-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
674 lines (561 loc) · 29.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import argparse
import dataclasses
import json
import os
from local_config import PATH_TO_MIMIC_CXR, VIS_ROOT, JAVA_HOME, JAVA_PATH
# set java path
os.environ["JAVA_HOME"] = JAVA_HOME
os.environ["PATH"] = JAVA_PATH + os.environ["PATH"]
from enum import auto, Enum
from pathlib import Path
import random
from typing import List, Any
import numpy as np
import pandas as pd
import torch
from peft import PeftModelForCausalLM
from torch import nn
from torch.backends import cudnn
from downstream_tasks.automated_correction import get_correction_prompts
from downstream_tasks.chexpert_classification_downstream import get_chexpert_prompts_bin, get_chexpert_prompts_all
from model.lavis.data.ReportDataset import MIMICEvalCap
from model.lavis.models.blip2_models.modeling_llama_imgemb import LlamaForCausalLM
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score, precision_score, recall_score
from torch.utils.data import Dataset, DataLoader, Sampler
from tqdm import tqdm
from transformers import LlamaTokenizer
from data.create_data import MyReportProcessor
from chexbert.run_chexbert import run_chexbert_labeler
torch.multiprocessing.set_sharing_strategy('file_system')
class MIMIC_Text_Dataset(Dataset):
def __init__(self, split, truncate=None, prompt_type="basic"):
super().__init__()
# load csv file
self.split = pd.read_csv(f'{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0/mimic-cxr-2.0.0-split.csv')
self.reports = pd.read_csv('mimic-cxr/reports_processed/mimic_cxr_sectioned.csv')
# drop reports where findings are nan
self.reports = self.reports.dropna(subset=['findings'])
self.chexpert_cols = ["No Finding", "Enlarged Cardiomediastinum",
"Cardiomegaly", "Lung Opacity",
"Lung Lesion", "Edema",
"Consolidation", "Pneumonia",
"Atelectasis", "Pneumothorax",
"Pleural Effusion", "Pleural Other",
"Fracture", "Support Devices"]
self.img_ids = {img_id: i for i, img_id in enumerate(self.reports['dicom_id'])}
self.chexpert = pd.read_csv(f'data/data_files/finding_chexbert_labels.csv')
if split == 'validate':
self.pred_chexpert_labels = json.load(open('findings_classifier/predictions/structured_preds_chexpert_log_weighting_val_macro.json', 'r'))
elif split == 'test':
self.pred_chexpert_labels = json.load(open('findings_classifier/predictions/structured_preds_chexpert_log_weighting_test_macro.json', 'r'))
self.vis_root = VIS_ROOT
self.prompt_type = prompt_type
self.split_ids = set(self.split.loc[self.split['split'] == split]['dicom_id'])
self.train_ids = set(self.split.loc[self.split['split'] == 'train']['dicom_id'])
# get all dicom_ids where "split" is split
self.annotation = self.reports.loc[self.reports['dicom_id'].isin(self.split_ids)]
if truncate is not None:
self.annotation = self.annotation[:truncate]
self.annotation['findings'] = self.annotation['findings'].apply(lambda x: x.replace('\n', ''))
# Extract patient_id from Img_Folder (3rd part) and study_id is the name of the notefile without the pre-pending 's'
self.annotation['subject_id'] = self.annotation['Img_Folder'].apply(lambda x: int(x.split('/')[2].lstrip('p')))
self.annotation['study_id'] = self.annotation['Note_file'].apply(lambda x: int(x.lstrip('s').rstrip('.txt')))
# Merge chexpert labels with annotation dataframe
self.annotation = pd.merge(self.annotation, self.chexpert, how='left', left_on=['dicom_id'],
right_on=['dicom_id'])
# read prompt from json
prompts = json.loads(Path("vicuna_prompts.json").read_text(encoding="UTF-8"))
self.text_processor = MyReportProcessor(
prompt=prompts[prompt_type], max_words=1000,
prompt_neg=prompts[prompt_type.replace("matching_examples", "neg_matching_examples")])
def create_structured_chexpert_findings(self, ann):
pred_chexpert_labels = self.pred_chexpert_labels[str(ann['dicom_id'])]
no_labels = len(pred_chexpert_labels) == 0
counter = 0
no_findings = "No Finding" in pred_chexpert_labels
if no_findings:
