-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathholSyntaxRenamingScript.sml
393 lines (356 loc) · 11.5 KB
/
holSyntaxRenamingScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
(*
Verification of `rename_apart`:
`rename_apart r c` gives a function f, such that
f(r) ∩ c = ∅ , f(r) ∩ r = ∅ and dom(f) = r ∩ c.
*)
open preamble mlstringTheory holSyntaxLibTheory
val _ = new_theory"holSyntaxRenaming"
Theorem ALL_DISTINCT_MAP_inj:
!l f. (!x y. f x = f y <=> x = y) ==> ALL_DISTINCT l = ALL_DISTINCT (MAP f l)
Proof
Induct
>> rw[MEM_MAP]
>> first_x_assum (qspec_then `f` assume_tac)
>> fs[]
QED
Theorem REPLICATE_inj1:
!x y z. REPLICATE x z = REPLICATE y z <=> x = y
Proof
Induct
>> fs[EQ_IMP_THM,REPLICATE,REPLICATE_NIL]
>> Cases >> rw[REPLICATE]
>> res_tac
QED
Theorem REPLICATE_inj:
!n m x y. REPLICATE n x = REPLICATE m y <=> n = m ∧ (0 < m ⇒ x = y)
Proof
Induct
>> fs[EQ_IMP_THM,REPLICATE,REPLICATE_NIL]
>> Cases >> rw[REPLICATE]
>> res_tac
QED
Theorem list_max_APPEND:
!xs ys. list_max (xs ++ ys) = MAX (list_max xs) (list_max ys)
Proof
Induct
>> fs[list_max_def,MAX_DEF]
QED
Theorem list_inter_set_comm:
!xs ys. set (list_inter xs ys) = set (list_inter ys xs)
Proof
rw[list_inter_def,LIST_TO_SET_FILTER,INTER_COMM]
QED
Theorem list_inter_set:
!xs ys. set(list_inter xs ys) = ((set xs) ∩ (set ys))
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>> fs[INSERT_DEF,list_inter_def,INTER_DEF,LIST_TO_SET,LEFT_AND_OVER_OR]
>> rw[SET_EQ_SUBSET,SUBSET_DEF]
>> fs[]
QED
Theorem NULL_list_inter_COMM:
!a b. NULL (list_inter a b) = NULL (list_inter b a)
Proof
metis_tac[NULL_EQ,LIST_TO_SET_EQ_EMPTY,list_inter_set_comm]
QED
Theorem nub_FILTER:
!P l. nub (FILTER P l) = FILTER P (nub l)
Proof
gen_tac >> Induct >> rw[nub_def]
>> fs[MEM_FILTER]
QED
Theorem LENGTH_nub_LEQ:
!l. LENGTH (nub l) <= LENGTH l
Proof
Induct >> rw[nub_def]
QED
Theorem MEM_UNIQUE_nub:
!x l. MEM x l ==> UNIQUE x (nub l)
Proof
CONV_TAC SWAP_FORALL_CONV >> gen_tac
>> REWRITE_TAC[UNIQUE_FILTER,Once $ GSYM MEM_nub,GSYM ALL_DISTINCT_FILTER,all_distinct_nub]
QED
(* rename_apart_by *)
Definition rename_apart_by_def:
rename_apart_by chr r c =
let inter = nub(list_inter c r) in
let m = SUC (list_max (MAP strlen c ++ MAP strlen r)) in
ZIP (MAP (λn. implode $ REPLICATE (m+n) chr) (COUNT_LIST (LENGTH inter)), inter)
End
Theorem rename_apart_by_ALL_DISTINCT:
!chr r c. ALL_DISTINCT (MAP SND (rename_apart_by chr r c))
/\ ALL_DISTINCT (MAP FST (rename_apart_by chr r c))
Proof
rw[rename_apart_by_def]
>> qmatch_goalsub_abbrev_tac `ZIP (l1,l2)`
>> `LENGTH l1 = LENGTH l2` by (unabbrev_all_tac >> fs[LENGTH_MAP,LENGTH_COUNT_LIST])
>> unabbrev_all_tac
>> gs[MEM_ZIP,MAP_ZIP,all_distinct_nub]
>> dep_rewrite.DEP_REWRITE_TAC[GSYM ALL_DISTINCT_MAP_inj]
>> fs[REPLICATE_inj1,all_distinct_count_list,implode_def]
QED
Theorem SUC_MAX:
!a b. SUC (MAX a b) = MAX (SUC a) (SUC b)
Proof
fs[MAX_DEF]
QED
Theorem rename_apart_by_MEM:
