-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathfinetune_ucf101_i3d_edlnokl_avuc_debias.py
executable file
·145 lines (145 loc) · 4.95 KB
/
finetune_ucf101_i3d_edlnokl_avuc_debias.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# model settings
evidence_loss = dict(type='EvidenceLoss',
num_classes=101,
evidence='exp',
loss_type='log',
with_kldiv=False,
with_avuloss=True,
annealing_method='exp')
model = dict(
type='Recognizer3D',
backbone=dict(
type='ResNet3d',
pretrained2d=True,
pretrained='torchvision://resnet50',
depth=50,
conv_cfg=dict(type='Conv3d'),
norm_eval=False,
inflate=((1, 1, 1), (1, 0, 1, 0), (1, 0, 1, 0, 1, 0), (0, 1, 0)),
zero_init_residual=False),
cls_head=dict(
type='I3DHead',
loss_cls=evidence_loss,
num_classes=101,
in_channels=2048,
spatial_type='avg',
dropout_ratio=0.5,
init_std=0.01),
debias_head=dict(
type='DebiasHead',
loss_cls=evidence_loss, # actually not used!
loss_factor=0.1,
num_classes=101,
in_channels=2048,
dropout_ratio=0.5,
init_std=0.01))
# model training and testing settings
train_cfg = None
test_cfg = dict(average_clips='evidence', evidence_type='exp')
# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos'
data_root_val = 'data/ucf101/videos'
ann_file_train = 'data/ucf101/ucf101_train_split_1_videos.txt'
ann_file_val = 'data/ucf101/ucf101_val_split_1_videos.txt'
ann_file_test = 'data/ucf101/ucf101_val_split_1_videos.txt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(type='DenseSampleFrames', clip_len=32, frame_interval=2, num_clips=1),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.8),
random_crop=False,
max_wh_scale_gap=0),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(
type='DenseSampleFrames',
clip_len=32,
frame_interval=2,
num_clips=1,
test_mode=True),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(type='OpenCVInit', num_threads=1),
dict(
type='DenseSampleFrames',
clip_len=32,
frame_interval=2,
num_clips=1,
test_mode=True),
dict(type='OpenCVDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='ThreeCrop', crop_size=256),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
data = dict(
videos_per_gpu=8, # set to 2 for evaluation on GPU with 24GB
workers_per_gpu=4, # set to 2 for evaluation on GPU with 24GB
train=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
start_index=0,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
start_index=0,
pipeline=val_pipeline),
test=dict(
type=dataset_type,
ann_file=ann_file_val,
start_index=0,
data_prefix=data_root_val,
pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD', lr=0.001, momentum=0.9, # change from 0.01 to 0.001
weight_decay=0.0001, nesterov=True)
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(policy='step', step=[20, 40]) # change from [40,80] to [20,40]
total_epochs = 50 # change from 100 to 50
checkpoint_config = dict(interval=10)
evaluation = dict(
interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'])
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),
])
annealing_runner = True
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/finetune_ucf101_i3d_edlnokl_avuc_debias/'
load_from = 'https://download.openmmlab.com/mmaction/recognition/i3d/i3d_r50_dense_256p_32x2x1_100e_kinetics400_rgb/i3d_r50_dense_256p_32x2x1_100e_kinetics400_rgb_20200725-24eb54cc.pth' # model path can be found in model zoo
resume_from = None
workflow = [('train', 1)]