-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathjrhSetScript.sml
770 lines (666 loc) · 20.2 KB
/
jrhSetScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
(*
A HOL4 port of Model/modelset.ml from the HOL Light distribution.
Now unused, but was once the set theory behind our semantics.
*)
open preamble cardinalTheory
val _ = numLib.temp_prefer_num()
val _ = new_theory"jrhSet"
Triviality ind_model_exists:
∃x. (@s:num->bool. s ≠ {} ∧ FINITE s) x
Proof
metis_tac[IN_DEF, MEMBER_NOT_EMPTY, IN_SING, FINITE_DEF]
QED
val ind_model_ty =
new_type_definition ("ind_model",ind_model_exists)
val ind_model_bij = define_new_type_bijections
{ABS="mk_ind",REP="dest_ind",name="ind_model_bij",tyax=ind_model_ty}
val mk_ind_11 = prove_abs_fn_one_one ind_model_bij
val mk_ind_onto = prove_abs_fn_onto ind_model_bij
val dest_ind_11 = prove_rep_fn_one_one ind_model_bij
val dest_ind_onto = prove_rep_fn_onto ind_model_bij
Triviality inacc_exists:
∃x:num. UNIV x
Proof
metis_tac[IN_UNIV,IN_DEF]
QED
val inacc_ty =
new_type_definition ("I",inacc_exists)
val inacc_bij = define_new_type_bijections
{ABS="mk_I",REP="dest_I",name="inacc_bij",tyax=inacc_ty}
val mk_I_11 = prove_abs_fn_one_one inacc_bij
val mk_I_onto = prove_abs_fn_onto inacc_bij
val dest_I_11 = prove_rep_fn_one_one inacc_bij
val dest_I_onto = prove_rep_fn_onto inacc_bij
Theorem FINITE_CARD_LT:
∀s. FINITE s ⇔ s ≺ 𝕌(:num)
Proof
metis_tac[INFINITE_Unum]
QED
Triviality lemma:
∀s. s ≺ 𝕌(:I) ⇔ FINITE s
Proof
rw[FINITE_CARD_LT] >>
match_mp_tac CARDEQ_CARDLEQ >>
simp[cardeq_REFL] >>
match_mp_tac cardleq_ANTISYM >>
simp[cardleq_def,INJ_DEF] >>
metis_tac[inacc_bij,dest_I_11,mk_I_11,IN_UNIV,IN_DEF]
QED
Theorem I_AXIOM:
𝕌(:ind_model) ≺ 𝕌(:I) ∧
∀s. s ≺ 𝕌(:I) ⇒ POW s ≺ 𝕌(:I)
Proof
simp[lemma,FINITE_POW] >>
`UNIV = IMAGE mk_ind (@s. s ≠ {} ∧ FINITE s)` by (
simp[Once EXTENSION,IN_DEF,ind_model_bij] >>
metis_tac[ind_model_bij]) >>
metis_tac[IMAGE_FINITE,NOT_INSERT_EMPTY,FINITE_EMPTY,FINITE_INSERT]
QED
Theorem I_INFINITE:
INFINITE 𝕌(:I)
Proof
DISCH_TAC >>
Q.ISPEC_THEN`count (CARD 𝕌(:I) - 1)`mp_tac (CONJUNCT2 I_AXIOM) >>
simp[] >>
simp[CARD_LT_CARD,CARDLEQ_CARD,FINITE_POW] >>
conj_asm1_tac >- (
imp_res_tac CARD_EQ_0 >>
fs[EXTENSION] >> DECIDE_TAC ) >>
match_mp_tac(DECIDE``a - 1 < b ∧ 0 < a ==> a <= b``) >>
reverse conj_tac >- pop_assum ACCEPT_TAC >>
qmatch_abbrev_tac`n < CARD (POW (count n))` >>
rpt (pop_assum kall_tac) >>
