forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetis.ml
439 lines (356 loc) · 14.5 KB
/
metis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
(* ========================================================================= *)
(* Metis first-order theorem proving derived rule/tactic for HOL Light. *)
(* *)
(* The original Metis was written by Joe Hurd, and it has been widely used *)
(* for first-order proofs in HOL4 and Isabelle; see: *)
(* *)
(* http://www.gilith.com/research/metis/ *)
(* *)
(* This is a port from SML to OCaml and proof-reconstructing integration *)
(* with HOL Light, written by Michael Faerber and Cezary Kaliszyk. *)
(* *)
(* The port has been further adapted for use with the Candle theorem prover *)
(* by Oskar Abrahamsson. *)
(* *)
(* (c) Copyright, Joe Hurd, 2001 *)
(* (c) Copyright, Joe Leslie-Hurd, 2004 *)
(* (c) Copyright, Michael Faerber and Cezary Kaliszyk, 2014-2018. *)
(* (c) Copyright, Oskar Abrahamsson, 2024 *)
(* *)
(* Distributed under the same license as HOL Light. *)
(* ========================================================================= *)
(* NOTE(oskar): was firstorder.ml *)
needs "meson.ml";;
(* ========================================================================= *)
(* Main Metis module. *)
(* ========================================================================= *)
module Metis = struct
exception Assert of string;;
(* ------------------------------------------------------------------------- *)
(* Metis prover. *)
(* ------------------------------------------------------------------------- *)
let metisverb = ref false;;
loads "metis/random.ml";;
loads "metis/portable.ml";;
loads "metis/math.ml";;
(* Inline the Useful module here, as it's used almost everywhere in Metis: *)
(* ------------------------------------------------------------------------- *)
(* Exceptions. *)
(* ------------------------------------------------------------------------- *)
exception Error of string;;
exception Bug of string;;
let total f x = try Some (f x) with Error _ -> None;;
let isSome = function
(Some _) -> true
| None -> false
;;
let can f x = isSome (total f x);;
(* ------------------------------------------------------------------------- *)
(* Combinators. *)
(* ------------------------------------------------------------------------- *)
let cComb f x y = f y x;;
let iComb x = x;;
let kComb x y = x;;
let sComb f g x = f x (g x);;
let wComb f x = f x x;;
let rec funpow n f x =
match n with
| 0 -> x
| _ -> funpow (n - 1) f (f x);;
let exp m =
let rec f x y z =
match y with
| 0 -> z
| _ -> f (m (x,x)) (Int.div y 2) (if y mod 2 = 0 then z else m (z,x)) in
f;;
(* ------------------------------------------------------------------------- *)
(* Pairs. *)
(* ------------------------------------------------------------------------- *)
let pair x y = (x,y);;
let swap (x,y) = (y,x);;
let curry f x y = f (x,y);;
let uncurry f (x,y) = f x y;;
(* ------------------------------------------------------------------------- *)
(* State transformers. *)
(* ------------------------------------------------------------------------- *)
let return (* : 'a -> 's -> 'a * 's *) = pair;;
let bind f (g (* : 'a -> 's -> 'b * 's *)) x = uncurry g (f x);;
(* ------------------------------------------------------------------------- *)
(* Comparisons. *)
(* ------------------------------------------------------------------------- *)
let revCompare cmp x y =
match cmp x y with Less -> Greater | Equal -> Equal | Greater -> Less;;
let prodCompare xCmp yCmp (x1,y1) (x2,y2) =
match xCmp x1 x2 with
| Less -> Less
| Equal -> yCmp y1 y2
| Greater -> Greater;;
let lexCompare cmp =
let rec lex x y =
match x,y with
| ([],[]) -> Equal
| ([], _ :: _) -> Less
| (_ :: _, []) -> Greater
| (x :: xs, y :: ys) ->
match cmp x y with
| Less -> Less
| Equal -> lex xs ys
| Greater -> Greater in
lex
;;
let boolCompare x y =
match x,y with
| (false,true) -> Less
| (true,false) -> Greater
| _ -> Equal;;
(* ------------------------------------------------------------------------- *)
(* Lists. *)
(* ------------------------------------------------------------------------- *)
let rec first f = function
| [] -> None
| x::xs -> match f x with None -> first f xs | s -> s;;
let rec maps (f (* : 'a -> 's -> 'b * 's *)) = function
| [] -> return []
| x :: xs ->
bind (f x) (fun y -> bind (maps f xs) (fun ys -> return (y :: ys)));;
let zipWith f =
let rec z l = function
| ([], []) -> l
| (x :: xs, y :: ys) -> z (f x y :: l) (xs, ys)
| _ -> raise (Error "zipWith: lists different lengths") in
