-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
614 lines (518 loc) · 24.1 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Demo image registration using SimpleITK
from matplotlib import pyplot as plt
import numpy as np
import SimpleITK as sitk
import time
import pandas as pd
from os import path
import os
import sys
import cv2
import imageio
import torch
import torchgeometry as tgm
import math
from utils import transformations as tfms
import random
uronav_dataset = '/zion/common/data/uronav_data'
usrecon_dataset = '/zion/guoh9/US_recon/US_dataset'
myvol_dataset = '/zion/guoh9/US_recon/recon'
seq_dataset = '/zion/guoh9/US_recon/new_data'
def pic2gif(folder):
gifs = []
for i in range(fixedArray.shape[0]):
gifs.append(fixedArray[i, :, :])
imageio.mimsave('plots/compare.gif', gifs, duration=0.2)
def folder2imglist(folder):
file_list = os.listdir(folder)
file_list.sort()
img_list = []
for filename in file_list:
img_path = path.join(folder, filename)
img_list.append(cv2.imread(img_path, 1))
return img_list
def mat2tfm(input_mat):
tfm = sitk.AffineTransform(3)
tfm.SetMatrix(np.reshape(input_mat[:3, :3], (9,)))
translation = input_mat[:3,3]
tfm.SetTranslation(translation)
# tfm.SetCenter([0, 0, 0])
return tfm
def case2gif(case_id):
multimodal_folder = 'results/{}/multimodal'.format(case_id)
img_list = folder2imglist(folder=multimodal_folder)
gif_path = 'results/{}/{}_fused.gif'.format(case_id, case_id)
imageio.mimsave(gif_path, img_list, duration=0.2)
print('{} gif saved!'.format(case_id))
def volCompare(case_id):
uronav_case_folder = path.join(uronav_dataset, case_id)
myvol_case_folder = path.join(myvol_dataset, case_id)
print(os.listdir(uronav_case_folder))
print(os.listdir(myvol_case_folder))
vol_uronav = sitk.ReadImage(path.join(uronav_case_folder, 'USVol.mhd'),
sitk.sitkFloat64)
vol_my = sitk.ReadImage(path.join(myvol_case_folder, '{}_myrecon.mhd'.format(case_id)),
sitk.sitkFloat64)
print('vol_uronav\n{}'.format(vol_uronav.GetSize()))
print('vol_my\n{}'.format(vol_my.GetSize()))
vol_uronav_np = sitk.GetArrayFromImage(vol_uronav)
vol_my_np = sitk.GetArrayFromImage(vol_my)
print('uronav_np {}, my_np {}'.format(
vol_uronav_np.shape, vol_my_np.shape))
cv2.imwrite('tmp.jpg', vol_uronav_np[20, :, :])
cv2.imwrite('tmp2.jpg', vol_my_np[20, :, :])
def readMatsFromSequence(case_id, type='adjusted', model_str='gt', on_arc=False):
""" Read a sequence .mhd file and return frame_num*4*4 transformation mats
Args:
case_id (str): case ID like "Case0005"
type (str, optional): Whether bottom centerline is adjuested
or origin. Defaults to 'adjusted'.
model_str (str, optional): Could be model's time string. Defaults to 'gt'.
