-
Notifications
You must be signed in to change notification settings - Fork 0
/
latex1.json
2067 lines (2067 loc) · 74.5 KB
/
latex1.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"id": 1,
"title": "Pythagorean Property - Sine and Cosine",
"equation": "\\sin ^2 \\theta + \\cos ^2 \\theta = 1"
},
{
"id": 2,
"title": "Sine Definition for a Right Triangle",
"equation": "\\sin \\theta = \\frac{{{\\rm{Opposite Side}}}}{{{\\rm{Hypotenuse}}}}"
},
{
"id": 3,
"title": "Cosine Definition for a Right Triangle",
"equation": "\\cos \\theta = \\frac{{{\\rm{Adjacent Side}}}}{{{\\rm{Hypotenuse}}}}"
},
{
"id": 4,
"title": "Tangent Definition for a Right Triangle",
"equation": "\\tan \\theta = \\frac{{{\\rm{Opposite Side}}}}{{{\\rm{AdjacentSide}}}}"
},
{
"id": 5,
"title": "Double Angle Identity - Sine",
"equation": "\\sin 2\\theta = 2\\sin \\theta \\cos \\theta"
},
{
"id": 6,
"title": "Double Angle Identity - Cosine",
"equation": "\\cos 2\\theta = \\cos ^2 \\theta - \\sin ^2 \\theta = 2\\cos ^2 \\theta - 1"
},
{
"id": 7,
"title": "Half Angle Identity - Sine",
"equation": "\\sin \\frac{\\theta }{2} = \\sqrt {\\frac{{1 - \\cos \\theta }}{2}}"
},
{
"id": 8,
"title": "Half Angle Identity - Cosine",
"equation": "\\cos \\frac{\\theta }{2} = \\sqrt {\\frac{{1 + \\cos \\theta }}{2}}"
},
{
"id": 9,
"title": "Sum and Difference of Angles Identity - Sine",
"equation": "\\sin \\left( {\\theta _1 \\pm \\theta _2 } \\right) = \\sin \\theta _1 \\cos \\theta _2 \\pm \\cos \\theta _1 \\sin \\theta _2"
},
{
"id": 10,
"title": "Sum and Difference of Angles Identity - Cosine",
"equation": "\\cos \\left( {\\theta _1 \\pm \\theta _2 } \\right) = \\cos \\theta _1 \\cos \\theta _2 \\mp \\sin \\theta _1 \\sin \\theta _2"
},
{
"id": 11,
"title": "Additive Identity Property",
"equation": "{\\rm{a + 0 = a}} "
},
{
"id": 12,
"title": "Additive Inverse Property",
"equation": "a + \\left( { - a} \\right) = 0 "
},
{
"id": 13,
"title": "Associative Property of Addition",
"equation": "\\left( {a + b} \\right) + c = a + \\left( {b + c} \\right) "
},
{
"id": 14,
"title": "Commutative Property of Addition",
"equation": "a + b = b + a "
},
{
"id": 15,
"title": "Definition of Subtraction",
"equation": "a - b = a + \\left( { - b} \\right) "
},
{
"id": 16,
"title": "Multiplicative Identity",
"equation": "a \\times 1 = a "
},
{
"id": 17,
"title": "Multiplicative Inverse",
"equation": "a \\times \\frac{1}{a} = 1 "
},
{
"id": 18,
"title": "Zero Multiplication Property",
"equation": "a \\times 0 = 0 "
},
{
"id": 19,
"title": "Associative Property of Multiplication",
"equation": "\\left( {a \\times b} \\right) \\times c = a \\times \\left( {b \\times c} \\right) = a \\times b \\times c "
},
{
"id": 20,
"title": "Definition of Division",
"equation": "\\frac{a}{b} = a \\times \\left( {\\frac{1}{b}} \\right) "
},
{
"id": 21,
"title": "Square of a First Order Polynomial",
"equation": "\\left( {a + b} \\right)^2 = a^2 + 2ab + b^2 "
},
{
"id": 22,
"title": "Polynomial FOIL operation",
"equation": "\\left( {a + b} \\right)\\left( {c + d} \\right) = ac + ad + bc + bd "
},
{
"id": 23,
"title": "Difference of Squares Factorization",
"equation": "a^2 - b^2 = \\left( {a + b} \\right)\\left( {a - b} \\right) "
},
{
"id": 24,
"title": "Sum of Cubes Factorization",
"equation": "a^3 + b^3 = \\left( {a + b} \\right)\\left( {a^2 - ab + b^2 } \\right) "
},
{
"id": 25,
"title": "Difference of Cubes Factorization",
"equation": "a^3 - b^3 = \\left( {a - b} \\right)\\left( {a^2 + ab + b^2 } \\right) "
},
{
"id": 26,
"title": "Second Order Polynomial Factorization",
"equation": "x^2 + x\\left( {a + b} \\right) + ab = \\left( {x + a} \\right)\\left( {x + b} \\right) "
},
{
"id": 27,
"title": "Quadratic Formula",