Induct_on`n` >>
simp[COUNT_SUC,POW_EQNS] >>
qmatch_abbrev_tac`SUC n < CARD (a ∪ b)` >>
`FINITE a ∧ FINITE b` by simp[Abbr`a`,Abbr`b`,IMAGE_FINITE,FINITE_POW] >>
`∀s. s ∈ b ⇒ ∀x. x ∈ s ⇒ x < n` by (
simp[Abbr`b`,IN_POW,SUBSET_DEF] ) >>
`∀s. s ∈ a ⇒ n ∈ s` by (
simp[Abbr`a`,GSYM LEFT_FORALL_IMP_THM] ) >>
`a ∩ b = {}` by (
simp[Once EXTENSION] >>
metis_tac[prim_recTheory.LESS_REFL] ) >>
qsuff_tac`SUC n < CARD a + CARD b`>-
metis_tac[DECIDE``a + 0 = a``,CARD_EMPTY,CARD_UNION] >>
fs[Abbr`b`,CARD_POW] >>
qsuff_tac`CARD a ≠ 0`>-DECIDE_TAC>>
simp[CARD_EQ_0,Abbr`a`] >>
simp[EXTENSION,IN_POW] >>
qexists_tac`{}`>>simp[]
QED
Triviality I_PAIR_EXISTS:
∃f:I#I->I. !x y. (f x = f y) ==> (x = y)
Proof
qsuff_tac `𝕌(:I#I) ≼ 𝕌(:I)` >-
simp[cardleq_def,INJ_DEF] >>
match_mp_tac CARDEQ_SUBSET_CARDLEQ >>
qsuff_tac`𝕌(:I#I) = 𝕌(:I) × 𝕌(:I)` >-
metis_tac[cardeq_TRANS,SET_SQUARED_CARDEQ_SET,I_INFINITE] >>
simp[EXTENSION]
QED
val INJ_LEMMA = METIS_PROVE[]``(!x y. (f x = f y) ==> (x = y)) <=> (!x y. (f x = f y) <=> (x = y))``
val I_PAIR_def =
new_specification("I_PAIR_def",["I_PAIR"],
REWRITE_RULE[INJ_LEMMA] I_PAIR_EXISTS)
Theorem CARD_BOOL_LT_I:
𝕌(:bool) ≺ 𝕌(:I)
Proof
strip_tac >> mp_tac I_INFINITE >> simp[] >>
match_mp_tac (INST_TYPE[beta|->``:bool``]CARDLEQ_FINITE) >>
HINT_EXISTS_TAC >> simp[UNIV_BOOL]
QED
Triviality I_BOOL_EXISTS:
∃f:bool->I. !x y. (f x = f y) ==> (x = y)
Proof
`𝕌(:bool) ≼ 𝕌(:I)` by metis_tac[CARD_BOOL_LT_I,cardlt_lenoteq] >>
fs[cardleq_def,INJ_DEF] >> metis_tac[]
QED
val I_BOOL_def =
new_specification("I_BOOL_def",["I_BOOL"],
REWRITE_RULE[INJ_LEMMA] I_BOOL_EXISTS)
Triviality I_IND_EXISTS:
∃f:ind_model->I. !x y. (f x = f y) ==> (x = y)
Proof
`𝕌(:ind_model) ≼ 𝕌(:I)` by metis_tac[I_AXIOM,cardlt_lenoteq] >>
fs[cardleq_def,INJ_DEF] >> metis_tac[]
QED
val I_IND_def =
new_specification("I_IND_def",["I_IND"],
REWRITE_RULE[INJ_LEMMA] I_IND_EXISTS)
Triviality I_SET_EXISTS:
∀s:I->bool. s ≺ 𝕌(:I) ⇒ ∃f:(I->bool)->I. !x y. x ⊆ s ∧ y ⊆ s ∧ (f x = f y) ==> (x = y)
Proof
gen_tac >> disch_then(strip_assume_tac o MATCH_MP(CONJUNCT2 I_AXIOM)) >>
fs[cardlt_lenoteq] >>
fs[cardleq_def,INJ_DEF,IN_POW] >>
metis_tac[]
QED
val I_SET_def =
new_specification("I_SET_def",["I_SET"],
SIMP_RULE std_ss [GSYM RIGHT_EXISTS_IMP_THM,SKOLEM_THM] I_SET_EXISTS)
Datatype:
setlevel = Ur_bool
| Ur_ind
| Powerset setlevel
| Cartprod setlevel setlevel
End
Definition setlevel_def:
setlevel Ur_bool = IMAGE I_BOOL UNIV ∧