Returns:
Numpy array: frame_num x 4 x 4 transformation mats for each frame
"""
if on_arc:
case_seq_folder = '/raid/shared/guoh9/US_recon/new_data/{}'.format(case_id)
# case_seq_folder = '/raid/shared/guoh9/US_recon'
else:
case_seq_folder = path.join(seq_dataset, case_id)
# print(os.listdir(case_seq_folder))
# sys.exit()
case_seq_path = path.join(
case_seq_folder, '{}_{}_{}.mhd'.format(case_id, type, model_str))
file = open(case_seq_path, 'r')
lines = file.readlines()
mats = []
for line in lines:
words = line.split(' ')
if words[0].endswith('ImageToProbeTransform'):
# print(words)
words[-1] = words[-1][:-2]
nums = np.asarray(words[2:]).astype(np.float)
nums.shape = (4, 4)
mats.append(nums)
mats = np.asarray(mats)
return mats
def computeScale(input_mat):
scale1 = np.linalg.norm(input_mat[:3, 0])
scale2 = np.linalg.norm(input_mat[:3, 1])
scale3 = np.linalg.norm(input_mat[:3, 2])
# print('scale1 {}'.format(scale1))
# print('scale2 {}'.format(scale2))
# print('scale3 {}'.format(scale3))
# print(0.478425 * 0.35)
# sys.exit()
return np.asarray([scale1, scale2, scale3])
def samplePlane(case_id, trans_mats, frame_id):
us_path = path.join(myvol_dataset, '{}/{}_myrecon.mhd'.format(case_id, case_id))
us_img = sitk.ReadImage(us_path)
us_np = sitk.GetArrayFromImage(us_img)
print(us_img.GetOrigin())
print('us_np shape {}'.format(us_np.shape))
print('us_img size {}'.format(us_img.GetSize()))
fixed_path = path.join(usrecon_dataset, '{}/frames/{:04}.jpg'.format(case_id, frame_id))
fixed_origin = cv2.imread(fixed_path, 0)
clip_x, clip_y, clip_h, clip_w = 105, 54, 320, 565
fixed_np = fixed_origin[clip_x:clip_x+clip_h, clip_y:clip_y+clip_w]
# fixed_np = fixed_origin[105:105+320, 54:54+565]
# spacing = 0.4 # For my Slicer reconstructed volume
# spacing = 0.35 # For uronac reconstructed volume
mat_scales = computeScale(input_mat=trans_mats[frame_id, :, :])
spacing = np.mean(mat_scales[:2]) / us_img.GetSpacing()[0]
print('frame_scale = {}'.format(spacing))
frame_w = int(spacing * fixed_np.shape[1])
frame_h = int(spacing * fixed_np.shape[0])
fixed_np = cv2.resize(fixed_np, (frame_w, frame_h))
fixed_np = fixed_np.astype(np.float64)
fixed_np = np.expand_dims(fixed_np, axis=0)
print('fixed_np shape {}'.format(fixed_np.shape))
fixed_image = sitk.GetImageFromArray(fixed_np)
# fixed_image.SetSpacing(us_img.GetSpacing())
frame_mat = trans_mats[frame_id, :, :]
# print('us_img {}'.format(us_img))
# print('frame_mat\n{}'.format(frame_mat))
# tfm2us = sitk.Transform(mat2tfm(np.identity(4)))
# affine_tfm = sitk.AffineTransform(3)
# affine_tfm.SetMatrix(frame_mat[:3, :3].flatten())
# affine_tfm.SetTranslation(frame_mat[:3, 3])
# print(affine_tfm)
# spacing1 = us_img.GetSpacing()[0]
# print('spacing1 {}, spacing {}'.format(spacing1, spacing))
# width, length = fixed_origin.shape[1], fixed_origin.shape[0]
destVol = sitk.Image(int(clip_w*spacing), int(clip_h*spacing), 1, sitk.sitkUInt8)
destSpacing = np.asarray([spacing, spacing, spacing])
destVol.SetSpacing((1/destSpacing[0], 1/destSpacing[1], 1/destSpacing[2]))
corner = np.asarray([clip_y, clip_x, 0])
trans_corner = sitk.TranslationTransform(3, corner.astype(np.float64))
# computeScale(input_mat=frame_mat)
# tfm2us = sitk.Transform(mat2tfm(np.identity(4)))
tfm2us = sitk.Transform(mat2tfm(input_mat=frame_mat))