counter += 1
supp_devices = "Support Devices" in pred_chexpert_labels
if supp_devices:
counter += 1
# We check if there are any findings except no findings and support devices
if len(pred_chexpert_labels) > counter and no_findings:
pred_chexpert_labels.remove("No Finding")
no_findings = False
finding_string = ', '.join(pred_chexpert_labels).lower().strip()
return no_labels, finding_string
def __getitem__(self, index):
ann = self.annotation.iloc[index]
caption = ann['findings'].strip()
dicom_id = ann["dicom_id"]
no_labels, finding_string = self.create_structured_chexpert_findings(ann)
input_text = self.text_processor(finding_string, no_labels=no_labels)
# template for vicuna v1.3
conv = Conversation(
system="A chat between a curious user and an artificial intelligence assistant acting as an experienced radiologist. "
"The assistant gives professional, detailed, and polite answers to the user's questions.",
roles=["USER", "ASSISTANT"],
messages=[],
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv.append_message(conv.roles[0], input_text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
return {
"text_input": prompt,
"text_target": caption,
"chexpert_labels": ann[self.chexpert_cols].astype(float).values,
"dicom": dicom_id,
"img_path": ann["Img_Folder"] + "/" + ann["Img_Filename"]
}
def __len__(self):
return len(self.annotation)
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
# Used for gradio server
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system
for role, message in self.messages:
if message:
ret += self.sep + " " + role + ": " + message
else:
ret += self.sep + " " + role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def dict(self):
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
def compute_metrics(all_preds, evaluator):
scores, _ = evaluator.evaluate(all_preds)
b1, b2, b3, b4, meteor, rouge = scores["Bleu_1"], scores["Bleu_2"], scores["Bleu_3"], scores["Bleu_4"], scores["METEOR"], scores["ROUGE_L"]
return b1, b2, b3, b4, meteor, rouge
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def extract_report(pred):
pred = pred.split("ASSISTANT:")[1]
if 'report:' in pred:
return pred.split("report:")[1]
elif 'Report:' in pred:
return pred.split("Report:")[1]
elif 'REPORT:' in pred:
return pred.split("REPORT:")[1]
else:
return pred
class SubsetSampler(Sampler):
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
def stratified_sample(df, simulated_epochs=1):
# We want to reduce the number of examples with no finding to 1/14th of the dataset. We achieve this easily by first seperating the dataset into 2 groups: no finding and finding.
# either no finding, or nothing is considered a no finding
no_findings_indices = df.annotation[((df.annotation['No Finding'] == 1) | ((df.annotation[df.chexpert_cols] == 1).sum(1) == 0) == 1)].index
finding_indices = df.annotation.index.difference(no_findings_indices)
no_findings_indices = no_findings_indices.tolist()
finding_indices = finding_indices.tolist()
# we are striving to lose as little no_finding data as possible. So instead of just reducing the number of no_finding examples, we will increase the number of finding examples. Just clone and extend dataset
finding_indices = finding_indices * simulated_epochs
# subsample the no finding examples to be 1/14th of the new dataset
new_dataset_size = len(finding_indices) * 14 / 13
new_no_finding_count = int(new_dataset_size / 14)
# merge considering the new dataset size
all_indices = finding_indices + no_findings_indices[:new_no_finding_count]
return all_indices
if __name__ == '__main__':
# read command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="examples",
help="prompt type") # options=["basic", "advanced", "gen_examples", "matching_examples"]
parser.add_argument("--lora_model", type=str, default=None, help="lora model name")
parser.add_argument("--num_workers", type=int, default=8, help="number of workers for dataloader")
parser.add_argument("--use_embs", action="store_true", help="use img embs as input", default=False)