setlevel Ur_ind = IMAGE I_IND UNIV ∧
setlevel (Cartprod l1 l2) =
IMAGE I_PAIR (setlevel l1 × setlevel l2) ∧
setlevel (Powerset l) =
IMAGE (I_SET (setlevel l)) (POW (setlevel l))
End
Theorem setlevel_CARD:
∀l. setlevel l ≺ 𝕌(:I)
Proof
Induct >> simp_tac std_ss [setlevel_def]
>- (
strip_tac >>
match_mp_tac (ISPEC``𝕌(:I)``(GEN_ALL cardlt_REFL)) >>
metis_tac[cardleq_TRANS,IMAGE_cardleq,cardleq_lt_trans,CARD_BOOL_LT_I])
>- (
strip_tac >>
match_mp_tac (ISPEC``𝕌(:I)``(GEN_ALL cardlt_REFL)) >>
metis_tac[cardleq_TRANS,IMAGE_cardleq,cardleq_lt_trans,I_AXIOM])
>- (
strip_tac >>
match_mp_tac (ISPEC``𝕌(:I)``(GEN_ALL cardlt_REFL)) >>
metis_tac[cardleq_TRANS,IMAGE_cardleq,cardleq_lt_trans,I_AXIOM])
>- (
strip_tac >>
match_mp_tac (ISPEC``𝕌(:I)``(GEN_ALL cardlt_REFL)) >>
qmatch_assum_abbrev_tac`𝕌(:I) ≼ IMAGE I_PAIR (s × t)` >>
`𝕌(:I) ≼ s × t` by metis_tac[IMAGE_cardleq,cardleq_TRANS] >>
qsuff_tac`s × t ≺ 𝕌(:I) ∨ t × s ≺ 𝕌(:I)` >-
metis_tac[cardleq_lt_trans,CARDEQ_CROSS_SYM,cardleq_TRANS,cardleq_lteq] >>
metis_tac[cardleq_dichotomy,CARD_MUL_LT_LEMMA,I_INFINITE])
QED
Theorem I_SET_SETLEVEL:
∀l s t. s ⊆ setlevel l ∧ t ⊆ setlevel l ∧
(I_SET (setlevel l) s = I_SET (setlevel l) t)
⇒ s = t
Proof
metis_tac[setlevel_CARD,I_SET_def]
QED
Definition universe_def:
universe = {(t,x) | x ∈ setlevel t}
End
Triviality v_exists:
∃a. a ∈ universe
Proof
qexists_tac`Ur_bool,I_BOOL T` >>
rw[universe_def,setlevel_def]
QED
val v_ty =
new_type_definition ("V",SIMP_RULE std_ss [IN_DEF]v_exists)
val v_bij = define_new_type_bijections
{ABS="mk_V",REP="dest_V",name="v_bij",tyax=v_ty}
val mk_V_11 = prove_abs_fn_one_one v_bij
val mk_V_onto = prove_abs_fn_onto v_bij
val dest_V_11 = prove_rep_fn_one_one v_bij
val dest_V_onto = prove_rep_fn_onto v_bij
Triviality universe_IN:
universe x ⇔ x ∈ universe
Proof
rw[IN_DEF]
QED
Theorem V_bij:
∀l e. e ∈ setlevel l ⇔ dest_V(mk_V(l,e)) = (l,e)
Proof
rw[GSYM(CONJUNCT2 v_bij)] >>
rw[universe_IN,universe_def]
QED
Definition droplevel_def:
droplevel (Powerset l) = l
End
Definition isasetlevel:
isasetlevel (Powerset _) = T ∧
isasetlevel _ = F
End
Definition level_def:
level x = FST(dest_V x)
End
Definition element_def:
element x = SND(dest_V x)
End
Theorem ELEMENT_IN_LEVEL:
∀x. (element x) ∈ setlevel (level x)
Proof
rw[element_def,level_def,V_bij,v_bij]
QED
Theorem SET:
∀x. mk_V(level x,element x) = x
Proof
rw[level_def,element_def,v_bij]
QED
Definition set_def:
set x = @s. s ⊆ (setlevel(droplevel(level x))) ∧
I_SET (setlevel(droplevel(level x))) s = element x
End
Definition isaset_def:
isaset x ⇔ ∃l. level x = Powerset l
End
val _ = Parse.add_infix("<:",425,Parse.NONASSOC)
Definition inset_def:
x <: s ⇔ level s = Powerset(level x) ∧ element x ∈ set s
End
val _ = Parse.add_infix("<=:",450,Parse.NONASSOC)
Definition subset_def:
s <=: t ⇔ level s = level t ∧ ∀x. x <: s ⇒ x <: t
End
Theorem MEMBERS_ISASET:
∀x s. x <: s ⇒ isaset s
Proof
rw[inset_def,isaset_def]
QED
Theorem LEVEL_NONEMPTY:
∀l. ∃x. x ∈ setlevel l
Proof
simp[MEMBER_NOT_EMPTY] >>
Induct >> rw[setlevel_def,CROSS_EMPTY_EQN]
QED
Theorem LEVEL_SET_EXISTS:
∀l. ∃s. level s = l
Proof
mp_tac LEVEL_NONEMPTY >>
simp[V_bij,level_def] >>
metis_tac[FST]
QED
Theorem MK_V_CLAUSES:
e ∈ setlevel l ⇒
level(mk_V(l,e)) = l ∧ element(mk_V(l,e)) = e
Proof
rw[level_def,element_def,V_bij]
QED
Theorem MK_V_SET:
s ⊆ setlevel l ⇒
set(mk_V(Powerset l,I_SET (setlevel l) s)) = s ∧
level(mk_V(Powerset l,I_SET (setlevel l) s)) = Powerset l ∧
element(mk_V(Powerset l,I_SET (setlevel l) s)) = I_SET (setlevel l) s
Proof
strip_tac >>
`I_SET (setlevel l) s ∈ setlevel (Powerset l)` by (
rw[setlevel_def,IN_POW] ) >>
simp[MK_V_CLAUSES] >>
simp[set_def,MK_V_CLAUSES,droplevel_def] >>
SELECT_ELIM_TAC >>
metis_tac[I_SET_SETLEVEL]
QED
Triviality EMPTY_EXISTS:
∀l. ∃s. level s = l ∧ ∀x. ¬(x <: s)
Proof
Induct >> TRY (
qexists_tac`mk_V(Powerset l,I_SET(setlevel l){})` >>
simp[inset_def,MK_V_CLAUSES,MK_V_SET] >> NO_TAC ) >>
metis_tac[LEVEL_SET_EXISTS,MEMBERS_ISASET,isaset_def,theorem"setlevel_distinct"]
QED
val emptyset_def =
new_specification("emptyset_def",["emptyset"],
SIMP_RULE std_ss [SKOLEM_THM] EMPTY_EXISTS)
Triviality COMPREHENSION_EXISTS:
∀s p. ∃t. level t = level s ∧ ∀x. x <: t ⇔ x <: s ∧ p x
Proof
rpt gen_tac >>
reverse(Cases_on`isaset s`) >- metis_tac[MEMBERS_ISASET] >>
fs[isaset_def] >>
qspec_then`s`mp_tac ELEMENT_IN_LEVEL >>
simp[setlevel_def,IN_POW] >>
disch_then(Q.X_CHOOSE_THEN`u`strip_assume_tac) >>
qabbrev_tac`v = {i | i ∈ u ∧ p(mk_V(l,i))}` >>
qexists_tac`mk_V(Powerset l,I_SET (setlevel l) v)` >>
`v ⊆ setlevel l` by (
fs[SUBSET_DEF,Abbr`v`] ) >>
simp[MK_V_SET,inset_def] >>
fs[Abbr`v`] >>
metis_tac[SET,MK_V_SET]
QED
val _ = Parse.add_infix("suchthat",9,Parse.LEFT)
val suchthat_def =
new_specification("suchthat_def",["suchthat"],
SIMP_RULE std_ss [SKOLEM_THM] COMPREHENSION_EXISTS)