!x y chr r c. MEM (y,x) (rename_apart_by chr r c) ==> (~MEM y c /\ MEM x (list_inter c r))
Proof
rw[rename_apart_by_def,EQ_IMP_THM]
>> (qmatch_goalsub_abbrev_tac `ZIP (l1,l2)` ORELSE
qmatch_asmsub_abbrev_tac `ZIP (l1,l2)`)
>> `LENGTH l1 = LENGTH l2` by (unabbrev_all_tac >> fs[LENGTH_MAP,LENGTH_COUNT_LIST])
>> unabbrev_all_tac
>- (
spose_not_then assume_tac
>> gs[MEM_ZIP,MEM_MAP,EL_MAP,EL_COUNT_LIST,implode_def]
>> drule_then (qspec_then `strlen` assume_tac) MEM_MAP_f
>> fs[STRLEN_DEF]
>> dxrule_then assume_tac $ REWRITE_RULE[EVERY_MEM] list_max_max
>> fs[list_max_APPEND,SUC_MAX]
>> dxrule $ Q.prove(`!a b c. (a:num) + b <= c ==> b <= c /\ a <= c`,rw[])
>> fs[MAX_LE]
)
>> fs[Once $ GSYM MEM_nub,EL_MEM,MEM_ZIP,Excl"nub_set"]
QED
Theorem rename_apart_by_chr_FST:
!chr r c. EVERY (λx. ?n. x = implode $ REPLICATE n chr) (MAP FST (rename_apart_by chr r c))
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>- rw[rename_apart_by_def,list_inter_def,nub_def,COUNT_LIST_def]
>> rw[rename_apart_by_def]
>> fs[MAP_ZIP,EVERY_MEM,LENGTH_MAP,LENGTH_COUNT_LIST]
>> rw[MEM_MAP]
>> irule_at Any EQ_REFL
QED
Theorem rename_apart_by_strlen_FST:
!chr r c. EVERY (λx. list_max (MAP strlen (r++c)) < strlen x) (MAP FST (rename_apart_by chr r c))
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>- rw[rename_apart_by_def,list_inter_def,nub_def,COUNT_LIST_def]
>> rw[rename_apart_by_def]
>> fs[MAP_ZIP,EVERY_MEM,LENGTH_COUNT_LIST,LENGTH_MAP]
>> rw[MEM_MAP,MEM_COUNT_LIST,strlen_def]
>> ONCE_REWRITE_TAC[CONS_APPEND]
>> rw[list_max_APPEND,MAX_DEF]
QED
(* dom(f) = r ∩ c *)
Theorem rename_apart_by_MEM_SND1:
!chr r c x. MEM x (list_inter c r) = MEM x (MAP SND (rename_apart_by chr r c))
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>- rw[rename_apart_by_def,list_inter_def,nub_def,COUNT_LIST_def]
>> fs[rename_apart_by_def,MAP_ZIP,LENGTH_MAP,LENGTH_COUNT_LIST]
QED
Theorem rename_apart_by_MEM_SND = ONCE_REWRITE_RULE[list_inter_set_comm] rename_apart_by_MEM_SND1
Theorem rename_apart_by_NULL:
!chr r c. NULL (rename_apart_by chr r c) = NULL (list_inter c r)
Proof
REWRITE_TAC[EQ_IMP_THM]
>> rpt gen_tac >> strip_tac
>> rw[Once MONO_NOT_EQ,NOT_NULL_MEM]
>- (
dxrule_then (qspec_then `chr` assume_tac) $ cj 1 $ REWRITE_RULE[EQ_IMP_THM] rename_apart_by_MEM_SND1
>> fs[MEM_MAP]
>> goal_assum drule
)
>> imp_res_tac $ Q.ISPEC `SND` MEM_MAP_f
>> dxrule_then (irule_at Any) $ cj 2 $ REWRITE_RULE[EQ_IMP_THM] rename_apart_by_MEM_SND1
QED
Theorem rename_apart_by_disj_dom_img:
!chr r c. NULL (list_inter (MAP FST (rename_apart_by chr r c)) (MAP SND (rename_apart_by chr r c)))
Proof
rw[NULL_FILTER,list_inter_def]
>> pop_assum (assume_tac o REWRITE_RULE[MEM_MAP])
>> fs[]
>> Cases_on `y'`
>> imp_res_tac (Q.ISPEC `SND` MEM_MAP_f)
>> fs[GSYM rename_apart_by_MEM_SND1]
>> rw[rename_apart_by_def]
>> qmatch_goalsub_abbrev_tac `ZIP (l1,l2)`