parser.add_argument("--do_sample", action="store_true", help="", default=False)
parser.add_argument("--temperature", type=float, default=1.0, help="")
parser.add_argument("--num_beams", type=int, default=1, help="beam size for generation")
parser.add_argument("--do_corr", action="store_true", help="", default=False)
parser.add_argument("--do_cp_bin_qa", action="store_true", help="", default=False)
parser.add_argument("--do_cp_all_qa", action="store_true", help="", default=False)
parser.add_argument("--strat_eval", action="store_true", help="", default=False)
args = parser.parse_args()
prompt_type = args.prompt
# set all seeds to make code deterministic
setup_seeds(42)
val_dataset = MIMIC_Text_Dataset(split="test", truncate=None, prompt_type=prompt_type)
batchsize = 12 # 12
if args.strat_eval:
stratified_indices = stratified_sample(val_dataset, simulated_epochs=1)
sampler = SubsetSampler(stratified_indices)
data_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=args.num_workers, sampler=sampler)
else:
data_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=args.num_workers)
if "13b" in args.lora_model:
vicuna_tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-13b-v1.3", use_fast=False, truncation_side="right", padding_side="left")
lang_model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-13b-v1.3", torch_dtype=torch.float16, device_map='auto')
else:
vicuna_tokenizer = LlamaTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3", use_fast=False, truncation_side="right", padding_side="left")
lang_model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", torch_dtype=torch.float16, device_map='auto')
if args.use_embs:
lang_model.base_model.img_proj_layer = nn.Linear(768, lang_model.base_model.config.hidden_size).to(lang_model.base_model.device)
vicuna_tokenizer.add_special_tokens({"additional_special_tokens": ["<IMG>"]})
lang_model.resize_token_embeddings(len(vicuna_tokenizer))
lang_model = lang_model.cuda()
if args.lora_model is not None:
lang_model = PeftModelForCausalLM.from_pretrained(lang_model, f"{args.lora_model}", torch_dtype=torch.float16, use_ram_optimized_load=False).half()
lang_model.eval()
vicuna_tokenizer.pad_token = vicuna_tokenizer.unk_token # unk token is ignored in attention mask
evaluator = MIMICEvalCap(val_dataset.annotation, val_dataset.img_ids)
'''Report Generation'''
exp_name = f"{'_'.join(args.lora_model.split('/'))}"
# exp_name = f"debug"
if args.do_corr:
exp_name += "_before_corr"
if args.do_cp_bin_qa:
exp_name += "_before_cp_bin_qa"
if args.do_cp_all_qa:
exp_name += "_before_cp_all_qa"
text_targets = []
text_inputs = []
all_preds = []
all_chexpert_labels = []
dicom_ids = []
eval_preds = []
preds_history = []
finding_strings = []
all_study_ids = []
for _, batch in tqdm(enumerate(data_loader)):
text_input = batch["text_input"]
text_target = batch["text_target"]
chexpert_labels = batch["chexpert_labels"]
dicom_id = batch["dicom"]
all_chexpert_labels.extend(chexpert_labels.numpy())
inputs = vicuna_tokenizer.batch_encode_plus(text_input, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].cuda()
generation_output = lang_model.generate(
input_ids=input_ids,
dicom=dicom_id if args.use_embs else None,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=300,
# num_beams=args.num_beams
# do_sample=args.do_sample,
# temperature=args.temperature,
)
if args.do_corr or args.do_cp_bin_qa or args.do_cp_all_qa: # downstream tasks also need img tokens
preds = vicuna_tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=False)
# The special token you want to keep
special_tokens_to_keep = ["<IMG>"]
# Get all special tokens and remove the one you want to keep
all_special_tokens = vicuna_tokenizer.all_special_tokens
all_special_tokens = [token for token in all_special_tokens if token not in special_tokens_to_keep]
# Replace all other special tokens
for idx, output in enumerate(preds):
for token in all_special_tokens:
output = output.replace(token, "")