Theorem SETLEVEL_EXISTS:
∀l. ∃s. (level s = Powerset l) ∧
∀x. x <: s ⇔ level x = l ∧ element x ∈ setlevel l
Proof
gen_tac >>
qexists_tac`mk_V(Powerset l,I_SET (setlevel l) (setlevel l))` >>
simp[MK_V_SET,inset_def] >> metis_tac[]
QED
Theorem SET_DECOMP:
∀s. isaset s ⇒
set s ⊆ setlevel(droplevel(level s)) ∧
I_SET (setlevel(droplevel(level s))) (set s) = element s
Proof
gen_tac >> simp[isaset_def] >> strip_tac >>
simp[set_def] >>
SELECT_ELIM_TAC >>
simp[setlevel_def,droplevel_def] >>
qspec_then`s`mp_tac ELEMENT_IN_LEVEL >>
simp[setlevel_def,IN_POW] >>
metis_tac[]
QED
Theorem SET_SUBSET_SETLEVEL:
∀s. isaset s ⇒ set s ⊆ setlevel(droplevel(level s))
Proof
metis_tac[SET_DECOMP]
QED
Triviality POWERSET_EXISTS:
∀s. ∃t. level t = Powerset(level s) ∧ ∀x. x <: t ⇔ x <=: s
Proof
gen_tac >> Cases_on`isaset s` >- (
fs[isaset_def] >>
qspec_then`Powerset l`(Q.X_CHOOSE_THEN`t`strip_assume_tac)
SETLEVEL_EXISTS >>
qexists_tac`t suchthat (λx. x <=: s)` >>
simp[suchthat_def,subset_def] >>
metis_tac[ELEMENT_IN_LEVEL] ) >>
fs[subset_def] >>
metis_tac[MEMBERS_ISASET,SETLEVEL_EXISTS
,ELEMENT_IN_LEVEL,isaset_def]
QED
val powerset_def =
new_specification("powerset_def",["powerset"],
SIMP_RULE std_ss [SKOLEM_THM] POWERSET_EXISTS)
Definition pair_def:
pair x y = mk_V(Cartprod (level x) (level y),
I_PAIR(element x,element y))
End
Theorem PAIR_IN_LEVEL:
∀x y l m. x ∈ setlevel l ∧ y ∈ setlevel m
⇒ I_PAIR(x,y) ∈ setlevel (Cartprod l m)
Proof
simp[setlevel_def]
QED
Theorem DEST_MK_PAIR:
dest_V(pair x y) = (Cartprod (level x) (level y), I_PAIR(element x,element y))
Proof
simp[pair_def,GSYM V_bij] >>
simp[PAIR_IN_LEVEL,ELEMENT_IN_LEVEL]
QED
Theorem PAIR_INJ:
∀x1 y1 x2 y2. (pair x1 y1 = pair x2 y2) ⇔ (x1 = x2) ∧ (y1 = y2)
Proof
simp[EQ_IMP_THM] >> rpt gen_tac >>
disch_then(assume_tac o AP_TERM``dest_V``) >>
fs[DEST_MK_PAIR,I_PAIR_def] >>
fs[level_def,element_def] >>
metis_tac[v_bij,PAIR_EQ,FST,SND,pair_CASES]
QED
Theorem LEVEL_PAIR:
∀x y. level(pair x y) = Cartprod (level x) (level y)
Proof
rw[level_def,DEST_MK_PAIR]
QED
Definition fst_def:
fst p = @x. ∃y. p = pair x y
End
Definition snd_def:
snd p = @y. ∃x. p = pair x y
End
Theorem PAIR_CLAUSES:
∀x y. (fst(pair x y) = x) ∧ (snd(pair x y) = y)
Proof
rw[fst_def,snd_def] >> metis_tac[PAIR_INJ]
QED
Triviality CARTESIAN_EXISTS:
∀s t. ∃u. level u = Powerset(Cartprod (droplevel(level s))
(droplevel(level t))) ∧