>> `LENGTH l1 = LENGTH l2` by (unabbrev_all_tac >> fs[LENGTH_MAP,LENGTH_COUNT_LIST])
>> drule (REWRITE_RULE[EVERY_MAP,EVERY_MEM] rename_apart_by_strlen_FST)
>> assume_tac (INST_TYPE [alpha |-> ``:mlstring``,beta|->``:num``] MEM_MAP_f)
>> first_assum (qspecl_then [`strlen`,`l1`,`r'`] assume_tac)
>> first_x_assum (qspecl_then [`strlen`,`list_inter c r`,`r'`] assume_tac)
>> fs[MAP_ZIP]
>> rw[]
>> CCONTR_TAC
>> rfs[]
>> qpat_x_assum `MEM _ _ ==> _` imp_res_tac
>> unabbrev_all_tac
>> qpat_x_assum `MEM (strlen _) _` (assume_tac o REWRITE_RULE[MAP_MAP_o,MEM_MAP])
>> fs[]
>> rveq
>> fs[strlen_def]
>> pop_assum (assume_tac o REWRITE_RULE[MEM_EL])
>> fs[EL_COUNT_LIST,LENGTH_COUNT_LIST,list_max_APPEND,MAX_DEF]
>> fs[MEM_MAP,list_inter_set]
>> FULL_CASE_TAC
>> rveq
>> fs[strlen_def,STRLEN_DEF,EL_COUNT_LIST]
>> `list_max (MAP strlen r) < strlen y` by (
fs[]
)
>> assume_tac (INST_TYPE [alpha |-> ``:mlstring``,beta|->``:num``] MEM_MAP_f)
>> first_x_assum (qspec_then `strlen` assume_tac)
>> res_tac
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] list_max_max)
>> fs[]
QED
Theorem rename_apart_by_diff:
!chr r c. EVERY (UNCURRY $<>) (rename_apart_by chr r c)
Proof
rw[EVERY_MEM]
>> pairarg_tac
>> rveq
>> imp_res_tac (Q.ISPEC `SND` MEM_MAP_f)
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> imp_res_tac (REWRITE_RULE[NULL_FILTER,list_inter_def] rename_apart_by_disj_dom_img)
>> CCONTR_TAC
>> fs[]
QED
(* f(r) ∩ r = ∅ *)
Theorem rename_apart_by_disj_img_r:
!chr r c. NULL (list_inter (MAP FST (rename_apart_by chr r c)) r)
Proof
rw[NULL_FILTER,list_inter_def]
>> CCONTR_TAC
>> fs[]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] rename_apart_by_strlen_FST)
>> fs[list_max_APPEND,MAX_DEF]
>> assume_tac (INST_TYPE [alpha |-> ``:mlstring``,beta|->``:num``] MEM_MAP_f)
>> first_x_assum (qspec_then `strlen` assume_tac)
>> res_tac
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] list_max_max)
>> fs[]
QED
(* f(r) ∩ c = ∅ *)
Theorem rename_apart_by_disj_img_c:
!chr r c. NULL (list_inter (MAP FST (rename_apart_by chr r c)) c)
Proof
rw[NULL_FILTER,list_inter_def]
>> Cases_on `MEM y r`
>- (
assume_tac rename_apart_by_disj_dom_img
>> fs[list_inter_def,NULL_FILTER]
>> pop_assum match_mp_tac
>> fs[GSYM rename_apart_by_MEM_SND,list_inter_set]
)
>> CCONTR_TAC
>> fs[]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] rename_apart_by_strlen_FST)
>> fs[list_max_APPEND,MAX_DEF]
>> assume_tac (INST_TYPE [alpha |-> ``:mlstring``,beta|->``:num``] MEM_MAP_f)
>> first_x_assum (qspec_then `strlen` assume_tac)
>> res_tac
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] list_max_max)
>> fs[]
QED
Theorem MEM_MAP_SWAP:
!x s. MEM (SWAP x) (MAP SWAP s) = MEM x s
Proof
rw[EQ_IMP_THM,MEM_MAP,SWAP_def]
>- (Cases_on `x` >> Cases_on `y` >> fs[PAIR])
>> Cases_on `x`
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
QED
Theorem rename_apart_by_ALOOKUP:
!v x chr r c. MEM (v,x) (rename_apart_by chr r c)