preds[idx] = output
else:
preds = vicuna_tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
text_targets.extend(text_target)
text_inputs.extend(text_input)
dicom_ids.extend(dicom_id)
all_preds.extend([p.split("ASSISTANT:")[1] for idx, p in enumerate(preds)])
preds_history.extend(preds)
# save predictions
pred_dir = Path("chexbert").absolute() / "outputs" / "predictions"
with open(pred_dir / "predictions_{}.csv".format(exp_name), "w") as f:
for i in range(len(all_preds)):
f.write('"' + all_preds[i].replace('"', '') + '"\n')
eval_preds = [{"image": None, "caption": pred, "image_id": val_dataset.img_ids[dicom]} for pred, dicom in zip(all_preds, dicom_ids)]
bleu1_score, bleu2_score, bleu3_score, bleu4_score, meteor_score, rouge_score = compute_metrics(eval_preds, evaluator)
# chexpert score
# save results to txt file
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
# run chexpert labeler
torch.cuda.empty_cache()
run_chexbert_labeler(reports_path=pred_dir / "predictions_{}.csv".format(exp_name), output_path=pred_dir / "labels_{}.csv".format(exp_name))
# read chexpert labels from file
cp_pred = pd.read_csv(pred_dir / "labels_{}.csv".format(exp_name))
pred_labels = np.array(cp_pred[val_dataset.chexpert_cols].values)
all_chexpert_labels = np.array(all_chexpert_labels)
# Map present (1) cases to 1 and absent (0, was NaN) and uncertain (-1) cases to 0
all_chexpert_labels = np.nan_to_num(all_chexpert_labels, nan=0)
pred_labels = np.nan_to_num(pred_labels, nan=0)
all_chexpert_labels[all_chexpert_labels == -1] = 0
pred_labels[pred_labels == -1] = 0
# Calculate F1 score
mean_f1 = f1_score(all_chexpert_labels, pred_labels, average="macro")
mean_prec = precision_score(all_chexpert_labels, pred_labels, average="macro")
mean_rec = recall_score(all_chexpert_labels, pred_labels, average="macro")
sample_f1 = f1_score(all_chexpert_labels, pred_labels, average="samples")
print("Macro F1 Score:", mean_f1)
print("Sample F1 Score:", sample_f1)
# Calculate Accuracy
acc_scores = []
for i in range(all_chexpert_labels.shape[1]):
acc = accuracy_score(all_chexpert_labels[:, i], pred_labels[:, i])
acc_scores.append(acc)
mean_acc = np.mean(acc_scores)
# save results to file
with open(f'vicuna_results/results_{exp_name}.txt', 'w') as f:
f.write(f"Prompt: {text_input[0]}\n")
f.write(f"Avg Bleu 1: {bleu1_score}\n")
f.write(f"Avg Bleu 2: {bleu2_score}\n")
f.write(f"Avg Bleu 3: {bleu3_score}\n")
f.write(f"Avg Bleu 4: {bleu4_score}\n")
f.write(f"Avg Meteor: {meteor_score}\n")
f.write(f"Avg Rouge: {rouge_score}\n")
f.write(f"Mean Chexpert F1: {mean_f1}\n")
f.write(f"Mean Chexpert Precision: {mean_prec}\n")
f.write(f"Mean Chexpert Recall: {mean_rec}\n")
f.write(f"Sample Chexpert F1: {sample_f1}\n")
f.write(f"Mean Chexpert Accuracy: {mean_acc}\n")
'''
Automatic Prompt Correction
'''
if args.do_corr:
batchsize = 1
data_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=args.num_workers)
correction_prompts = get_correction_prompts(preds_history, val_dataset.chexpert_cols, pred_labels, all_chexpert_labels)
# rerun vicuna with correction prompts
text_targets_corr = []
text_inputs_corr = []
all_preds_corr = []
all_chexpert_labels_corr = []
dicom_ids_corr = []
eval_preds_corr = []
for idx, batch in tqdm(enumerate(data_loader)):
# use the corrected prompts
text_input = [correction_prompts[i] for i in range(batchsize * idx, min(batchsize * (idx + 1), len(correction_prompts)))]
text_target = batch["text_target"]
chexpert_labels = batch["chexpert_labels"]
dicom_id = batch["dicom"]
all_chexpert_labels_corr.extend(chexpert_labels.numpy())
inputs = vicuna_tokenizer.batch_encode_plus(text_input, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].cuda()
generation_output = lang_model.generate(
input_ids=input_ids,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
dicom=dicom_id if args.use_embs else None,
num_beams=args.num_beams,
)
preds = vicuna_tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
text_targets_corr.extend(text_target)
