-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGRCm38_STEP_1_annotation_forging.Rmd
856 lines (690 loc) · 30.7 KB
/
GRCm38_STEP_1_annotation_forging.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
---
title: "wind: wORKFLOW FOR PiRNAs AnD BEYONd"
subtitle: "Computational workflow for the creation of Gene transfer format file with small-RNA sequences, GRCm38"
author: "Constantinos Yeles (Konstantinos Geles)"
date: "`r format(Sys.Date(), '%a %b %d %Y')`"
output:
pdf_document:
toc: yes
toc_depth: 3
html_document:
toc: yes
toc_depth: 3
theme: paper
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval = FALSE)
```
# Introduction
With the intent to annotate and quantify small RNA sequence data (and in
particular piRNA) derived from Next-Generation Sequencing, we have developed wind. For the generation of annotation files and results, widely used tools of alignment, annotation, quantification and differential expression algorithms have been used. Although the workflow is focused particularly on piRNAs (as it is our main subject of research) with slight modifications can be applied to all small RNA categories of interest.
To make it more versatile and reproducible, we adopted the _[containerization approach](https://www.docker.com/resources/what-container)_ as the software
deployment is fast, efficient, and potentially bug-free. It can be used in
various operating systems with only requirements the installation of the docker
engine and have some minimum requirements of processing power and RAM to
run the most memory demanding tools.
# Materials and Methods
The workflow has been primarily carried out on a Linux server, but it can be
used easily on a Windows or Mac OS machine as long as changes have been done to
appropriate functions/operations.
The workflow utilizes _[Bash](https://www.gnu.org/software/bash/)_ and
_[R](https://www.r-project.org/)_
scripting for various operations.
For the application of the workflow, the following tools have been used:
* _[Rstudio](https://rstudio.com/)_ for R scripting,
* _[STAR](https://www.ncbi.nlm.nih.gov/pubmed/23104886)_ for alignment,
* _[Samtools](https://www.htslib.org/)_ for various modifications and extraction
of reads from resulted aligned files,
* _[FastQC](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)_ for quality control,
* _[Cutadapt](https://journal.embnet.org/index.php/embnetjournal/article/view/200)_ for adapter trimming,
* _[bedtools](https://bedtools.readthedocs.io/en/latest/index.html)_ for bam to bed manipulation,
* _[Salmon](https://www.nature.com/articles/nmeth.4197/)_ for transcript-level quantification,
* _[featureCounts](https://academic.oup.com/bioinformatics/article/30/7/923/232889)_ for transcript-level quantification.
Databases that have been used:
* _[piRNABank](http://pirnabank.ibab.ac.in/)_ for piRNA sequences,
* _[RNAcentral](https://rnacentral.org/)_ for smallRNA sequences.
# Workflow
## 1. Acquisition and Preprocessing of the small non-coding RNA (ncRNA) sequences
### i. Downloading the files for the generation of a Gene transfer format (gtf)
Mouse piRNA sequences were downloaded from piRNABank to enrich in piRNA sequences the gtf file, and small-RNA genome coordinates (bed files) from RNACentral have been acquired
```{bash download the Databases}
# start 1st the docker container
docker run --rm -ti -v $(pwd):/home/my_data congelos/sncrna_workflow
# all the files and folders for the workflow are created in the working directory
#create the folder that will have the genome and smallRNA sequences information
mkdir -p my_data/mouse_data/GRCm38 my_data/mouse_data/piRNABank my_data/mouse_data/RNACentral
# download the piRNAbank sequences
wget http://pirnabank.ibab.ac.in/downloads/all/mouse_all.zip -O my_data/mouse_data/piRNABank/piRNA_mouse_all.zip
unzip -d my_data/mouse_data/piRNABank my_data/mouse_data/piRNABank/piRNA_mouse_all.zip && rm my_data/mouse_data/piRNABank/piRNA_mouse_all.zip
# download the RNAcentral genomic coordinates
wget ftp://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/15.0/genome_coordinates/bed/mus_musculus.GRCm38.bed.gz \
-O my_data/mouse_data/RNACentral/mus_musculus.GRCm38.bed.gz
# download the RNAcental id mappings
wget http://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/15.0/id_mapping/id_mapping.tsv.gz \
-O my_data/mouse_data/RNACentral/mus_musculus.GRCm38.id_mapping.tsv.gz
# get the GRCm38 fasta for STAR index
wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M25/GRCm38.primary_assembly.genome.fa.gz \
-O my_data/mouse_data/GRCm38/GRCm38.primary_assembly.genome.fa.gz
pigz -d my_data/mouse_data/GRCm38/GRCm38.primary_assembly.genome.fa.gz
# get the GRCm38 annotation in order to exclude sequences of piRNA
# that are inside other sequences see 2.ix. chunk
wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M25/gencode.vM25.primary_assembly.annotation.gtf.gz \
-O my_data/mouse_data/GRCm38/gencode.vM25.primary_assembly.annotation.gtf.gz
```
### ii. Preprocessing of the piRNAbank file
The fasta file from piRNAbank has U character instead of T in the sequences,
so we can make an adjustment using [sed](https://www.gnu.org/software/sed/)
```{bash sed fasta}
sed 's/U/T/g' my_data/mouse_data/piRNABank/mouse_pir.txt > my_data/mouse_data/piRNABank/pirnaBank_mouse.fasta
# exit docker container
exit
```
### iii. Removing of the duplicated sequences from the piRNAbank file
We deploy the docker container with Rstudio server
```{bash Run docker bioc I}
docker run --rm -v $(pwd):/home/0 -p 8787:8787 -e PASSWORD=12345 \
-e USER=$UID congelos/rocker_tidyverse_plus_de_pckages
```
We prefer to work on Rstudio to perform everything on R otherwise R on
bash could be used directly. We load the libraries that would assist us
in the creation of the piRNAbank fasta file.