tfm2us.AddTransform(trans_corner)
print(tfm2us)
""" US volume resampler, with final_transform"""
resampler_us = sitk.ResampleImageFilter()
resampler_us.SetReferenceImage(destVol)
resampler_us.SetInterpolator(sitk.sitkLinear)
resampler_us.SetDefaultPixelValue(0)
resampler_us.SetTransform(tfm2us)
outUSImg = resampler_us.Execute(us_img)
outUSNp = sitk.GetArrayFromImage(outUSImg[:, :, 0])
print('outUSNp shape {}'.format(outUSNp.shape))
resampler_slice = sitk.ResampleImageFilter()
resampler_slice.SetReferenceImage(destVol)
resampler_slice.SetInterpolator(sitk.sitkLinear)
resampler_slice.SetDefaultPixelValue(0)
resampler_slice.SetTransform(trans_corner)
outFrameImg = resampler_slice.Execute(sitk.GetImageFromArray(np.expand_dims(fixed_origin, axis=0)))
# outFrameImg = resampler_slice.Execute(fixed_image)
outFrameNp = sitk.GetArrayFromImage(outFrameImg[:, :, 0])
print('fixed_origin shape {}'.format(outFrameNp.shape))
frame_resample_concate = np.concatenate((outFrameNp, outUSNp), axis=0)
cv2.imwrite('tmp.jpg', frame_resample_concate)
def cell_images():
set_path = '/home/guoh9/tmp/cells/full_frames'
case_id_list = os.listdir(set_path)
print(os.listdir(set_path))
for i in range(1, 33):
case_id = 'XY{:02}_video'.format(i)
frame0_path = path.join(set_path, case_id, 'frame0.jpg')
print(frame0_path)
frame0 = cv2.imread(frame0_path, 0)
target_path = path.join(set_path, 'collections/{}.jpg'.format(case_id))
cv2.imwrite(target_path, frame0)
print('{} frame0 saved'.format(case_id))
def myAffineGrid(input_tensor, input_mat, input_spacing=[1, 1, 1]):
input_spacing = np.asarray(input_spacing)
image_size = np.asarray([input_tensor.shape[4], input_tensor.shape[3], input_tensor.shape[2]])
image_phy_size = (image_size - 1) * input_spacing
# image_phy_size = [input_tensor.shape[4], input_tensor.shape[3], input_tensor.shape[2]]
grid_size = input_tensor.shape
t_mat = input_mat
image_tensor = input_tensor
# generate grid of input image (i.e., the coordinate of the each pixel in the input image. The center point of the input image volume is assigned as (0, 0, 0).)
grid_x_1d = torch.linspace(-0.5 * image_phy_size[0], 0.5 * image_phy_size[0], steps=grid_size[4])
grid_y_1d = torch.linspace(-0.5 * image_phy_size[1], 0.5 * image_phy_size[1], steps=grid_size[3])
grid_z_1d = torch.linspace(-0.5 * image_phy_size[2], 0.5 * image_phy_size[2], steps=grid_size[2])
grid_z, grid_y, grid_x = torch.meshgrid(grid_z_1d, grid_y_1d, grid_x_1d)
grid_x = grid_x.unsqueeze(0)
grid_y = grid_y.unsqueeze(0)
grid_z = grid_z.unsqueeze(0)
origin_grid = torch.cat([grid_x, grid_y, grid_z, torch.ones_like(grid_x)], dim=0)
origin_grid = origin_grid.view(4, -1)
# compute the rasample grid through matrix multiplication
print('t_mat {}, origin_grid {}'.format(t_mat.shape, origin_grid.shape))
print('img_tensor type {}'.format(image_tensor.type()))
t_mat = torch.tensor(t_mat)
t_mat = t_mat.float()
# origin_grid = origin_grid.unsqueeze(0)
print('t_mat shape {}'.format(t_mat.shape))
print('origin_grid shape {}'.format(origin_grid.shape))
resample_grid = torch.matmul(t_mat, origin_grid)[0:3, :]
# convert the resample grid coordinate from physical coordinate system to a range of [-1, 1] (which is required by the PyTorch interface 'grid_sample').
