From 5713cd973048baead4ffd4af5f2de4c56c1b399c Mon Sep 17 00:00:00 2001 From: Kevin Phan <98072684+ph-kev@users.noreply.github.com> Date: Wed, 4 Dec 2024 13:52:17 -0800 Subject: [PATCH] Use new interpolation routine in Var This commit removes Interpolations.jl from Var.jl. To do this, the function `_make_interpolant` was removed. Three new functions are added which are `_check_interpolant`, `interpolate_point`, and `interpolate_points`, where the latter two functions replace the functionality of `_make_interpolant`. Furthermore, the function `_find_extp_bound_cond` was refactored to `_find_extp_bound_conds` which find multiple extrapolation condtions using `_find_extp_bound_cond` which is refactored to find the extrapolation condition for a single point. All functions that use an interpolant are updated to use the new interpolation routine. One test worth mentioning is the test for computing the bias in Atmos, which changes to check approximately close to 0.0, due to floating point errors. --- NEWS.md | 5 ++ src/Var.jl | 139 +++++++++++++++++++++++++++++---------------- test/test_Atmos.jl | 2 +- test/test_Var.jl | 53 ++++++++++------- 4 files changed, 127 insertions(+), 72 deletions(-) diff --git a/NEWS.md b/NEWS.md index 2f1f350b..d134bb67 100644 --- a/NEWS.md +++ b/NEWS.md @@ -12,6 +12,11 @@ However, functions like `resampled_as` and interpolating using a `OutputVar` wil as an interpolant must be generated. This means repeated calls to these functions will be slower compared to the previous versions of ClimaAnalysis. +## Add interpolation routine +With this release, any functions that rely on interpolation now uses the interpolation +routine written for ClimaAnalysis instead of Interpolations.jl. This substantially reduce +the number and size of allocations when using these functions. + v0.5.12 ------- diff --git a/src/Var.jl b/src/Var.jl index bf10c17f..2d7aa9af 100644 --- a/src/Var.jl +++ b/src/Var.jl @@ -87,53 +87,96 @@ struct OutputVar{T <: AbstractArray, A <: AbstractArray, B, C} end """ - _make_interpolant(dims, data) + _check_interpolant(dims, data) -Make a linear interpolant from `dims`, a dictionary mapping dimension name to array and -`data`, an array containing data. Used in constructing a `OutputVar`. +Check if it is possible to create an interpolant. -If any element of the arrays in `dims` is a Dates.DateTime, then no interpolant is returned. -Interpolations.jl does not support interpolating on dates. If the longitudes span the entire -range and are equispaced, then a periodic boundary condition is added for the longitude -dimension. If the latitudes span the entire range and are equispaced, then a flat boundary -condition is added for the latitude dimension. In all other cases, an error is thrown when -extrapolating outside of `dim_array`. +If any element of the arrays in `dims` is a Dates.DateTime, then an error is returned. If + the longitudes span the entire range and are equispaced, then a periodic boundary condition +is added for the longitude dimension. If the latitudes span the entire range and are +equispaced, then a flat boundary condition is added for the latitude dimension. In all other +cases, an error is thrown when extrapolating outside of `dim_array`. """ -function _make_interpolant(dims, data) - # If any element is DateTime, then return nothing for the interpolant because - # Interpolations.jl do not support DateTimes +function _check_interpolant(dims) + # If any element is DateTime, then return an error + # ClimaAnalysis does not support interpolating on dates for dim_array in values(dims) - eltype(dim_array) <: Dates.DateTime && return nothing + eltype(dim_array) <: Dates.DateTime && return error( + "An interpolant cannot be made because interpolating on dates is not possible", + ) end # We can only create interpolants when we have 1D dimensions if isempty(dims) || any(d -> ndims(d) != 1 || length(d) == 1, values(dims)) - return nothing + return error( + "An interpolant cannot be made because the dimensions are not 1D", + ) end # Dimensions are all 1D, check that the knots are in increasing order (as required by - # Interpolations.jl) + # our interpolation routine) for (dim_name, dim_array) in dims if !issorted(dim_array) - @warn "Dimension $dim_name is not in increasing order. An interpolant will not be created. See Var.reverse_dim if the dimension is in decreasing order" - return nothing + return error( + "Dimension $dim_name is not in increasing order. An interpolant will not be created. See Var.reverse_dim if the dimension is in decreasing order", + ) end end + return nothing +end - # Find boundary conditions for extrapolation - extp_bound_conds = ( - _find_extp_bound_cond(dim_name, dim_array) for - (dim_name, dim_array) in dims - ) +""" + interpolate_point(point, dims, data) + +Linearly interpolate the point using `dims` and `data`. - dims_tuple = tuple(values(dims)...) - extp_bound_conds_tuple = tuple(extp_bound_conds...) - return Intp.extrapolate( - Intp.interpolate(dims_tuple, data, Intp.Gridded(Intp.Linear())), - extp_bound_conds_tuple, +Extrapolation conditions are determined by `_find_extp_bound_conds`. +""" +function interpolate_point(point, dims, data) + _check_interpolant(dims) + extp_bound_conds = _find_extp_bound_conds(dims) + return Numerics.linear_interpolate( + point, + Tuple(values(dims)), + data, + extp_bound_conds, ) end +""" + interpolate_points(points, dims, data) + +Linearly interpolate the points using `dims` and `data`. + +Extrapolation conditions are determined by `_find_extp_bound_conds`. +""" +function interpolate_points(points, dims, data) + _check_interpolant(dims) + extp_bound_conds = _find_extp_bound_conds(dims) + dim_arrays_tuple = Tuple(values(dims)) + interpolated_arr = [ + Numerics.linear_interpolate( + point, + dim_arrays_tuple, + data, + extp_bound_conds, + ) for point in points + ] + return interpolated_arr +end + +""" + _find_extp_bound_conds(dims) + +Find the appropriate boundary conditions given the `dims` of an `OutputVar`. +""" +function _find_extp_bound_conds(dims) + return ( + _find_extp_bound_cond(dim_name, dim_array) for + (dim_name, dim_array) in dims + ) |> Tuple +end + """ _find_extp_bound_cond(dim_name, dim_array) @@ -151,17 +194,17 @@ function _find_extp_bound_cond(dim_name, dim_array) conventional_dim_name(dim_name) == "longitude" && _isequispaced(dim_array) && isapprox(dim_size + dsize, 360.0) - ) && return Intp.Periodic() + ) && return Numerics.extp_cond_periodic() ( conventional_dim_name(dim_name) == "longitude" && (dim_array[end] - dim_array[begin]) ≈ 360.0 - ) && return Intp.Periodic() + ) && return Numerics.extp_cond_periodic() ( conventional_dim_name(dim_name) == "latitude" && _isequispaced(dim_array) && isapprox(dim_size + dsize, 180.0) - ) && return Intp.Flat() - return Intp.Throw() + ) && return Numerics.extp_cond_flat() + return Numerics.extp_cond_throw() end function OutputVar(attribs, dims, dim_attribs, data) @@ -981,11 +1024,11 @@ multilinear interpolation. Extrapolation is now allowed and will throw a `BoundsError` in most cases. If any element of the arrays of the dimensions is a Dates.DateTime, then interpolation is -not possible. Interpolations.jl do not support making interpolations for dates. If the -longitudes span the entire range and are equispaced, then a periodic boundary condition is -added for the longitude dimension. If the latitudes span the entire range and are -equispaced, then a flat boundary condition is added for the latitude dimension. In all other -cases, an error is thrown when extrapolating outside of the array of the dimension. +not possible. If the longitudes span the entire range and are equispaced, then a periodic +boundary condition is added for the longitude dimension. If the latitudes span the entire +range and are equispaced, then a flat boundary condition is added for the latitude +dimension. In all other cases, an error is thrown when extrapolating outside of the array of +the dimension. Example ======= @@ -1005,8 +1048,7 @@ julia> var2d = ClimaAnalysis.OutputVar(Dict("time" => time, "z" => z), data); va ``` """ function (x::OutputVar)(target_coord) - itp = _make_interpolant(x.dims, x.data) - return itp(target_coord...) + return interpolate_point(target_coord, x.dims, x.data) end """ @@ -1143,9 +1185,8 @@ function resampled_as(src_var::OutputVar, dest_var::OutputVar) src_var = reordered_as(src_var, dest_var) _check_dims_consistent(src_var, dest_var) - itp = _make_interpolant(src_var.dims, src_var.data) - src_resampled_data = - [itp(pt...) for pt in Base.product(values(dest_var.dims)...)] + coords = Base.product(values(dest_var.dims)...) + src_resampled_data = interpolate_points(coords, src_var.dims, src_var.data) # Construct new OutputVar to return src_var_ret_dims = empty(src_var.dims) @@ -1756,14 +1797,14 @@ function make_lonlat_mask( # Resample so that the mask match up with the grid of var # Round because linear resampling is done and we want the mask to be only ones and zeros - intp = _make_interpolant(mask_var.dims, mask_var.data) - mask_arr = - [ - intp(pt...) for pt in Base.product( - input_var.dims[longitude_name(input_var)], - input_var.dims[latitude_name(input_var)], - ) - ] .|> round + coords = [ + pt for pt in Base.product( + input_var.dims[longitude_name(input_var)], + input_var.dims[latitude_name(input_var)], + ) + ] + mask_arr = interpolate_points(coords, mask_var.dims, mask_var.data) + mask_arr .= mask_arr .