forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_fl.yaml
executable file
·58 lines (51 loc) · 2.1 KB
/
config_fl.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
runner:
sync_mode: "geo" # 可选, string: sync/async/geo
#with_coodinator: 1
geo_step: 100 # 可选, int, 在geo模式下控制本地的迭代次数
split_file_list: True # 可选, bool, 若每个节点上都拥有全量数据,则需设置为True
thread_num: 1 # 多线程配置
# reader类型,分布式下推荐QueueDataset
reader_type: "QueueDataset" # DataLoader / QueueDataset / RecDataset
pipe_command: "python queuedataset_reader.py" # QueueDataset 模式下的数据pipe命令
dataset_debug: False # QueueDataset 模式下 Profiler 开关
train_data_dir: "../../../datasets/movielens_pinterest_NCF/fl_data/fl_train_data"
train_reader_path: "movielens_reader" # importlib format
train_batch_size: 512
model_save_path: "output_model_ncf"
use_gpu: False
epochs: 2
print_interval: 50
test_data_dir: "../../../datasets/movielens_pinterest_NCF/fl_data/fl_test_data"
infer_reader_path: "movielens_reader" # importlib format
infer_batch_size: 1
infer_load_path: "output_model_ncf"
infer_start_epoch: 2
infer_end_epoch: 3
need_dump: True
dump_fields_path: "/home/wangbin/the_one_ps/ziyoujiyi_PaddleRec/PaddleRec/models/recall/ncf"
dump_fields: ['item_input', 'user_input']
dump_param: []
local_sparse: ['embedding_0.w_0']
remote_sparse: ['embedding_1.w_0']
hyper_parameters:
optimizer:
class: adam
learning_rate: 0.001
num_users: 6040
num_items: 3706
mf_dim: 8
mode: "NCF_MLP" # optional: NCF_NeuMF, NCF_GMF, NCF_MLP
fc_layers: [64, 32, 16, 8]