resample_grid[0, :] = (resample_grid[0, :] + 0.5 * image_phy_size[0]) / image_phy_size[0] * 2 - 1
resample_grid[1, :] = (resample_grid[1, :] + 0.5 * image_phy_size[1]) / image_phy_size[1] * 2 - 1
resample_grid[2, :] = (resample_grid[2, :] + 0.5 * image_phy_size[2]) / image_phy_size[2] * 2 - 1
print('before {}'.format(resample_grid.shape))
resample_grid = resample_grid.permute(1,0)
print('after {}'.format(resample_grid.shape))
resample_grid = resample_grid.contiguous()
print('after2 {}'.format(resample_grid.shape))
resample_grid = resample_grid.reshape(grid_size[2], grid_size[3], grid_size[4], 3)
resample_grid = resample_grid.unsqueeze(0)
print('resample_grid {}'.format(resample_grid.shape))
# sys.exit()
return resample_grid.double()
def myAffineGrid2(input_tensor, input_mat, input_spacing=[1, 1, 1], device=None):
# print('input_tensor shape {}'.format(input_tensor.shape))
# print('input_mat shape {}'.format(input_mat.shape))
# sys.exit()
input_spacing = np.asarray(input_spacing)
image_size = np.asarray([input_tensor.shape[4], input_tensor.shape[3], input_tensor.shape[2]])
image_phy_size = (image_size - 1) * input_spacing
# image_phy_size = [input_tensor.shape[4], input_tensor.shape[3], input_tensor.shape[2]]
grid_size = input_tensor.shape
# generate grid of input image (i.e., the coordinate of the each pixel in the input image. The center point of the input image volume is assigned as (0, 0, 0).)
grid_x_1d = torch.linspace(-0.5 * image_phy_size[0], 0.5 * image_phy_size[0], steps=grid_size[4])
grid_y_1d = torch.linspace(-0.5 * image_phy_size[1], 0.5 * image_phy_size[1], steps=grid_size[3])
grid_z_1d = torch.linspace(-0.5 * image_phy_size[2], 0.5 * image_phy_size[2], steps=grid_size[2])
grid_z, grid_y, grid_x = torch.meshgrid(grid_z_1d, grid_y_1d, grid_x_1d)
grid_x = grid_x.unsqueeze(0)
grid_y = grid_y.unsqueeze(0)
grid_z = grid_z.unsqueeze(0)
origin_grid = torch.cat([grid_x, grid_y, grid_z, torch.ones_like(grid_x)], dim=0)
origin_grid = origin_grid.view(4, -1)
if device:
origin_grid = origin_grid.to(device)
origin_grid.requires_grad = True
# compute the rasample grid through matrix multiplication
# print('t_mat {}, origin_grid {}'.format(t_mat.shape, origin_grid.shape))
# t_mat = input_mat
# t_mat = torch.tensor(t_mat)
# t_mat = t_mat.float()
# t_mat.requires_grad = True
# t_mat = t_mat.squeeze()
# origin_grid = origin_grid.unsqueeze(0)
# print('t_mat shape {}'.format(t_mat.shape))
# print('origin_grid shape {}'.format(origin_grid.shape))
# resample_grid = torch.matmul(t_mat, origin_grid)[0:3, :]
resample_grid = torch.matmul(input_mat, origin_grid)[:, 0:3, :]
# print('resample_grid {}'.format(resample_grid.shape))
# convert the resample grid coordinate from physical coordinate system to a range of [-1, 1] (which is required by the PyTorch interface 'grid_sample').