```{r load the libraries I}
suppressPackageStartupMessages({
library('stringr')
library('plyranges')
library('magrittr')
})
```
### iv. Remove duplicated sequences
In the piRNABank fasta duplicated sequences exist and need to be removed
```{r remove duplicates}
pirnaB_mm8 <- Biostrings::readDNAStringSet(file.path("mouse_data",
"piRNABank",
"pirnaBank_mouse.fasta"))
pirnaB_mm8 %>% length() ## >[1] 1399813
# remove duplicate sequences-----
pirnaB_mm8 <- pirnaB_mm8[!duplicated(pirnaB_mm8)]
pirnaB_mm8 %>% length() ## >[1] 39986
# clean the names----
names(pirnaB_mm8) <- names(pirnaB_mm8) %>%
str_remove("\\|M.+") %>%
str_replace("\\|gb\\|","_")
# write the fasta ----
pirnaB_mm8 %>%
Biostrings::writeXStringSet(file.path("mouse_data", "piRNABank" ,"pirnaB_mm8_removed_duplicates.fa" ))
```
exit the docker container
```{bash exit bioc}
# exit docker container
exit
```
### iv. Align piRNA sequences to human genome
We proceed with the alignment of piRNA sequences to the human genome
utilizing STAR aligner and export them in fasta format
```{bash STAR_SAM}
docker run --rm -ti -v $(pwd):/home/my_data congelos/sncrna_workflow
# create index
STAR --runMode genomeGenerate --genomeDir my_data/mouse_data/GRCm38 --genomeFastaFiles my_data/mouse_data/GRCm38/GRCm38.primary_assembly.genome.fa --runThreadN 6
mkdir my_data/mouse_data/piRNABank_mouse_mm10
# align the piRNABank sequences
STAR --genomeDir my_data/mouse_data/GRCm38_v34 \
--readFilesIn "my_data/mouse_data/piRNABank/pirnaB_mm8_removed_duplicates.fa" \
--runThreadN 8 --alignIntronMax 0 --outSAMattributes NH HI NM MD \
--outFilterMultimapNmax 100 --outReadsUnmapped Fastx --outFilterMismatchNmax 0 \
--outFilterMatchNmin 16 --outSAMtype BAM SortedByCoordinate \
--outFileNamePrefix "my_data/mouse_data/piRNABank/aligned/piBnk_GRCm38_v34_"
# BAM to fasta format
samtools fasta -F 4 -@ 4 \
my_data/mouse_data/piRNABank/aligned/piBnk_GRCm38_v34_Aligned.sortedByCoord.out.bam > my_data/mouse_data/piRNABank/piBnk_GRCm38_v34_fin.fasta
# BAM to bed format
bedtools bamtobed < my_data/mouse_data/piRNABank/aligned/piBnk_GRCm38_v34_Aligned.sortedByCoord.out.bam > my_data/mouse_data/piRNABank/piBnk_GRCm38_v34_fin.bed
exit
```
## 2. Join of piRNABank sequences and RNAcentral ncRNA sequences
### Run docker
```{bash Run docker bioc II}
docker run --rm -v $(pwd):/home/0 -p 8787:8787 -e PASSWORD=12345 \
-e USER=$UID congelos/rocker_tidyverse_plus_de_pckages
```
In order to minimize issues with the paths of folders and files
we use wherever possible the package [here](https://github.com/jennybc/here_here#readme)
### i. Load libraries
```{r load the libraries II}
suppressPackageStartupMessages({
library('tidyverse')
library('data.table')
library('plyranges')
library("BSgenome.Mmusculus.UCSC.mm10")
library("here")
})
```
### ii. RNAcentral. import RNAcentral file
```{r import RNAcentral}
sRNA <- here("mouse_data", "RNACentral", "mus_musculus.GRCm38.bed.gz") %>%
read_bed() %>%
select("sRNA_id" = name, "gene_type" = NA.1, "source" = NA.2) %>%
mutate(type = "exon")
sInfo <- Seqinfo(genome="mm10")
seqlevels(sInfo) <- seqlevels(sRNA)
seqinfo(sRNA) <- sInfo
```
#### Exploring the lengths of the RNAcentral sequences
```{r summaries of length RNAcentral seq}
sRNA %>%
as_tibble() %>%