fun xs -> fun ys -> List.rev (z [] (xs, ys))
;;
let zip xs ys = zipWith pair xs ys;;
let unzip ab =
let inc (x,y) (xs,ys) = (x :: xs, y :: ys) in
List.foldl inc ([],[]) (List.rev ab);;
let enumerate l = fst (maps (fun x m -> ((m, x), m + 1)) l 0);;
let revDivide l =
let rec revDiv acc = function
| (l, 0) -> (acc,l)
| ([], _) -> raise Subscript
| (h :: t, n) -> revDiv (h :: acc) (t, n - 1) in
fun n -> revDiv [] (l, n);;
let divide l n = let (a,b) = revDivide l n in (List.rev a, b);;
let updateNth (n,x) l =
let (a,b) = revDivide l n in
match b with [] -> raise Subscript | (_ :: t) -> rev_append a (x :: t)
;;
let deleteNth n l =
let (a,b) = revDivide l n in
match b with [] -> raise Subscript | (_ :: t) -> rev_append a t
;;
(* ------------------------------------------------------------------------- *)
(* Sets implemented with lists. *)
(* ------------------------------------------------------------------------- *)
let mem x l = List.exists (fun y -> x = y) l;;
(* ------------------------------------------------------------------------- *)
(* Strings. *)
(* ------------------------------------------------------------------------- *)
let mkPrefix p s = p ^ s
let stripSuffix pred s =
let rec strip pos =
if pos < 0 then "" else
if pred (s.[pos]) then strip (pos - 1)
else String.substring s 0 (pos + 1) in
strip (String.size s - 1);;
(* ------------------------------------------------------------------------- *)
(* Sorting and searching. *)
(* ------------------------------------------------------------------------- *)
let sort cmp = List.sort (fun x y -> cmp x y = Less);;
let sortMap f cmp = function
| [] -> []
| ([_] as l) -> l
| xs ->
let ncmp (m,_) (n,_) = cmp m n in
let nxs = List.map (fun x -> (f x, x)) xs in
let nys = List.sort (fun x y -> ncmp x y = Less) nxs in
List.map snd nys
;;
(* ------------------------------------------------------------------------- *)
(* Integers. *)
(* ------------------------------------------------------------------------- *)
let rec interval m = function
| 0 -> []
| len -> m :: interval (m + 1) (len - 1);;
let divides = function
| (_, 0) -> true
| (0, _) -> false
| (a, b) -> b mod (abs a) = 0;;
let divides = curry divides;;
(* ------------------------------------------------------------------------- *)
(* Useful impure features. *)
(* ------------------------------------------------------------------------- *)
let generator = ref 0;;
let newIntThunk () =
let n = !generator in
generator := n + 1;
n
;;
let newIntsThunk k () =
let n = !generator in
generator := n + k;
interval n k
;;
let newInt () = newIntThunk ();;
let newInts k =
if k <= 0 then []
else (newIntsThunk k) ();;
(* The rest of Metis follows: *)
loads "metis/pmap.ml";;
loads "metis/pset.ml";;
loads "metis/mmap.ml";;
loads "metis/mset.ml";;
loads "metis/sharing.ml";;
loads "metis/heap.ml";;
loads "metis/name.ml";;
loads "metis/name_arity.ml";;
loads "metis/term.ml";;
loads "metis/substitute.ml";;
loads "metis/atom.ml";;
loads "metis/formula.ml";;
loads "metis/literal.ml";;
loads "metis/thm.ml";;
loads "metis/proof.ml";;
loads "metis/rule.ml";;
loads "metis/model.ml";;
loads "metis/term_net.ml";;
loads "metis/atom_net.ml";;
loads "metis/literal_net.ml";;
loads "metis/subsume.ml";;
loads "metis/knuth_bendix.ml";;
loads "metis/rewrite.ml";;
loads "metis/units.ml";;
loads "metis/clause.ml";;
loads "metis/active.ml";;
loads "metis/waiting.ml";;
loads "metis/resolution.ml";;
loads "metis/loop.ml";;
loads "metis/metis_debug.ml";;
loads "metis/preterm.ml";;
loads "metis/metis_mapping.ml";;
loads "metis/metis_path.ml";;
loads "metis/metis_unify.ml";;
loads "metis/metis_rules.ml";;
loads "metis/metis_reconstruct2.ml";;
loads "metis/metis_generate.ml";;
(* ------------------------------------------------------------------------- *)
(* Some parameters controlling Metis behaviour. *)
(* ------------------------------------------------------------------------- *)
let split_limit = ref 0;; (* Limit of case splits before Metis proper *)
(* ----------------------------------------------------------------------- *)
(* Basic HOL Metis procedure. *)
(* ----------------------------------------------------------------------- *)
(* Debugging tactic. *)
let PRINT_TAC g = print_goal g; ALL_TAC g;;
let PRINT_ID_TAC s g = print_endline s; PRINT_TAC g;;
(* Slightly modified tactic from meson.ml. *)
let FOL_PREPARE_TAC ths =
(* We start with a single goal: P. *)
REFUTE_THEN ASSUME_TAC THEN
(*PRINT_ID_TAC "refuted" THEN*)
(* 0 [`~P`]
`F`
*)
Meson.POLY_ASSUME_TAC (map GEN_ALL ths) THEN
(*PRINT_ID_TAC "poly_assumed" THEN*)
(* 0 [`~P`]
1 [th1]
...