resample_grid[:, 0, :] = (resample_grid[:, 0, :] + 0.5 * image_phy_size[0]) / image_phy_size[0] * 2 - 1
resample_grid[:, 1, :] = (resample_grid[:, 1, :] + 0.5 * image_phy_size[1]) / image_phy_size[1] * 2 - 1
resample_grid[:, 2, :] = (resample_grid[:, 2, :] + 0.5 * image_phy_size[2]) / image_phy_size[2] * 2 - 1
# print('resample_grid2 {}'.format(resample_grid.shape))
resample_grid = resample_grid.permute(0,2,1).contiguous()
resample_grid = resample_grid.reshape(grid_size[0], grid_size[2], grid_size[3], grid_size[4], 3)
# resample_grid = resample_grid.unsqueeze(1)
# print('resample_grid {}'.format(resample_grid.shape))
# sys.exit()
return resample_grid
def processFrame(us_spacing, frame_np, frame_mat, clip_info):
"""Crop the frame with reconstruction ROI, respacing to the same as US volume
Args:
us_spacing (tuple): sitk_img.GetSpacing()
frame_np (np array): Raw 1-channel grey image from frame
frame_mat ([np array]): 4x4 matrix of this frame, read from sequence mhd file
Returns:
fixed_np: cropped and resize frame ROI
"""
# print('us_spacing {}'.format(us_spacing))
# print('frame_np {}'.format(frame_np))
# print('frame_mat {}'.format(frame_mat))
# print('clip_info {}'.format(clip_info))
# sys.exit()
clip_x, clip_y, clip_h, clip_w = clip_info
fixed_np = frame_np[clip_x:clip_x+clip_h, clip_y:clip_y+clip_w]
mat_scales = computeScale(input_mat=frame_mat)
# print('matscales {}'.format(mat_scales))
spacing = np.mean(mat_scales[:2]) / us_spacing[0]
frame_w = int(spacing * fixed_np.shape[1])
frame_h = int(spacing * fixed_np.shape[0])
fixed_np = cv2.resize(fixed_np, (frame_w, frame_h))
fixed_np = fixed_np.astype(np.float64)
return fixed_np
def mat2dof_np(input_mat):
# print('input_mat\n{}'.format(input_mat))
translations = input_mat[:3, 3]
rotations_eulers = np.asarray(tfms.euler_from_matrix(input_mat))
rotations_degrees = (rotations_eulers / (2 * math.pi)) * 360
scales = computeScale(input_mat=input_mat)
dof = np.concatenate((translations, rotations_degrees, scales), axis=0)
# print('dof\n{}\n'.format(dof))
# sys.exit()
return dof
def dof2mat_np(input_dof, scale=False):
""" Transfer degrees to euler """
dof = input_dof
# print('deg {}'.format(dof[3:6]))
dof[3:6] = dof[3:6] * (2 * math.pi) / 360.0
# print('rad {}'.format(dof[3:6]))
rot_mat = tfms.euler_matrix(dof[5], dof[4], dof[3], 'rzyx')[:3, :3]
mat44 = np.identity(4)
mat44[:3, :3] = rot_mat
mat44[:3, 3] = dof[:3]
if scale:
scales = dof[6:]
mat_scale = np.diag([scales[1], scales[0], scales[2], 1])
mat44 = np.dot(mat44, np.linalg.inv(mat_scale))
# print('mat_scale\n{}'.format(mat_scale))
# print('recon mat\n{}'.format(mat44))
# sys.exit()
return mat44
def matSitk2Stn(input_mat, clip_size, raw_spacing, frame_shape,
img_size, img_spacing, img_origin):
frame_gt_mat = input_mat
clip_x, clip_y = clip_size
corner = np.asarray([clip_y, clip_x, 0])
pos_spacing = np.mean(computeScale(input_mat=frame_gt_mat))
spacing_mat = np.diag([1/pos_spacing, 1/pos_spacing, 1/pos_spacing, 1])
trans_mat = np.identity(4)
trans_mat[:3, 3] = corner
frame_gt_mat[:3, 3] -= img_origin
frame_gt_mat = np.dot(frame_gt_mat, trans_mat)
frame_gt_mat = np.dot(frame_gt_mat, spacing_mat)
frame_gt_mat[:3, 3] *= [img_spacing[0]/raw_spacing[0],
img_spacing[1]/raw_spacing[1],
