-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_passage_calibration.py
186 lines (151 loc) · 7.04 KB
/
predict_passage_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
Applies temperature scaling as post-hoc calibration method.
Usage:
predict_passage_calibration.py temperature-scaling <model-directory> <tuning-data> <test-data> <temperature-min> <temperature-max> <temperature-step> <ambifc_subset>
"""
import pathlib
from copy import copy
from os.path import join
from typing import Dict, List, Tuple, Iterable
import numpy as np
import torch.nn
from docopt import docopt
from pass_eval_ambifc import data_to_dict, evaluate_all_veracity_prediction
from ambifc.modeling.conf.labels import make_int2label, get_stance_label2int
from ambifc.modeling.conf.train_data_config import TrainDataConfig
from ambifc.modeling.dataset.samples import get_samples_for_ambifc_subset
from ambifc.modeling.evaluate.metrics import compute_distillation_calibration_score
from ambifc.modeling.prediction.make_multi_label_predictions import make_multi_label_predictions_from_distribution
from ambifc.util.fileutil import write_jsonl_to_dir, read_jsonl
DEFAULT_CALIBRATION_PREDICTION_DIRECTORY: str = join(pathlib.Path(__file__).parent.resolve(), './veracity_calibration')
DEFAULT_CALIBRATION_EVALUATION_DIRECTORY: str = join(
pathlib.Path(__file__).parent.resolve(), './veracity_calibration-evaluation'
)
DEFAULT_VERACITY_PREDICTION_DIRECTORY: str = join(pathlib.Path(__file__).parent.resolve(), './veracity_pred')
DEFAULT_DATA_DIRECTORY: str = join(pathlib.Path(__file__).parent.resolve(), './data')
def make_temperature_scaling(
predictions: Dict[Tuple[int, str], Dict],
temperature: float
) -> Dict[Tuple[int, str], Dict]:
"""
Run temperature scaling with temperature over given predictions.
"""
result: Dict[Tuple[int, str], Dict] = dict()
softmax: torch.nn.Softmax = torch.nn.Softmax(dim=0)
int2label: Dict[int, str] = make_int2label(get_stance_label2int())
for key in predictions.keys():
sample = predictions[key]
# Do not rescale if the prediction defaults to neutral because of no selected evidence
if not sample['is_evidence_based_prediction']:
result[key] = copy(sample)
else:
scaled_sample: Dict = {
key: copy(sample[key]) for key in sample.keys()
if key not in ['logits', 'predicted_distribution', 'predicted_confidence']
}
# Temperature Scaling happens here
new_logits: torch.FloatTensor = torch.FloatTensor(sample['logits']) / temperature
new_predicted_distribution: torch.FloatTensor = softmax(new_logits)
# Re-compute the outputs based on the rescaled logits.
scaled_sample['logits'] = new_logits.tolist()
scaled_sample['predicted_distribution'] = new_predicted_distribution.tolist()
scaled_sample['logits'] = max(scaled_sample['predicted_distribution'])
scaled_sample['multi_predicted'] = make_multi_label_predictions_from_distribution(
int2label, scaled_sample['predicted_distribution']
)
result[key] = scaled_sample
return result
def run_temperature_scaling_search(
predicted_samples: List[Dict],
ambifc_subset: str,
min_t: float,
max_t: float,
step_t: float,
data_directory: str
) -> Iterable[Tuple[float, float]]:
"""
Search over all thresholds for temperature scaling.
"""
# Load relevant gold samples
gold_data: Dict[Tuple[int, str], Dict] = data_to_dict(
get_samples_for_ambifc_subset(
ambifc_subset=ambifc_subset,
split='dev',
data_directory=data_directory
), 'claim_id', 'wiki_passage'
)
predicted_data: Dict[Tuple[int, str], Dict] = data_to_dict(
list(filter(lambda x: (x['claim_id'], x['passage']) in gold_data, predicted_samples)),
'claim_id',
'passage'
)
# Make sure all samples from the relevant subset (fom gold) have predictions. it is okay if
# predictions include a superset of the relevant samples.
assert set(gold_data.keys()) & set(predicted_data.keys()) == set(gold_data.keys())
predicted_data = {
k: predicted_data[k] for k in gold_data.keys()
}
print('Tuning based on', len(predicted_data.keys()), 'entries.')
# Go over all possible temperature values
for temperature in np.arange(min_t, max_t + step_t, step_t):
temperature = round(temperature, 2)
temperature_scaled_predictions: Dict[Tuple[int, str], Dict] = make_temperature_scaling(
predicted_data, temperature
)
# Use distillation calibration score as metric
dist_cs: float = compute_distillation_calibration_score(
gold_data, temperature_scaled_predictions
)
print(f'Temperature: {temperature} -> DistCS: {dist_cs}')
yield temperature, dist_cs
def main(args) -> None:
model_directory: str = args['<model-directory>']
tuning_data_name: str = args['<tuning-data>']
test_data_name: str = args['<test-data>']
min_temperature: float = float(args['<temperature-min>'])
max_temperature: float = float(args['<temperature-max>'])
step_temperature: float = float(args['<temperature-step>'])
ambifc_subset: str = args['<ambifc_subset>']
prediction_dest_directory: str = join(DEFAULT_CALIBRATION_PREDICTION_DIRECTORY, model_directory)
original_predictions_tuning: List[Dict] = list(read_jsonl(
join(DEFAULT_VERACITY_PREDICTION_DIRECTORY, join(model_directory, tuning_data_name))
))
original_predictions_testing: Dict[Tuple[int, str], Dict] = data_to_dict(
list(read_jsonl(
join(DEFAULT_VERACITY_PREDICTION_DIRECTORY, join(model_directory, test_data_name))
)),
'claim_id',
'passage'
)
if args['temperature-scaling']:
temperatures_and_scores = run_temperature_scaling_search(
predicted_samples=original_predictions_tuning,
ambifc_subset=ambifc_subset,
min_t=min_temperature,
max_t=max_temperature,
step_t=step_temperature,
data_directory=DEFAULT_DATA_DIRECTORY
)
best_temperature, best_score = sorted(list(temperatures_and_scores), key=lambda x: x[-1])[-1]
print('Using the best temperature of', best_score, 'reaching DistCS:', best_score, 'on the dev set.')
scaled_testing_predictions: Dict[Tuple[int, str], Dict] = make_temperature_scaling(
original_predictions_testing, best_temperature
)
file_name: str = f'temp-scaling-{str(best_temperature).replace(".", "-")}__{test_data_name}'
else:
raise NotImplementedError()
# Write predictions
write_jsonl_to_dir(prediction_dest_directory, file_name, [
scaled_testing_predictions[key] for key in scaled_testing_predictions.keys()
])
evaluate_all_veracity_prediction(
prediction_directory=prediction_dest_directory,
predictions_file=file_name,
split='test',
ambifc_subset=TrainDataConfig.SUBSET_ALL_AMBIFC,
overwrite=True,
data_directory=DEFAULT_DATA_DIRECTORY
)
if __name__ == "__main__":
args = docopt(__doc__)
main(args)