group_by(gene_type, sRNA_id) %>%
summarise(count_less = sum(width < 100), count_more = sum(width >= 100)) %>%
group_by(gene_type) %>%
summarise(longer_or_equal_than_100_seqs = sum(count_more > 0),
shorter_than_100_seqs= sum(count_less > 0),
longer_or_equal_than_100_GRs = sum(count_more),
shorter_than_100_GRs= sum(count_less))
```
### iii. RNAcentral. filtering for sequences smaller than 100 bps
```{r filter 100bp}
tr_sRNA <- sRNA %>%
as_tibble() %>% # [1,065,469] genomic ranges(GR) / [180,780] sRNA_ids
filter(width < 100) %>% # [962,711] GRs / [94,653] sRNA_ids
mutate(sRNA_id = str_remove(sRNA_id,"_10090")) %>%
as_granges() %>%
# keep info about the standard chromosomes
keepStandardChromosomes(pruning.mode = "coarse") %>% # [962,711] -> [947,408] GRs / [94,653] -> [94,644] sRNA_ids
# remove the duplicated entries from RNAcentral
as_tibble() %>%
unite(col = "seq_s",seqnames:strand, sep = "_") %>%
distinct(seq_s, .keep_all = TRUE) %>% # remove dupl GRs [947,408] -> [929,168] GRs / [94,644] -> [90,056] sRNA_ids
separate(col = seq_s,
into = c("seqnames","start","end","width","strand"),
sep = "_") %>%
mutate(start = as.numeric(start),
end = as.numeric(end),
width = as.numeric(width)) %>%
as_granges()
biotypes <- tr_sRNA %>%
as_tibble() %>%
select(sRNA_id,gene_type) %>%
distinct(sRNA_id, .keep_all = T)
```
### iv. RNAcentral. keep sequence information
```{r keep seq info}
transcripts_mouse <- Views(BSgenome.Mmusculus.UCSC.mm10, tr_sRNA)
# search for duplicated sequences ----
fasta_tr_ms <- DNAStringSet(transcripts_mouse)
names(fasta_tr_ms) <- mcols(transcripts_mouse)$sRNA_id
fasta_tr_ms <- fasta_tr_ms[sort(fasta_tr_ms@ranges@NAMES)]
fasta_tr_ms_tbl <- fasta_tr_ms %>%
as.character() %>%
enframe(name = "tr_mm10" ,value = "mm10") %>%
left_join(biotypes, by = c("tr_mm10" = "sRNA_id"))
fasta_tr_ms_tbl %>%
distinct(tr_mm10, mm10, gene_type, .keep_all = TRUE) %>%
filter(duplicated(mm10)) %>%
count(mm10,sort = TRUE) # 48 duplicates
# duplicates between sequences and genomic locations(GRs)-----
## make a tibble with all GR, seq and ids
transcripts_GR <- transcripts_mouse %>%
as_granges() %>%
as_tibble() %>%
unite(col = "seq_RCent", seqnames:strand, sep = "_")
## find unique pairs of seq and GR
uniq_seq <- transcripts_GR %>%
distinct(dna, .keep_all = TRUE) %>%
arrange(dna) %>%
mutate(sRNA_id2 = str_c(sRNA_id,"_GR_",seq_RCent)) %>%
select(dna, sRNA_id2)
transcripts_GR <- transcripts_GR %>% # [929,168] GRs / [90,056] sRNA_id -> [97,367] sRNA_id2
left_join(uniq_seq)
```
### v. piRNABank. import the piRNA sequences aligned to genome
```{r import piRNABank}
piRNAbank_mm10 <- here("mouse_data","piRNABank", "piBnk_GRCm38_v34_fin.fasta") %>%
Biostrings::readDNAStringSet()
piRNAbank_mm10_tib <- piRNAbank_mm10 %>% # 55,548 GRs
as.character() %>%
enframe(value = "seq_piBn") %>%
mutate(sRNA_type ="piRNA",
bpairs_piR = str_length(seq_piBn)) %>%
distinct(name, seq_piBn, .keep_all = TRUE) %>%
arrange(desc(bpairs_piR))
```
### vi. piRNAbank. make Genomic Ranges and remove duplicates from GRCm38
```{r import piRNABank GRanges}
# piRNABank. import the Genomic Ranges and filter them -----
piRNAbank_mm10_ranges <- here("mouse_data", "piRNABank", "piBnk_GRCm38_v34_fin.bed") %>%
read_bed() %>%
as_tibble() %>%
arrange(desc(width)) %>% # [55,905] GRs / [39,380] sequences