text_inputs_corr.extend(text_input)
dicom_ids_corr.extend(dicom_id)
all_preds_corr.extend([p.split("ASSISTANT:")[-1].strip() if "KEEP_OLD" not in text_input[idx] else
text_input[idx].split("</s>USER: KEEP_OLD")[0].split("ASSISTANT:")[-1].strip() for idx, p in enumerate(preds)])
# save predictions
pred_dir = Path("chexbert").absolute() / "outputs" / "predictions"
with open(pred_dir / "predictions_{}_after_corrections.csv".format(exp_name), "w") as f:
for i in range(len(all_preds_corr)):
f.write('"' + all_preds_corr[i].replace('"', '') + '"\n')
eval_preds_corr = [{"image": None, "caption": pred, "image_id": val_dataset.img_ids[dicom]} for pred, dicom in
zip(all_preds_corr, dicom_ids_corr)]
bleu1_score, bleu2_score, bleu3_score, bleu4_score, meteor_score, rouge_score = compute_metrics(eval_preds_corr, evaluator)
# chexpert score
# save results to txt file
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
# run chexpert labeler
# del lang_model
torch.cuda.empty_cache()
run_chexbert_labeler(reports_path=pred_dir / "predictions_{}_after_corrections.csv".format(exp_name),
output_path=pred_dir / "labels_{}_after_corrections.csv".format(exp_name))
# read chexpert labels from file
cp_pred = pd.read_csv(pred_dir / "labels_{}_after_corrections.csv".format(exp_name))
pred_labels = np.array(cp_pred[val_dataset.chexpert_cols].values)
all_chexpert_labels = np.array(all_chexpert_labels_corr)
# Map present (1) cases to 1 and absent (0, was NaN) and uncertain (-1) cases to 0
all_chexpert_labels = np.nan_to_num(all_chexpert_labels, nan=0)
pred_labels = np.nan_to_num(pred_labels, nan=0)
all_chexpert_labels[all_chexpert_labels == -1] = 0
pred_labels[pred_labels == -1] = 0
# Calculate F1 score
mean_f1 = f1_score(all_chexpert_labels, pred_labels, average="macro")
mean_prec = precision_score(all_chexpert_labels, pred_labels, average="macro")
mean_rec = recall_score(all_chexpert_labels, pred_labels, average="macro")
sample_f1 = f1_score(all_chexpert_labels, pred_labels, average="samples")
print("Macro F1 Score:", mean_f1)
print("Sample F1 Score:", sample_f1)
# Calculate Accuracy
acc_scores = []
for i in range(all_chexpert_labels.shape[1]):
acc = accuracy_score(all_chexpert_labels[:, i], pred_labels[:, i])
acc_scores.append(acc)
mean_acc = np.mean(acc_scores)
# print(acc_scores)
print("Mean Accuracy:", mean_acc)
# save results to file
with open(f'vicuna_results/results_{exp_name}_after_corrections.txt', 'w') as f:
f.write(f"Prompt: {text_input[0]}\n")
f.write(f"Avg Bleu 1: {bleu1_score}\n")
f.write(f"Avg Bleu 2: {bleu2_score}\n")
f.write(f"Avg Bleu 3: {bleu3_score}\n")
f.write(f"Avg Bleu 4: {bleu4_score}\n")
f.write(f"Avg Meteor: {meteor_score}\n")
f.write(f"Avg Rouge: {rouge_score}\n")
f.write(f"Mean Chexpert F1: {mean_f1}\n")
f.write(f"Mean Chexpert Precision: {mean_prec}\n")
f.write(f"Mean Chexpert Recall: {mean_rec}\n")
f.write(f"Sample Chexpert F1: {sample_f1}\n")
f.write(f"Mean Chexpert Accuracy: {mean_acc}\n")
'''
CheXpert Label Prediction
'''
if args.do_cp_bin_qa:
chexpert_prompts = get_chexpert_prompts_bin(preds_history, val_dataset.chexpert_cols)
batchsize = 1
data_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=args.num_workers)
chexpert_preds = []
for idx, batch in tqdm(enumerate(data_loader)):
text_input = chexpert_prompts[idx]
chexpert_labels = batch["chexpert_labels"]
dicom_id = batch["dicom"]
inputs = vicuna_tokenizer.batch_encode_plus(text_input, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].cuda()
generation_output = lang_model.generate(
input_ids=input_ids,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=10,
dicom=dicom_id if args.use_embs else None,
)
preds = vicuna_tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
chexpert_preds.append([1 if "yes" in p.split("ASSISTANT:")[-1].lower() else 0 for idx, p in enumerate(preds)])
relevant_cols = [c for c in val_dataset.chexpert_cols if c not in ["No Finding"]]
relevant_cols_idx = [val_dataset.chexpert_cols.index(c) for c in relevant_cols]