∀z. z <: u ⇔ ∃x y. (z = pair x y) ∧ x <: s ∧ y <: t
Proof
rpt gen_tac >>
reverse(Cases_on`isaset s`) >- (
metis_tac[EMPTY_EXISTS,MEMBERS_ISASET] ) >>
`∃l. level s = Powerset l` by metis_tac[isaset_def] >>
reverse(Cases_on`isaset t`) >- (
metis_tac[EMPTY_EXISTS,MEMBERS_ISASET] ) >>
`∃m. level t = Powerset m` by metis_tac[isaset_def] >>
qspec_then`Cartprod l m`mp_tac SETLEVEL_EXISTS >>
simp[droplevel_def] >>
disch_then(Q.X_CHOOSE_THEN`u`strip_assume_tac) >>
qho_match_abbrev_tac`∃u. P u ∧ ∀z. Q u z ⇔ R z` >>
qexists_tac`u suchthat R` >>
simp[Abbr`P`,suchthat_def] >>
simp[Abbr`Q`,suchthat_def] >>
simp[Abbr`R`]>>
fs[inset_def] >>
metis_tac[ELEMENT_IN_LEVEL,LEVEL_PAIR]
QED
val PRODUCT_def =
new_specification("PRODUCT_def",["product"],
SIMP_RULE std_ss [SKOLEM_THM] CARTESIAN_EXISTS)
Theorem IN_SET_ELEMENT:
∀s. isaset s ∧ e ∈ set s ⇒
∃x. e = element x ∧ level s = Powerset (level x) ∧ x <: s
Proof
rw[isaset_def] >>
qexists_tac`mk_V(l,e)` >>
simp[inset_def] >>
qsuff_tac`e ∈ setlevel l` >- simp[MK_V_CLAUSES] >>
metis_tac[isaset_def,SET_SUBSET_SETLEVEL,SUBSET_DEF,droplevel_def]
QED
Theorem SUBSET_ALT:
isaset s ∧ isaset t ⇒
(s <=: t ⇔ level s = level t ∧ set s SUBSET set t)
Proof
simp[subset_def,inset_def] >>
Cases_on`level s = level t` >> simp[SUBSET_DEF] >>
metis_tac[IN_SET_ELEMENT]
QED
Theorem SUBSET_ANTISYM_LEVEL:
∀s t. isaset s ∧ isaset t ∧ s <=: t ∧ t <=: s ⇒ s = t
Proof
rw[] >> rfs[SUBSET_ALT] >>
imp_res_tac SET_DECOMP >>
metis_tac[SET,SUBSET_ANTISYM]
QED
Theorem EXTENSIONALITY_LEVEL:
∀s t. isaset s ∧ isaset t ∧ level s = level t ∧ (∀x. x <: s ⇔ x <: t) ⇒ s = t
Proof
metis_tac[SUBSET_ANTISYM_LEVEL,subset_def]
QED
Theorem EXTENSIONALITY_NONEMPTY:
∀s t. (∃x. x <: s) ∧ (∃x. x <: t) ∧ (∀x. x <: s ⇔ x <: t) ⇒ s = t
Proof
metis_tac[EXTENSIONALITY_LEVEL,MEMBERS_ISASET,inset_def]
QED
Definition true_def:
true = mk_V(Ur_bool,I_BOOL T)
End
Definition false_def:
false = mk_V(Ur_bool,I_BOOL F)
End
Definition boolset_def:
boolset = mk_V(Powerset Ur_bool,I_SET (setlevel Ur_bool) (setlevel Ur_bool))
End
Triviality setlevel_bool:
∀b. I_BOOL b ∈ setlevel Ur_bool
Proof
simp[setlevel_def,I_BOOL_def]
QED
Theorem IN_BOOL:
∀x. x <: boolset ⇔ x = true ∨ x = false
Proof
rw[inset_def,boolset_def,true_def,false_def] >>
simp[MK_V_SET,setlevel_def] >>
metis_tac[SET,V_bij,PAIR_EQ,ELEMENT_IN_LEVEL,setlevel_bool]
QED
Theorem TRUE_NE_FALSE:
true ≠ false
Proof
rw[true_def,false_def] >>