filter(width < 100) %>% # [55,905] -> [55,903] GRs / [39,380] sequences
as_granges() %>%
keepStandardChromosomes(pruning.mode = "coarse") # [55,903] -> [54,677] GRs / [39,380]seq
transcripts_pi_mm10 <- Views(BSgenome.Mmusculus.UCSC.mm10, piRNAbank_mm10_ranges) %>%
as_granges() %>%
keepStandardChromosomes(pruning.mode = "coarse") %>%
as_tibble()
# we need to apply a second width filter at 68 (so as to have sequences of pirnas with max 38)
# as we know that piRNAs are ~32 base pairs
transcripts_pi_mm10 <- transcripts_pi_mm10 %>% filter(width < 68) # [54,677] -> [54,676] GRs / [39,380] names, [39,691] sequences
transcripts_pi_mm10 %>% count(name) %>% nrow #> 39380 piRNAs from piRNABANK
# checking sequences of alignments with lower length
# here we explore the GRs that have one less at least base than the
# piRNA sequence we actually have from the principal piRNABank fasta
# or a missmatch
sequen_pi_false <- transcripts_pi_mm10 %>%
as_tibble() %>%
left_join(piRNAbank_mm10_tib) %>%
arrange(desc(width)) %>%
mutate(sequences_true = (dna == seq_piBn)) %>%
filter(sequences_true == FALSE) %>%
unite(col = "seq_s",seqnames:strand, sep = "_")
# piRNABank. removing duplicated GR ----
piRNAbank_mm10_ranges %>%
as_tibble() %>%
unite(col = "seq_s",seqnames:strand, sep = "_") %>%
count(seq_s) %>%
filter(n > 1) %>%
.$seq_s %>%
map(~sequen_pi_false %>%
filter(seq_s == .x)) %>%
bind_rows()
transcripts_pi_mm10_clean <- transcripts_pi_mm10 %>%
as_tibble() %>%
left_join(piRNAbank_mm10_tib) %>%
arrange(desc(width)) %>%
mutate(sequences_true = (dna == seq_piBn)) %>%
filter(sequences_true == TRUE) %>% # [54,676] -> [54,014] GRs / [39,380] -> [39,380] sequences
select(-score, -seq_piBn, -bpairs_piR, -sequences_true) %>%
unite(col = "seq_piBNK",seqnames:strand, sep = "_")
transcripts_pi_mm10_clean %>% count(name) %>% nrow #> 39380 piRNAs final piRNABANK
#> 54,014 Genomic ranges
```
### vii. RNAcentral. + piRNABank. make annotation tibble
create a tibble with that information of RNAcentral and piRNAbank sequences and IDs
```{r annotation tibble}
mm10_piBAnk_RCent <- transcripts_GR %>%
left_join(piRNAbank_mm10_tib, by = c("dna" = "seq_piBn"))
# check gene_types
mm10_piBAnk_RCent %>%
filter(is.na(name)) %>%
count(gene_type)
mm10_piBAnk_RCent %>%
filter(!is.na(name)) %>%
count(gene_type,sRNA_type)
mm10_piBAnk_RCent%>%
filter(gene_type != "piRNA",sRNA_type == "piRNA") %>%
count(gene_type)
# in case that in piRNAbank a pirna is the same but with different type in RNAcentral
# we will keep the gene type of RNAcentral
concated_mm10_piBAnk <- mm10_piBAnk_RCent %>%
mutate(
seq_id = case_when(
is.na(gene_type) ~ name,
gene_type != "piRNA" ~ sRNA_id2,
is.na(sRNA_type) ~ sRNA_id2,
TRUE ~ name
)
)
concated_mm10_piBAnk %>%
filter(!is.na(name)) %>%
filter(!gene_type == "piRNA") %>%
count(gene_type)
# sanity checks ----
## checking for the NA values, should be only true
(concated_mm10_piBAnk %>%
filter(is.na(name)) %>% .$sRNA_id2 ==
concated_mm10_piBAnk %>%
filter(is.na(name)) %>% .$seq_id
) %>% table
## checking for the miRNA values, should be only true
(concated_mm10_piBAnk %>% filter(gene_type == "miRNA") %>% .$sRNA_id2 ==
concated_mm10_piBAnk %>% filter(gene_type == "miRNA") %>% .$seq_id
) %>% table