img_spacing[2]/raw_spacing[2]]
""" origin_translate makes the volume center at coordinate center """
origin_translate = np.identity(4)
origin_translate[:3, 3] = -0.5 * np.asarray(img_size) * np.asarray(img_spacing)
""" dest_translate makes the resultant sampling plane at the coordinate center"""
dest_translate = np.identity(4)
dest_translate[:3, 3] = np.asarray([frame_shape[1]/2, frame_shape[0]/2,0])
frame_gt_mat = np.dot(origin_translate, frame_gt_mat)
frame_gt_mat = np.dot(frame_gt_mat, dest_translate)
return frame_gt_mat
def volContainer(input_tensor, container_size=(292, 158, 229)):
# print('input_tensor shape {}'.format(input_tensor.shape))
input_shape = list(input_tensor.shape)
input_tensor_compact = torch.squeeze(input_tensor)
vol_d, vol_h, vol_w = input_tensor_compact.shape
con_d, con_h, con_w = container_size
d_start = int((con_d-vol_d)/2)
h_start = int((con_h-vol_h)/2)
w_start = int((con_w-vol_w)/2)
# print('vol_d {}, vol_h {}, vol_w {}'.format(vol_d, vol_h, vol_w))
# print('d_start {}, h_start {}, w_start {}'.format(d_start, h_start, w_start))
output_shape = [con_d, con_h, con_w]
output_tensor = torch.zeros(output_shape)
output_tensor[d_start:d_start+vol_d, h_start:h_start+vol_h, w_start:w_start+vol_w] = input_tensor_compact
for i in range(len(input_shape)-3):
output_tensor = output_tensor.unsqueeze(0)
# print('output tensor shape {}'.format(output_tensor.shape))
return output_tensor
# sys.exit()
def frameContainer(input_tensor, container_size=(292, 158, 229), start=(0, 0)):
# print('input_tensor shape {}'.format(input_tensor.shape))
input_shape = list(input_tensor.shape)
input_tensor_compact = torch.squeeze(input_tensor)
frame_h, frame_w = input_tensor_compact.shape
con_d, con_h, con_w = container_size
# print('frame_h {}, frame_w {}'.format(frame_h, frame_w))
# print('con_h {}, con_w {}'.format(con_h, con_w))
h_start, w_start = start
# print('vol_d {}, vol_h {}, vol_w {}'.format(vol_d, vol_h, vol_w))
# print('h_start {}, w_start {}'.format(h_start, w_start))
output_shape = [con_h, con_w]
output_tensor = torch.zeros(output_shape)
output_tensor[h_start:h_start+frame_h, w_start:w_start+frame_w] = input_tensor_compact
for i in range(len(input_shape)-3):
output_tensor = output_tensor.unsqueeze(0)
# print('output tensor shape {}'.format(output_tensor.shape))
return output_tensor
def frameCrop(input_np, crop_size=(128, 128)):
input_h, input_w = input_np.shape
crop_h, crop_w = crop_size
max_h = max(input_h, crop_h)
max_w = max(input_w, crop_w)
if crop_h > input_h or crop_w > input_w:
container = np.zeros((max_h, max_w))
con_start_h = int((max_h - input_h)/2)
con_start_w = int((max_w - input_w)/2)
container[con_start_h:con_start_h+input_h, con_start_w:con_start_w+input_w] = input_np
input_np = container
start_h = int((input_np.shape[0] - crop_h)/2)
start_w = int((input_np.shape[1] - crop_w)/2)
output_np = input_np[start_h:start_h+crop_h, start_w:start_w+crop_w]
return output_np
def chooseRandInit(frame_num, frame_id, rand_range=20):
"""Choose a random slice in a range [-20, 20], for subvolume initialization
Args:
frame_num ([int]): total number of frame
frame_id ([int]): current frame id
rand_range (int, optional): Range of initialization. Defaults to 20.
