Skip to content

Commit d0cd5ec

Browse files
authored
Update README.md
1 parent fa7dc90 commit d0cd5ec

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ SWGE is free software: you can redistribute it and/or modify it under the terms
88

99
* **Lab site:** http://lia.univ-avignon.fr/
1010
* **GitHub repo:** https://github.com/CompNet/SWGE
11-
* **Data:** https://doi.org/10.5281/zenodo.13851362
11+
* **Data:** https://doi.org/10.5281/zenodo.13851361
1212
* **Contact:** Noé Cécillon <[email protected]>, Vincent Labatut <[email protected]>
1313

1414
-----------------------------------------------------------------------
@@ -37,7 +37,7 @@ In addition, these scripts reproduce the experiments described in our paper [[CL
3737

3838

3939
## Data
40-
The scripts are meant to be applied to a corpus of three datasets constituted of signed networks annotated for graph classification. Because of GitHub's file size limit, we include only a few graphs from each dataset in the `data` folder. The full datasets can be downloaded from [Zenodo](https://doi.org/10.5281/zenodo.13851362). Place the downloaded graphs directly into the corresponding folders in `data`.
40+
The scripts are meant to be applied to a corpus of three datasets constituted of signed networks annotated for graph classification. Because of GitHub's file size limit, we include only a few graphs from each dataset in the `data` folder. The full datasets can be downloaded from [Zenodo](https://doi.org/10.5281/zenodo.13851361). Place the downloaded graphs directly into the corresponding folders in `data`.
4141

4242

4343
## Organization
@@ -70,7 +70,7 @@ After running the previous scripts, you can perform the classification by runnin
7070

7171

7272
## References
73-
* **[CLDA'24]** N. Cécillon, V. Labatut, R. Dufour, N. Arınık: *Whole-Graph Representation Learning For the Classification of Signed Networks*, IEEE Access (in press), 2024. DOI: [10.1109/ACCESS.2024.3472474](https://dx.doi.org/10.1109/ACCESS.2024.3472474) [⟨hal-04712854⟩](https://hal.archives-ouvertes.fr/hal-04712854)
73+
* **[CLDA'24]** N. Cécillon, V. Labatut, R. Dufour, N. Arınık: *Whole-Graph Representation Learning For the Classification of Signed Networks*, IEEE Access 12:151303-151316, 2024. DOI: [10.1109/ACCESS.2024.3472474](https://dx.doi.org/10.1109/ACCESS.2024.3472474) [⟨hal-04712854⟩](https://hal.archives-ouvertes.fr/hal-04712854)
7474
* **[NCVC'17]** A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal: *graph2vec: Learning distributed representations of graphs*, International Workshop on Mining and Learning with Graphs, 2017. URL: [http://www.mlgworkshop.org/2017/paper/MLG2017_paper_21.pdf]
7575
* **[DMT'18]** T. Derr, Y. Ma, and J. Tang: *Signed graph convolutional network*, 18th International Conference on Data Mining, 2018, p.929-934. DOI: [10.1109/ICDM.2018.00113](https://doi.org/10.1109/ICDM.2018.00113).
7676
* **[WTAC'17]** S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu. *Signed network embedding in social media*. 17th SIAM International Conference on Data Mining, 2017, p.327-335. DOI: [10.1137/1.9781611974973.37](https://doi.org/10.1137/1.9781611974973.37).

0 commit comments

Comments
 (0)