## function for all gene_types
fun_unm <- function(x){
(concated_mm10_piBAnk %>%
filter(gene_type == x) %>%
.$sRNA_id2 ==
concated_mm10_piBAnk %>%
filter(gene_type == x) %>%
.$seq_id
) %>% table
}
## checking for all gene_types, should be only true except piRNAs
concated_mm10_piBAnk %>%
count(gene_type) %>%
.$gene_type %>% set_names(.) %>%
map(~fun_unm(.x)) %>%
bind_rows(.id = "ID")
## checking for the piRNA values
is.na(concated_mm10_piBAnk$seq_id) %>% table
## checking for duplicates
concated_mm10_piBAnk %>%
filter(duplicated(seq_id)) %>%
arrange(name)
concated_mm10_piBAnk %>%
filter(duplicated(name),!is.na(name)) %>%
arrange(name)
concated_mm10_piBAnk %>%
filter(duplicated(sRNA_id2),!is.na(sRNA_id2)) %>%
arrange(name)
dupl_seqs <- concated_mm10_piBAnk %>%
filter(duplicated(dna)) %>%
arrange(name)
fasta_tr_ms_tbl %>%
filter(mm10 %in% dupl_seqs$dna)
```
### viii. RNAcentral + piRNABank. generation of GRanges
```{r GRanges generation}
concated_mm10_piBAnk # df with combined sequences piRNAbank+RNAcentral
transcripts_pi_mm10_clean # has all alignments from piRNAbank
c_piBNK_RCent <- concated_mm10_piBAnk %>%
full_join(transcripts_pi_mm10_clean,
by = c("dna", "name", "sRNA_type", "seq_RCent" = "seq_piBNK")) %>%
select(seq_RCent, sRNA_id, name, seq_id, gene_type, sRNA_type, everything()) %>%
mutate(
source =
case_when(
is.na(source) ~ "piRNA_BANK",
!is.na(sRNA_type) ~ str_c("piRNA_BANK,",source),
TRUE ~ source),
gene_type =
case_when(
is.na(gene_type) ~ sRNA_type,
TRUE ~ gene_type),
seq_id =
case_when(
is.na(seq_id) ~ name,
TRUE ~ seq_id),
type =
case_when(
is.na(type) ~ "exon",
TRUE ~ type)
)
names(c_piBNK_RCent)
c_piBNK_RCent %>% count(sRNA_id, sort = T)
c_piBNK_RCent %>% count(name, sort = T)
c_piBNK_RCent %>% count(seq_id, sort = T)
c_piBNK_RCent %>% count(gene_type, sort = T)# GR per gene_type
c_piBNK_RCent %>% count(source, sort = T)
c_piBNK_RCent %>% count(type, sort = T)
c_piBNK_RCent %>% count(dna, sort = T)
c_piBNK_RCent %>% count(sRNA_id2, sort = T)
c_piBNK_RCent %>% count(bpairs_piR, sort = T)
# combined Genomic ranges -----
c_piBNK_RCent_GR <- c_piBNK_RCent %>%
select(-name, -sRNA_type, -bpairs_piR) %>%
dplyr::rename( "seq_RNA" = dna ) %>%
separate(col = seq_RCent,into = c("seqnames",
"start","end","width","strand"),sep = "_") %>%
mutate(start = as.numeric(start),
end = as.numeric(end),
width = as.numeric(width)) %>%
as_granges
```
### ix. Filtering piRNAs sequences inside other Genes
Studies of Tosar et. al[1](https://pubmed.ncbi.nlm.nih.gov/33376191/) [2](https://pubmed.ncbi.nlm.nih.gov/30271890/) have demonstrated that some piRNAs
sequences can been found inside other small non-coding RNAs or genes.
These "piRNA" most probably are mRNA or ncRNA fragments that have been misstyped
as such.
For this reason we will exclude the Genomic ranges of piRNAs that are inside
other protein coding genes. Regarding piRNAs inside regions of small noncoding
RNAs we can follow up after the final downstream analysis has been done.
Always consider to experimentally validate the sequences of interest
with wet-lab techniques (after the smallRNA sequencing) that could prove that
these sequences are actual PIWI-interacting small non-coding RNAs.
We first evaluate which Biotypes should use from
gencode annotation.