Returns:
[int]: initialization frame id
"""
# print('num {}, id {}'.format(frame_num, frame_id))
upper = frame_id + rand_range
lower = frame_id - rand_range
upper = min(upper, frame_num-1)
lower = max(lower, 0)
rand_id = random.randint(lower, upper)
# print('upper {}, lower {}'.format(upper, lower))
# print('rand_id {}'.format(rand_id))
return rand_id
def sampleSubvol(sitk_img, init_mat, crop_size):
# print('sitk_img origin {}'.format(sitk_img.GetOrigin()))
source_img = sitk_img
init_tfm = mat2tfm(input_mat=init_mat)
# destVol = sitk.Image(sitk_img.GetSize()[0], sitk_img.GetSize()[1], 1, sitk.sitkUInt8)
destVol = sitk.Image(crop_size[0], crop_size[1], crop_size[2], sitk.sitkUInt8)
destSpacing = np.asarray(sitk_img.GetSpacing())
destVol.SetSpacing((destSpacing[0], destSpacing[1], destSpacing[2]))
destVol.SetOrigin(-0.5*np.asarray(destVol.GetSize())
*np.asarray(destVol.GetSpacing()))
source_img.SetOrigin(-0.5*np.asarray(source_img.GetSize())
*np.asarray(source_img.GetSpacing()))
# print('source_img origin {}'.format(source_img.GetOrigin()))
# print('destVol origin {}'.format(destVol.GetOrigin()))
""" US volume resampler, with frame position groundtruth """
resampler_us = sitk.ResampleImageFilter()
resampler_us.SetReferenceImage(destVol)
resampler_us.SetInterpolator(sitk.sitkLinear)
resampler_us.SetDefaultPixelValue(0)
resampler_us.SetTransform(init_tfm)
outUSImg = resampler_us.Execute(source_img)
outUSNp = sitk.GetArrayFromImage(outUSImg)
# print('outUSNp {}'.format(outUSNp.shape))
# cv2.imwrite('tmp_sitk.jpg', outUSNp[32, :, :])
# sys.exit()
return outUSNp
def dof2mat_tensor(input_dof, device):
rad = tgm.deg2rad(input_dof[:, 3:])
ai = rad[:, 0]
aj = rad[:, 1]
ak = rad[:, 2]
si, sj, sk = torch.sin(ai), torch.sin(aj), torch.sin(ak)
ci, cj, ck = torch.cos(ai), torch.cos(aj), torch.cos(ak)
cc, cs = ci*ck, ci*sk
sc, ss = si*ck, si*sk
M = torch.zeros((input_dof.shape[0], 4, 4))
if device:
M = M.to(device)
M.requires_grad = True
M[:, 0, 0] = cj*ck
M[:, 0, 1] = sj*sc-cs
M[:, 0, 2] = sj*cc+ss
M[:, 1, 0] = cj*sk
M[:, 1, 1] = sj*ss+cc
M[:, 1, 2] = sj*cs-sc
M[:, 2, 0] = -sj
M[:, 2, 1] = cj*si
M[:, 2, 2] = cj*ci
M[:, :3, 3] = input_dof[:, :3]
# print('out_mat {}\n{}'.format(M.shape, M))
# sys.exit()
return M
def computeError(mat_error, spacing, img_size):
"""[summary]
Args:
mat_error ([numpy]): 4x4 numpy mat, difference mat between GT and Prediction
spacing ([float]): spacing of original usvolume
img_size ([tuple 2]): tuple of numpy frame size, for defining corner pts
Returns:
[float]: error in mm
"""
# print('mat_error\n{}'.format(mat_error))
# print('spacing\n{}'.format(spacing))
# print('img_size\n{}'.format(img_size))
h, w = img_size
corner_pts = []
for x in [-h/2, h/2]:
for y in [-w/2, w/2]:
corner_pts.append([x, y, 0, 1])
corner_pts = np.asarray(corner_pts)
corner_pts = np.transpose(corner_pts)
# print('corner_pts\n{}'.format(corner_pts))
trans_corner_pts = np.dot(mat_error, corner_pts)
# print('trans_corner_pts\n{}'.format(trans_corner_pts))
dist = np.linalg.norm(corner_pts - trans_corner_pts, axis=0)
# print('dist\n{}'.format(dist))
error_mm = spacing * np.mean(dist)
# print('error {} mm'.format(error_mm))
# sys.exit()
return error_mm
def correlation_coefficient(T1, T2):
numerator = np.mean((T1 - T1.mean()) * (T2 - T2.mean()))
denominator = T1.std() * T2.std()
if denominator == 0:
return 0
else:
result = numerator / denominator
return result
def generateRandomGuess(means, stds):
random_dof = []
for i in range(means.shape[0]):
this_mean, this_std = means[i], stds[i]
rand_dof = np.random.normal(this_mean, this_std, 1)[0]
# print('mean {:.4f}, std {:.4f}, rand {:.4f}'.format(this_mean, this_std, rand_dof))
random_dof.append(rand_dof)
# print(random_dof)
# sys.exit()
return np.asarray(random_dof)
# mats = readMatsFromSequence(case_id='Case0005')
# samplePlane(case_id='Case0005', trans_mats=mats, frame_id=43)
# print('mats shape {}'.format(mats.shape))
# volCompare(case_id='Case0009')