disch_then(mp_tac o AP_TERM``dest_V``) >> simp[] >>
metis_tac[V_bij,setlevel_bool,PAIR_EQ,I_BOOL_def]
QED
Theorem BOOLEAN_EQ:
∀x y. x <: boolset ∧ y <: boolset ∧ ((x = true) ⇔ (y = true))
⇒ x = y
Proof
metis_tac[TRUE_NE_FALSE,IN_BOOL]
QED
Definition indset_def:
indset = mk_V(Powerset Ur_ind,I_SET (setlevel Ur_ind) (setlevel Ur_ind))
End
Theorem INDSET_IND_MODEL:
∃f. (∀i:ind_model. f i <: indset) ∧ (∀i j. f i = f j ⇒ i = j)
Proof
qexists_tac`λi. mk_V(Ur_ind,I_IND i)` >> simp[] >>
`!i. (I_IND i) ∈ setlevel Ur_ind` by (
simp[setlevel_def] ) >>
simp[MK_V_SET,indset_def,inset_def,MK_V_CLAUSES] >>
metis_tac[V_bij,I_IND_def,ELEMENT_IN_LEVEL,PAIR_EQ]
QED
Theorem INDSET_INHABITED:
∃x. x <: indset
Proof
metis_tac[INDSET_IND_MODEL]
QED
val ch_def =
new_specification("ch_def",["ch"],
Q.prove(`∃ch. ∀s. (∃x. x <: s) ⇒ ch s <: s`,
simp[GSYM SKOLEM_THM] >> metis_tac[]))
Triviality IN_POWERSET:
!x s. x <: powerset s <=> x <=: s
Proof
metis_tac[powerset_def]
QED;
Triviality IN_PRODUCT:
!z s t. z <: product s t <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t
Proof
metis_tac[PRODUCT_def]
QED;
Triviality IN_COMPREHENSION:
!p s x. x <: (s suchthat p) <=> x <: s /\ p x
Proof
metis_tac[suchthat_def]
QED;
Triviality PRODUCT_INHABITED:
(?x. x <: s) /\ (?y. y <: t) ==> ?z. z <: product s t
Proof
metis_tac[IN_PRODUCT]
QED;
Definition funspace_def:
funspace s t = (powerset(product s t) suchthat
λu. ∀x. x <: s ⇒ ∃!y. pair x y <: u)
End
Definition apply_def:
apply f x = @y. pair x y <: f
End
Definition abstract_def:
abstract s t f =
(product s t suchthat λz. ∀x y. pair x y = z ⇒ y = f x)
End
Theorem APPLY_ABSTRACT:
∀f x s t. x <: s ∧ f x <: t ⇒ apply(abstract s t f) x = f x
Proof
rw[apply_def,abstract_def,IN_PRODUCT,suchthat_def] >>
SELECT_ELIM_TAC >> rw[PAIR_INJ]
QED
Theorem APPLY_IN_RANSPACE:
∀f x s t. x <: s ∧ f <: funspace s t ⇒ apply f x <: t
Proof
simp[funspace_def,suchthat_def,IN_POWERSET,IN_PRODUCT,subset_def] >>
rw[apply_def] >> metis_tac[PAIR_INJ]
QED
Theorem ABSTRACT_IN_FUNSPACE:
∀f x s t. (∀x. x <: s ⇒ f x <: t) ⇒ abstract s t f <: funspace s t
Proof
rw[funspace_def,abstract_def,suchthat_def,IN_POWERSET,IN_PRODUCT,subset_def,PAIR_INJ] >> metis_tac[]
QED
Theorem FUNSPACE_INHABITED:
∀s t. ((∃x. x <: s) ⇒ (∃y. y <: t)) ⇒ ∃f. f <: funspace s t
Proof
rw[] >> qexists_tac`abstract s t (λx. @y. y <: t)` >>
match_mp_tac ABSTRACT_IN_FUNSPACE >> metis_tac[]
QED
Theorem ABSTRACT_EQ:
∀s t1 t2 f g.