A cut-off of at least 1 base of overlap with the piRNA sequence in order
to be as strict as possible is used
We filter the GRs that are found inside protein coding of CDS and exon tags
```{r filtering protein coding GRs}
gene_annot <- here("mouse_data", "GRCm38", "gencode.vM25.primary_assembly.annotation.gtf.gz") %>%
read_gff2()
# how many GRs for each type are in the gencode annotation:
gene_annot %>%
as_tibble %>%
count(type, sort = T) # exon:843712, CDS:528978
# how many GRs for each type per gene_type are in the gencode annotation:
gene_annot %>%
as_tibble %>%
count(type, gene_type, sort = T) # exon:protein_coding= 760315,
# CDS:protein_coding=527274
#filter gene_annot for only exon and CDS
gene_annot_exon_CDS <- gene_annot %>% filter(type %in% c("exon", "CDS"))
#filter exon and CDS for protein_coding and immunoglobulin genes
gene_annot_exon_CDS_prot_cod <- gene_annot_exon_CDS %>%
filter(type %in% c("exon", "CDS"),
str_detect(gene_type, "protein_coding|IG_|TR_"))
# we will consider overlapping piRNAs with exon and CDS of protein_coding first
c_piRNAs_GR_prot_cod <- c_piBNK_RCent_GR %>% # GR = 932,645
filter(gene_type == "piRNA") %>% # GR = 851,947
find_overlaps_directed(gene_annot_exon_CDS_prot_cod, maxgap = -1L,
minoverlap = 1L, suffix = c("_piRNAs", "_genes")) %>%
select(starts_with(c("gene_","typ"))) %>%
as_tibble() %>%
unite(col = "seq_piBNK", seqnames:strand, sep = "_") %>%
distinct(seq_piBNK, .keep_all = TRUE) # GR = 6,886 to be excluded
# exclude them from combined ranges
c_piBNK_RCent_GR_filtered <- c_piBNK_RCent_GR %>%
as_tibble() %>%
unite(col = "seq_piBNK", seqnames:strand, sep = "_") %>%
filter(!seq_piBNK %in% c_piRNAs_GR_prot_cod$seq_piBNK) %>% # 932,645 -> 925,759
separate(col = seq_piBNK,
into = c("seqnames", "start","end","width","strand"),
sep = "_", convert = TRUE) %>%
as_granges()
```
Then we will add some information regarding piRNAs that overlap with
small non coding RNAs and other pseudogenes
```{r piRNA overlapping GENCODE_pseudogenes}
# piRNA overlap with sequences of the 29 types(containing pseudogenes and smallRNAs) from GENCODE:
gene_annot_exon_CDS %>%
filter(!gene_type %in% gene_annot_exon_CDS_prot_cod$gene_type) %>%
as_tibble %>%
count(gene_type, sort = T) %>%
.$gene_type
# keep only the sequences of the 29 types
gene_annot_pseud_n_others <- gene_annot_exon_CDS %>%
filter(!gene_type %in% gene_annot_exon_CDS_prot_cod$gene_type)
# make a dataframe with the overlapping GRs of piRNAs
piRNAs_GR_filt <- c_piBNK_RCent_GR_filtered %>%
filter(gene_type == "piRNA") %>% # GR = 845,061
find_overlaps_directed(gene_annot_pseud_n_others, maxgap = -1L,
minoverlap = 1L, suffix = c("_piRNAs", "_genes")) %>%
as_tibble() %>%
unite(col = "seq_piBNK", seqnames:strand, sep = "_") %>%
distinct(seq_piBNK, .keep_all = TRUE) %>% # GR = 10,700 to be recategorized
select(seq_piBNK, gene_name, gene_id, transcript_id, gene_type_genes,tag) %>%
unite(col = "GENCODE_annot", gene_name:tag, sep = "_GNC_")
```
Using the information from GENECODE
we can add it to the final gtf as extra information
```{r miscellaneous piRNA merge}
# complete GRs with misc_piRNAs
complete_piBnk_RCent <- c_piBNK_RCent_GR_filtered %>%
as_tibble() %>%
unite(col = "seq_piBNK", seqnames:strand, sep = "_") %>%
left_join(piRNAs_GR_filt) %>%
mutate(across(.cols = GENCODE_annot,
.fns = ~if_else(is.na(.x),"no_overlap",.x))
) %>%
select(seq_piBNK, seq_id, GENCODE_annot, everything()) %>%
separate(col = seq_piBNK,
into = c("seqnames", "start","end","width","strand"),
sep = "_", convert = TRUE) %>%
as_granges()
```
Last check for the sequences of all smallRNAs
```{r objects to export}
# test the sequences-----
piRNAbank_rCentral_seqs <- Views(BSgenome.Mmusculus.UCSC.mm10, complete_piBnk_RCent)
piRNAbank_rCentral_seqs %>%
as_granges() %>%
as_tibble() %>%
mutate( is_it_TR = (seq_RNA == dna)) %>%
filter(is_it_TR == FALSE)# should be 0
# final objects to export-----
piRNAbank_rCentral_fasta <- DNAStringSet(piRNAbank_rCentral_seqs)
names(piRNAbank_rCentral_fasta) <- mcols(piRNAbank_rCentral_seqs)$seq_id
piRNAbank_rCentral_fasta <- piRNAbank_rCentral_fasta[!duplicated(piRNAbank_rCentral_fasta)]
```
## 3. Save the results to fasta and gtf format
```{r export and save res}
piRNAbank_rCentral_fasta %>%
Biostrings::writeXStringSet(file.path("mouse_data", "sncRNA_piRNBnk_RNACent_GRCm38_v34.fa"))
gtf_piB_RCentr <- complete_piBnk_RCent %>%
as_tibble() %>%
dplyr::rename("gene_id" = seq_id) %>%
as_granges()
sInfo <- Seqinfo(genome="mm10")
seqlevels(sInfo) <- seqlevels(gtf_piB_RCentr)
seqinfo(gtf_piB_RCentr)<- sInfo
gtf_piB_RCentr %>%
write_gff2(file.path("mouse_data", "sncRNA_piRNBnk_RNACent_GRCm38_v34.gtf"))
```
Until now, we have prepared the files for annotation and quantification (GTF, FASTA)
of smallRNA sequencing samples of mouse transcriptome.