|> round # Reshape data for broadcasting lon_idx = input_var.dim2index[longitude_name(input_var)] diff --git a/test/test_Atmos.jl b/test/test_Atmos.jl index ed0fb91a..f7d1151a 100644 --- a/test/test_Atmos.jl +++ b/test/test_Atmos.jl @@ -222,7 +222,7 @@ end sim_pressure = pressure3D, obs_pressure = pressure3D, ) - @test global_rmse_pfull == 0.0 + @test isapprox(global_rmse_pfull, 0.0, atol = 1e-11) # Test if the computation is the same as a manual computation zero_data = zeros(size(data)) diff --git a/test/test_Var.jl b/test/test_Var.jl index cd457e3b..3e000f9d 100644 --- a/test/test_Var.jl +++ b/test/test_Var.jl @@ -92,35 +92,43 @@ end lon = 0.5:1.0:359.5 |> collect lat = -89.5:1.0:89.5 |> collect time = 1.0:100 |> collect - data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test intp.et == (Intp.Periodic(), Intp.Flat(), Intp.Throw()) + extp_conds = ClimaAnalysis.Var._find_extp_bound_conds(dims) + @test extp_conds == ( + ClimaAnalysis.Numerics.extp_cond_periodic(), + ClimaAnalysis.Numerics.extp_cond_flat(), + ClimaAnalysis.Numerics.extp_cond_throw(), + ) # Not equispaced for lon and lat lon = 0.5:1.0:359.5 |> collect |> x -> push!(x, 42.0) |> sort lat = -89.5:1.0:89.5 |> collect |> x -> push!(x, 42.0) |> sort time = 1.0:100 |> collect - data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test intp.et == (Intp.Throw(), Intp.Throw(), Intp.Throw()) + extp_conds = ClimaAnalysis.Var._find_extp_bound_conds(dims) + @test extp_conds == ( + ClimaAnalysis.Numerics.extp_cond_throw(), + ClimaAnalysis.Numerics.extp_cond_throw(), + ClimaAnalysis.Numerics.extp_cond_throw(), + ) # Does not span entire range for and lat lon = 0.5:1.0:350.5 |> collect lat = -89.5:1.0:80.5 |> collect time = 1.0:100 |> collect - data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test intp.et == (Intp.Throw(), Intp.Throw(), Intp.Throw()) + extp_conds = ClimaAnalysis.Var._find_extp_bound_conds(dims) + @test extp_conds == ( + ClimaAnalysis.Numerics.extp_cond_throw(), + ClimaAnalysis.Numerics.extp_cond_throw(), + ClimaAnalysis.Numerics.extp_cond_throw(), + ) # Lon is exactly 360 degrees lon = 0.0:1.0:360.0 |> collect - data = ones(length(lon)) dims = OrderedDict(["lon" => lon]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test intp.et == (Intp.Periodic(),) + extp_conds = ClimaAnalysis.Var._find_extp_bound_conds(dims) + @test extp_conds == (ClimaAnalysis.Numerics.extp_cond_periodic(),) # Dates for the time dimension lon = 0.5:1.0:359.5 |> collect @@ -130,17 +138,18 @@ end Dates.DateTime(2020, 3, 1, 1, 2), Dates.DateTime(2020, 3, 1, 1, 3), ] - data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test isnothing(intp) + @test_throws ErrorException ClimaAnalysis.Var._check_interpolant(dims) # 2D dimensions arb_dim = reshape(collect(range(-89.5, 89.5, 16)), (4, 4)) - data = collect(1:16) dims = OrderedDict(["arb_dim" => arb_dim]) - intp = ClimaAnalysis.Var._make_interpolant(dims, data) - @test isnothing(intp) + @test_throws ErrorException ClimaAnalysis.Var._check_interpolant(dims) + + # Dimensions are not in increasing order + lon = [0.5, 42.0, 1.5, 110.0] + dims = OrderedDict(["lon" => lon]) + @test_throws ErrorException ClimaAnalysis.Var._check_interpolant(dims) end @testset "empty" begin @@ -497,6 +506,7 @@ end @test ClimaAnalysis.pressure_name(pressure_var) == "pfull" end +# FIX THIS @testset "Interpolation" begin # 1D interpolation with linear data, should yield correct results long = -175.0:175.0 |> collect @@ -507,7 +517,7 @@ end @test longvar.([10.5, 20.5]) == [10.5, 20.5] # Test error for data outside of range - @test_throws BoundsError longvar(200.0) + @test_throws ErrorException longvar(200.0) # 2D interpolation with linear data, should yield correct results time = 100.0:110.0 |> collect @@ -812,7 +822,7 @@ end @test src_var.data == ClimaAnalysis.resampled_as(src_var, src_var).data resampled_var = ClimaAnalysis.resampled_as(src_var, dest_var) @test resampled_var.data == reshape(1.0:(181 * 91), (181, 91))[1:91, 1:46] - @test_throws BoundsError ClimaAnalysis.resampled_as(dest_var, src_var) + @test_throws ErrorException ClimaAnalysis.resampled_as(dest_var, src_var) # BoundsError check src_long = 90.0:120.0 |> collect @@ -837,7 +847,7 @@ end dest_data, ) - @test_throws BoundsError ClimaAnalysis.resampled_as(src_var, dest_var) + @test_throws ErrorException ClimaAnalysis.resampled_as(src_var, dest_var) end @testset "Units" begin @@ -1889,7 +1899,6 @@ end attribs = Dict("long_name" => "hi") dim_attribs = OrderedDict(["lon" => Dict("units" => "deg")]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) - @test isnothing(ClimaAnalysis.Var._make_interpolant(dims, data)) reverse_var = ClimaAnalysis.reverse_dim(var, "lat") @test reverse(lat) == reverse_var.dims["lat"]