(∃x. x <: s) ∧
(∀x. x <: s ⇒ f x <: t1 ∧ g x <: t2 ∧ f x = g x)
⇒ abstract s t1 f = abstract s t2 g
Proof
rw[abstract_def] >>
match_mp_tac EXTENSIONALITY_NONEMPTY >>
simp[suchthat_def,IN_PRODUCT,PAIR_INJ] >>
metis_tac[PAIR_INJ]
QED
Definition boolean_def:
boolean b = if b then true else false
End
Definition holds_def:
holds s x ⇔ apply s x = true
End
Theorem BOOLEAN_IN_BOOLSET:
∀b. boolean b <: boolset
Proof
metis_tac[boolean_def,IN_BOOL]
QED
Theorem BOOLEAN_EQ_TRUE:
∀b. boolean b = true ⇔ b
Proof
metis_tac[boolean_def,TRUE_NE_FALSE]
QED
Theorem in_funspace_abstract:
∀z s t. z <: funspace s t ∧ (∃z. z <: s) ∧ (∃z. z <: t) ⇒
∃f. z = abstract s t f ∧ (∀x. x <: s ⇒ f x <: t)
Proof
rw[funspace_def,suchthat_def,powerset_def] >>
qexists_tac`λx. @y. pair x y <: z` >>
conj_tac >- (
match_mp_tac EXTENSIONALITY_NONEMPTY >>
simp[abstract_def] >>
conj_tac >- (
fs[EXISTS_UNIQUE_THM] >>
metis_tac[] ) >>
simp[suchthat_def] >>
conj_tac >- (
simp[PRODUCT_def] >>
srw_tac[DNF_ss][] >>
simp[RIGHT_EXISTS_AND_THM] >>
qmatch_assum_rename_tac`y <: s` >>
qexists_tac`y` >> simp[] >>
first_x_assum(qspec_then`y`mp_tac) >>
simp[] >>
simp[EXISTS_UNIQUE_THM] >>
strip_tac >>
qmatch_assum_rename_tac`pair y x <: z` >>
fs[subset_def] >>
`pair y x <: product s t` by metis_tac[] >>
fs[PRODUCT_def,PAIR_INJ] >>
SELECT_ELIM_TAC >>
metis_tac[] ) >>
rw[] >>
EQ_TAC >> strip_tac >- (
fs[subset_def] >>
rw[] >>
SELECT_ELIM_TAC >>
fs[EXISTS_UNIQUE_THM] >>
fs[PRODUCT_def] >>
metis_tac[PAIR_INJ] ) >>
fs[PRODUCT_def,subset_def,EXISTS_UNIQUE_THM] >>
metis_tac[]) >>
rw[] >>
fs[subset_def,EXISTS_UNIQUE_THM,PRODUCT_def] >>
SELECT_ELIM_TAC >>
metis_tac[PAIR_INJ]
QED
open relationTheory
Theorem WF_inset:
WF $<:
Proof
simp[WF_DEF] >> rw[] >>
Induct_on`level w` >> TRY (
rw[] >>
qexists_tac`w` >> rw[] >>
fs[inset_def] >> NO_TAC) >>
rw[] >>
reverse(Cases_on`∃u. u <: w ∧ B u`) >> fs[] >- (
qexists_tac`w` >> rw[] >> metis_tac[] ) >>
first_x_assum(qspec_then`u`mp_tac) >>
fs[inset_def]
QED
Theorem inset_ind =
MATCH_MP WF_INDUCTION_THM WF_inset
val _ = export_theory()