Afterwards, the steps in the pre-processing of the samples, alignment,
quantification and calculation of transcript abundances should be followed.
## 5. Make the directories for each dataset
We will create folders for each dataset we will analyse.
```{r}
data_sets <- c("mouse_CM")
data_sets %>%
file.path("Datasets_analysis",.) %>%
map(~dir.create(., recursive = T))
```
## 6. Optional Make the indexes for STAR and salmon
### iv. Indexes for STAR and Salmon with Spike-ins
```{bash mouse salmon index}
docker run --rm -ti -v $(pwd):/home/my_data congelos/sncrna_workflow
mkdir my_data/mouse_data/indexes
# following the instructions for salmon decoy aware indexing
# https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/
grep "^>" my_data/mouse_data/GRCm38/GRCm38.primary_assembly.genome.fa |cut -d " " -f 1 > my_data/mouse_data/decoys_GRCm38.txt
sed -i.bak -e 's/>//g' my_data/mouse_data/decoys_GRCm38.txt
#concat genome transcriptome
fcat my_data/mouse_data/sncRNA_piRNBnk_RNACent_GRCm38_v34.fa my_data/mouse_data/GRCm38/GRCm38.primary_assembly.genome.fa > my_data/mouse_data/gentrome_sncRNA_piRNBnk_RNACent_GRCm38_v34.fasta
pigz --best -p 10 my_data/mouse_data/gentrome_sncRNA_piRNBnk_RNACent_GRCm38_v34.fasta
mkdir my_data/mouse_data/indexes/GRCm38_v34_salmon
exit
# run the docker
docker run --rm -it -v $(pwd):/home/my_data combinelab/salmon
# create the index with spike-ins
##
salmon index -t my_data/mouse_data/gentrome_sncRNA_piRNBnk_RNACent_GRCm38_v34.fasta.gz \
-d my_data/mouse_data/decoys_GRCm38.txt \
-i my_data/mouse_data/indexes/GRCm38_v34_salmon -k 15 -p 6
exit
```
############################ The following code need to be revised more
Following this workflow the files for annotation and quantification of small-RNA samples have been prepared.
Afterwards, the steps in the pre-processing of the samples, alignment, quantification and calculation of transcript abundances could be followed.
## 7. Provide extra information regarding genomic locations, genes, transcripts, for the gtf
### i. Load libraries
```{r bumphunter libraries}
suppressPackageStartupMessages({
library('TxDb.Mmusculus.UCSC.mm10.knownGene')
library('org.Mm.eg.db')
library('bumphunter')
library('BiocParallel')
library('stats')
})
```
### ii. import regions of transcripts
```{r transcript regions bumphunter}
genes <- annotateTranscripts(TxDb.Mmusculus.UCSC.mm10.knownGene, annotation="org.Mm.eg.db") %>%
keepStandardChromosomes(pruning.mode="coarse") %>% arrange(seqnames)
piRNAbank_rCentral_gtf <- read_gff2("mouse_data/ncRNA_transcripts_100bp_RNA_Central_piRNAbank_mm10.gtf")
identical(genes %>% seqlevels(), piRNAbank_rCentral_gtf %>% seqlevels())
piRNAbank_rCentral_gtf %>% length()
map(piRNAbank_rCentral_gtf %>% seqlevels() %>% purrr::set_names(),
~piRNAbank_rCentral_gtf %>%
filter(seqnames == .x) %>%
length()) %>% bind_rows() %>%
pivot_longer(cols = chr1:chrM) %>%
arrange(desc(value))