no_findings_idx = val_dataset.chexpert_cols.index("No Finding")
any_findings = np.array(chexpert_preds)[:, relevant_cols_idx].sum(axis=1)
any_findings[any_findings > 0] = 1
# invert
no_findings = 1 - any_findings
# compare to ground truth
chexpert_preds = np.array(chexpert_preds)
chexpert_preds[:, no_findings_idx] = no_findings
chexpert_preds = np.nan_to_num(chexpert_preds, nan=0)
all_chexpert_labels[all_chexpert_labels == -1] = 0
# Calculate F1 score
mean_f1 = f1_score(all_chexpert_labels, chexpert_preds, average="macro")
mean_prec = precision_score(all_chexpert_labels, chexpert_preds, average="macro")
mean_rec = recall_score(all_chexpert_labels, chexpert_preds, average="macro")
try:
auc = roc_auc_score(all_chexpert_labels, chexpert_preds, average="macro")
except ValueError:
auc = -1
acc = accuracy_score(all_chexpert_labels.flatten(), chexpert_preds.flatten())
print("Macro F1 Score:", mean_f1)
print("Macro AUC Score:", auc)
print("Macro Precision Score:", mean_prec)
print("Macro Recall Score:", mean_rec)
print("Accuracy Score:", acc)
# save results to file
with open(f'vicuna_results/results_{exp_name}_after_cp_bin_qa.txt', 'w') as f:
f.write(f"Prompt: {text_input[0]}\n")
f.write(f"Mean Chexpert F1: {mean_f1}\n")
f.write(f"Mean Chexpert Precision: {mean_prec}\n")
f.write(f"Mean Chexpert Recall: {mean_rec}\n")
f.write(f"Mean Chexpert Accuracy: {acc}\n")
f.write(f"Mean Chexpert AUC: {auc}\n")
if args.do_cp_all_qa:
chexpert_prompts = get_chexpert_prompts_all(preds_history, val_dataset.chexpert_cols)
batchsize = 5
data_loader = DataLoader(val_dataset, batch_size=batchsize, shuffle=False, num_workers=args.num_workers)
chexpert_preds = []
for idx, batch in tqdm(enumerate(data_loader)):
text_input = [chexpert_prompts[i] for i in range(batchsize * idx, min(batchsize * (idx + 1), len(chexpert_prompts)))]
text_target = batch["text_target"]
chexpert_labels = batch["chexpert_labels"]
dicom_id = batch["dicom"]
inputs = vicuna_tokenizer.batch_encode_plus(text_input, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].cuda()
generation_output = lang_model.generate(
input_ids=input_ids,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=30,
dicom=dicom_id if args.use_embs else None,
num_beams=args.num_beams
)
preds = vicuna_tokenizer.batch_decode(generation_output.sequences, skip_special_tokens=True)
preds = [p.split("ASSISTANT:")[-1].lower() for p in preds]
# iterate through all chexpert labels and check if they are in finding preds
finding_preds_cleaned = []
for finding_pred in preds:
finding_pred_cleaned = []
for label in val_dataset.chexpert_cols:
if label.lower() in finding_pred:
finding_pred_cleaned.append(label.lower())
# convert to one-hot
finding_pred_cleaned = [1 if c.lower() in finding_pred_cleaned else 0 for c in val_dataset.chexpert_cols]
finding_preds_cleaned.append(finding_pred_cleaned)
chexpert_preds.extend(finding_preds_cleaned)
# compare to ground truth
chexpert_preds = np.array(chexpert_preds)
chexpert_preds = np.nan_to_num(chexpert_preds, nan=0)
all_chexpert_labels[all_chexpert_labels == -1] = 0
# Calculate F1 score
mean_f1 = f1_score(all_chexpert_labels, chexpert_preds, average="macro")
mean_prec = precision_score(all_chexpert_labels, chexpert_preds, average="macro")
mean_rec = recall_score(all_chexpert_labels, chexpert_preds, average="macro")
try:
auc = roc_auc_score(all_chexpert_labels, chexpert_preds, average="macro")
except ValueError:
auc = -1
acc = accuracy_score(all_chexpert_labels.flatten(), chexpert_preds.flatten())
print("Macro F1 Score:", mean_f1)
print("Macro AUC Score:", auc)
print("Macro Precision Score:", mean_prec)
print("Macro Recall Score:", mean_rec)
print("Accuracy Score:", acc)
with open(f'vicuna_results/results_{exp_name}_after_cp_all_qa.txt', 'w') as f:
f.write(f"Prompt: {text_input[0]}\n")
f.write(f"Mean Chexpert F1: {mean_f1}\n")
f.write(f"Mean Chexpert Precision: {mean_prec}\n")
f.write(f"Mean Chexpert Recall: {mean_rec}\n")
f.write(f"Mean Chexpert Accuracy: {acc}\n")
f.write(f"Mean Chexpert AUC: {auc}\n")