= (ALOOKUP (MAP SWAP (rename_apart_by chr r c)) x = SOME v)
Proof
ONCE_REWRITE_TAC[GSYM MEM_MAP_SWAP]
>> rw[SWAP_def]
>> match_mp_tac MEM_ALOOKUP
>> `FST o SWAP = SND:mlstring#mlstring->mlstring` by rw[FUN_EQ_THM,SWAP_def]
>> fs[rename_apart_by_ALL_DISTINCT,MAP_MAP_o]
QED
Theorem rename_apart_by_ALOOKUP_NONE:
!x chr r c. (!v. ~MEM (v,x) (rename_apart_by chr r c))
= (ALOOKUP (MAP SWAP (rename_apart_by chr r c)) x = NONE)
Proof
fs[EQ_IMP_THM]
>> rpt strip_tac
>> CCONTR_TAC
>> fs[rename_apart_by_ALOOKUP]
>> qmatch_asmsub_abbrev_tac `ALOOKUP s x`
>> Cases_on `ALOOKUP s x`
>> fs[]
QED
Theorem rename_apart_by_LIST_UNION:
!chr r c1 c2. NULL (list_inter (MAP FST (rename_apart_by chr r (LIST_UNION c1 c2))) c1)
/\ NULL (list_inter (MAP FST (rename_apart_by chr r (LIST_UNION c1 c2))) c2)
Proof
rw[]
>> qmatch_goalsub_abbrev_tac `rename_apart_by _ _ c`
>> qspecl_then [`chr`,`r`,`c`] assume_tac rename_apart_by_disj_img_c
>> unabbrev_all_tac
>> fs[NULL_FILTER,list_inter_def,holSyntaxLibTheory.MEM_LIST_UNION]
QED
Definition list_complement_def:
list_complement a b = FILTER (λx. ~MEM x b) a
End
Theorem list_complement_LENGTH:
!a b. LENGTH (list_complement a b) <= LENGTH a
Proof
fs[list_complement_def,LENGTH_FILTER_LEQ]
QED
Theorem list_complement_MEM:
!a b x. MEM x (list_complement a b) = (MEM x a /\ ~MEM x b)
Proof
fs[list_complement_def,MEM_FILTER,CONJ_COMM]
QED
Theorem list_complement_MAP:
!f a b. list_subset (list_complement (MAP f a) (MAP f b)) (MAP f (list_complement a b))
Proof
rw[list_subset_def,EVERY_MEM,list_complement_def,MEM_FILTER,MEM_MAP]
>> first_x_assum (qspec_then `y` assume_tac)
>> fs[]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> rfs[]
QED
Theorem MEM_f_MAP_f_INJ:
!f l. (!x y. f x = f y ==> x = y)
==> !x. MEM (f x) (MAP f l) = MEM x l
Proof
rw[EQ_IMP_THM,MEM_MAP]
>- (qpat_x_assum `!x. _` imp_res_tac >> fs[])
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
QED
Theorem list_complement_MAP_INJ:
!f a b. (!x y. f x = f y ==> x = y) ==>
MAP f (list_complement a b) = (list_complement (MAP f a) (MAP f b))
Proof
strip_tac
>> Induct
>- fs[list_complement_def]
>> fs[list_complement_def,MEM_f_MAP_f_INJ]
>> rw[]
QED
Theorem rename_apart_by_list_complement:
!chr r rc c. NULL (list_inter (MAP SND (rename_apart_by chr (list_complement r rc) c)) rc)
Proof
ONCE_REWRITE_TAC[NULL_list_inter_COMM]
>> rw[NULL_FILTER,list_inter_def]
>> imp_res_tac rename_apart_by_MEM_SND
>> fs[list_inter_set,list_complement_MEM]
QED
Theorem rename_apart_by_chrs:
!chr1 chr2 r1 r2 c1 c2.
chr1 <> chr2
==> NULL (list_inter (MAP FST (rename_apart_by chr1 r1 c1)) (MAP FST (rename_apart_by chr2 r2 c2)))
Proof
rw[NULL_FILTER,list_inter_def]
>> spose_not_then assume_tac
>> imp_res_tac $ REWRITE_RULE[EVERY_MEM] rename_apart_by_strlen_FST
>> imp_res_tac $ REWRITE_RULE[EVERY_MEM] rename_apart_by_chr_FST
>> gvs[implode_def, REPLICATE_inj]
QED
val _ = export_theory()