n [thn]
`F`
*)
W(MAP_EVERY(UNDISCH_TAC o concl o snd) o fst) THEN
(* `~P ==> th1 ==> ... ==> thn ==> F` *)
SELECT_ELIM_TAC THEN
(* eliminate "select terms", e.g. Hilbert operators *)
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
(*PRINT_ID_TAC "all-quantified" THEN*)
(* MAP_EVERY is mapM for tactics
I believe that this all-quantifies all free variables in the goal *)
CONV_TAC(PRESIMP_CONV THENC
TOP_DEPTH_CONV BETA_CONV THENC
LAMBDA_ELIM_CONV THENC
CONDS_CELIM_CONV THENC
Meson.QUANT_BOOL_CONV) THEN
(*PRINT_ID_TAC "converted" THEN*)
REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN
(* remove outermost all-quantifiers (GEN_TAC) and implications (DISCH_TAC),
moving them into assumptions *)
REFUTE_THEN ASSUME_TAC THEN
(* move conclusion negated into assumptions, replace goal by `F`*)
RULE_ASSUM_TAC(CONV_RULE(NNF_CONV THENC SKOLEM_CONV)) THEN
(* transform assumptions to NNF and skolemize *)
REPEAT (FIRST_X_ASSUM CHOOSE_TAC) THEN
(* remove existentials at the front *)
ASM_FOL_TAC THEN
(* fix function arities, e.g. f(x) and f(x,y) become I f x and I (I f x) y *)
Meson.SPLIT_TAC (!split_limit) THEN
RULE_ASSUM_TAC(CONV_RULE(PRENEX_CONV THENC WEAK_CNF_CONV)) THEN
RULE_ASSUM_TAC(repeat
(fun th -> SPEC(genvar(type_of(fst(dest_forall(concl th))))) th)) THEN
(* destroy all-quantifiers and replace quantified variables by fresh ones *)
REPEAT (FIRST_X_ASSUM (Meson.CONJUNCTS_THEN' ASSUME_TAC)) THEN
(* make every conjunction a separate assumption *)
RULE_ASSUM_TAC(CONV_RULE(ASSOC_CONV DISJ_ASSOC))
(* associate disjunctions to the right *)
(*THEN PRINT_ID_TAC "before Metis"*)
;;
let without_warnings f =
let tiv = !type_invention_warning in
let reset () = type_invention_warning := tiv in
type_invention_warning := false;
try let y = f () in reset (); y
with e -> (reset(); raise e)
;;
let SIMPLE_METIS_REFUTE ths =
Meson.clear_contrapos_cache();
(* TODO: Metis currently uses randomness to search for proof --
we should make that deterministic for proof reconstruction! *)
Random.init 0;
let rules = Metis_generate.metis_of_clauses ths in
if !metisverb then
begin
print_string "Original ths:\n";
List.app (print_endline o string_of_thm) ths
end;
let res = Loop.run rules in
if !metisverb then Thm.print_proof res;
let ths = map (CONV_RULE DISJ_CANON_CONV) ths in
let proof = without_warnings (fun () -> Metis_reconstruct2.hol_of_thm ths res) in
if !metisverb then
begin
print_string "ths:\n";
List.app (fun t -> print_thm t; print_string "\n") ths;
print_string "Metis theorem:\n";
print_thm proof;
print_string "Metis end.\n"
end;
let allhyps = List.concat (List.map hyp ths) in
if not (forall (fun h -> mem h allhyps) (hyp proof)) then
raise (Assert "(forall (fun h -> mem h allhyps) (hyp proof))");
if not (concl proof = `F`) then
raise (Assert "(concl proof = `F`)");
proof
;;
let PURE_METIS_TAC g =
Meson.reset_vars(); Meson.reset_consts();
(FIRST_ASSUM CONTR_TAC ORELSE
W(ACCEPT_TAC o SIMPLE_METIS_REFUTE o map snd o fst)) g
let GEN_METIS_TAC ths =
FOL_PREPARE_TAC ths THEN PURE_METIS_TAC
end (* struct Metis *)
;;
let pp_exn e =
match e with
| Metis.Assert m ->
Pretty_printer.token ("Metis.Assert (" ^ m ^ ")")
| Metis.Error m -> Pretty_printer.token ("Metis.Error (" ^ m ^ ")")
| Metis.Bug m -> Pretty_printer.token ("Metis.Bug (" ^ m ^ ")")
| _ -> pp_exn e;;
(* ========================================================================= *)
(* Basic Metis refutation procedure and parametrized tactic. *)
(* ========================================================================= *)
let ASM_METIS_TAC = Metis.GEN_METIS_TAC;;
let METIS_TAC ths = POP_ASSUM_LIST(K ALL_TAC) THEN ASM_METIS_TAC ths;;
let METIS ths tm = prove(tm,METIS_TAC ths);;