# we will parallelize per chr.
if(.Platform$OS.type == "windows") {
mt_param <- SnowParam()
} else{
mt_param <- MulticoreParam()
}
# we will work with 10 workers
mt_param <- MulticoreParam(workers = 8)
# simple function which takes lists of Granges and the chromosome
# name to select from each list
matchGenes_fun <- function(our_Grs, genes_GRs){
suppressPackageStartupMessages({
library('dplyr')
library('bumphunter')
})
message("working on matchGenes")
matchGenes(our_Grs, genes_GRs,
type = "any", promoterDist = 2500,
skipExons = FALSE, verbose = TRUE) %>% as_tibble()
}
genes_chr <- map(genes %>% seqlevels() %>% purrr::set_names(),
~genes %>% filter(seqnames == .x))
gen_test <- genes_chr[c("chrM","chrY")]
piR_chr <- map(piRNAbank_rCentral_gtf %>%
seqlevels() %>%
purrr::set_names(), ~piRNAbank_rCentral_gtf %>%
filter(seqnames == .x))
piR_test <- piR_chr[c("chrM","chrY")]
res_chr <- bpmapply(matchGenes_fun,
piR_chr, genes_chr, USE.NAMES=TRUE, SIMPLIFY = FALSE,
BPREDO=list(), BPPARAM = mt_param)
res_chr <- bind_rows(res_chr) %>%
bind_cols(as_tibble(piRNAbank_rCentral_gtf)) %>%
dplyr::select(name:subjectHits, gene_id,
gene_type, sRNA_id, source, seq_RNA) %>%
write_tsv("mouse_data/gene_regions_piRNAbank_rCentral.txt")
```
## 8. Find multimapping piRNAs
```{r multimapping piRNAs}
multi_test <- piRNAbank_rCentral_gtf %>%
plyranges::select(gene_id, seq_RNA, gene_type) %>% join_overlap_inner_directed(plyranges::select(piRNAbank_rCentral_gtf, gene_id, gene_type, seq_RNA)) %>%
arrange(seqnames)
multi_test %>%
filter(gene_type.x == "piRNA",
!gene_id.x == gene_id.y ) %>%
as_tibble() %>%
count(gene_type.x, gene_type.y, sort = T) %>%
write_tsv("genomic_locations_stats_multi.txt")
piRNAbank_rCentral_gtf %>%
filter(gene_type == "piRNA") %>%
plyranges::select(-c(score, phase, source, type)) %>%
as_tibble() %>%
unite(col = "seq_s",seqnames:strand, sep = "_") %>%
count(gene_id, sort = T) %>% write_tsv("genomic_locations_stats_multi_piRNA.txt")
```
## 9. Find how many piRNAs are in common and uncommon in piRNABank and RNAcentral in the new gtf
```{r}
c_piBNK_RCent %>% distinct(seq_id, .keep_all = T)
c_piBNK_RCent %>% distinct(seq_id, .keep_all = T) %>% filter(is.na(sRNA_type),gene_type == "piRNA")
c_piBNK_RCent %>% distinct(seq_id, .keep_all = T) %>% filter(!is.na(sRNA_type),is.na(sRNA_id),gene_type == "piRNA")
c_piBNK_RCent %>% distinct(seq_id, .keep_all = T) %>% filter(!is.na(name),!is.na(sRNA_id), gene_type== "piRNA")
```
## 10. Find which smallRNAs are inside Trasposable Elements
We have downloaded a gtf file with the information about genomic regions of
Transposable Elements for human genome: http://labshare.cshl.edu/shares/mhammelllab/www-data/TEtranscripts/TE_GTF/
more precisely: [GRCm38_Ensembl_rmsk_TE.gtf.gz](http://labshare.cshl.edu/shares/mhammelllab/www-data/TEtranscripts/TE_GTF/GRCm38_Ensembl_rmsk_TE.gtf.gz)
```{r Trasposable Elements annotation}
TEs <- read_gff2("GRCm38_Ensembl_rmsk_TE.gtf.gz") %>%
plyranges::select("TE_gene_id" = gene_id, "TE_transcript_id" = transcript_id,
"TE_family_id" = family_id, "TE_class_id" = class_id) %>%
keepStandardChromosomes(pruning.mode = "coarse") %>%
arrange(seqnames)
piRNAbank_rCentral_gtf %>%
plyranges::select(gene_id, sRNA_id,gene_type, seq_RNA) %>%
find_overlaps_directed(TEs) %>%
write_gff2("TEs_piRNAbank_rCentral.gtf")
piRNAbank_rCentral_gtf %>%
join_overlap_left_directed( piRNAbank_rCentral_gtf %>%
find_overlaps_directed(TEs)) %>% length()
piRNAbank_rCentral_gtf %>%
find_overlaps_directed(TEs) %>%
plyranges::reduce_ranges_directed() %>% length()
```