opts.poly_chip)
if return_img:
out_dict["pre_image"] = pre_image
out_dict["post_image"] = post_image
out_dict["img"] = inp
out_dict["idx"] = idx
out_dict["out_cls_path"] = str(fl.opts.out_cls_path)
out_dict["out_loc_path"] = str(fl.opts.out_loc_path)
out_dict["out_overlay_path"] = str(fl.opts.out_overlay_path)
out_dict["is_vis"] = fl.opts.is_vis
return out_dict