"equation": "\\begin{array}{*{20}c} {x = \\frac{{ - b \\pm \\sqrt {b^2 - 4ac} }}{{2a}}} \u0026 {{\\rm{when}}} \u0026 {ax^2 + bx + c = 0} \\\\ \\end{array}"
},
{
"id": 28,
"title": "Exponent Equal to Zero Rule",
"equation": "x^0 = 1 "
},
{
"id": 29,
"title": "Exponent Equal to One Rule",
"equation": "x^1 = x "
},
{
"id": 30,
"title": "Addition of Exponents Rule",
"equation": "x^a x^b = x^{\\left( {a + b} \\right)} "
},
{
"id": 31,
"title": "Distributive Property of Exponents",
"equation": "x^a y^a = \\left( {xy} \\right)^a "
},
{
"id": 32,
"title": "Power Rule of Exponents",
"equation": "\\left( {x^a } \\right)^b = x^{\\left( {ab} \\right)} "
},
{
"id": 33,
"title": "Fractional Exponent to Fractional Root Relationship",
"equation": "x^{\\left( {\\frac{a}{b}} \\right)} = \\sqrt[b]{{x^a }} "
},
{
"id": 34,
"title": "Definition of Square Root",
"equation": "x^{\\left( {\\frac{1}{2}} \\right)} = \\sqrt x "
},
{
"id": 35,
"title": "Negative Exponent Definition",
"equation": "x^{ - a} = \\frac{1}{{x^a }} "
},
{
"id": 36,
"title": "Subtraction of Exponents Rule",
"equation": "x^{\\left( {a - b} \\right)} = \\frac{{x^a }}{{x^b }} "
},
{
"id": 37,
"title": "Definition of a Logarithm",
"equation": "y = \\log _b \\left( x \\right){\\rm{ iff }}x = b^y "
},
{
"id": 38,
"title": "Logarithm of One",
"equation": "\\log _b \\left( 1 \\right) = 0 "
},
{
"id": 39,
"title": "Logarithmic Identity Property",
"equation": "\\log _b \\left( b \\right) = 1 "
},
{
"id": 40,
"title": "Sum of Logarithms Property",
"equation": "\\log _b \\left( {xy} \\right) = \\log _b \\left( x \\right) + \\log _b \\left( y \\right) "
},
{
"id": 41,
"title": "Difference of Logarithms Property",
"equation": "\\log _b \\left( {\\frac{x}{y}} \\right) = \\log _b \\left( x \\right) - \\log _b \\left( y \\right) "
},
{
"id": 42,
"title": "Logarithm of an Exponential",
"equation": "\\log _b \\left( {x^n } \\right) = n\\log _b \\left( x \\right) "
},
{
"id": 43,
"title": "Logarithm Base Conversion",
"equation": "\\log _b \\left( x \\right) = \\log _b \\left( c \\right)\\log _c \\left( x \\right) = \\frac{{\\log _c \\left( x \\right)}}{{\\log _c \\left( b \\right)}} "
},
{
"id": 44,
"title": "SURD Multiplication",
"equation": "a\\sqrt b \\times c\\sqrt d = ac\\sqrt {bd} "
},
{
"id": 45,
"title": "SURD Division",
"equation": "\\frac{{a\\sqrt b }}{{c\\sqrt d }} = \\frac{a}{c}\\sqrt {\\frac{b}{d}} "
},
{
"id": 46,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 47,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 48,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 49,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 50,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 51,
"title": "SURD Addition and Subtraction",
"equation": "a\\sqrt b \\pm c\\sqrt b = \\left( {a \\pm c} \\right)\\sqrt b "
},
{
"id": 52,
"title": "Integral of powers not equal to -1",
"equation": "\\int {x^n } dx = \\frac{{x^{n + 1} }}{{n + 1}},(n \\ne - 1)"
},
{
"id": 53,
"title": "Integration by parts",
"equation": "\\int {u\\frac{{dv}}{{dx}}} dx = uv - \\int {\\frac{{du}}{{dx}}} vdx"
},
{
"id": 54,
"title": "Integral of reciprocal",
"equation": "\\int {\\frac{1}{x}} dx = \\ln \\left| x \\right| + c"
},
{
"id": 55,
"title": "Integral of cosine",
"equation": "\\int {\\cos (ax)} dx = \\frac{1}{a}\\sin (ax) + c"
},
{
"id": 56,
"title": "Integral of sine",
"equation": "\\int {\\sin (ax)} dx = - \\frac{1}{a}\\cos (ax) + c"
},
{
"id": 57,
"title": "Integral of tangent",
"equation": "\\int {\\tan (ax)} dx = - \\frac{1}{a}\\ln \\left| {\\cos (ax)} \\right| + c"
},
{
"id": 58,
"title": "Integral of cosecant",
"equation": "\\int {\\csc (ax)} dx = \\frac{1}{a}\\ln \\left| {\\tan \\left( {\\frac{{ax}}{2}} \\right)} \\right| + c"
},
{
"id": 59,
"title": "Integral of secant",
"equation": "\\int {\\sec (ax)} dx = \\frac{1}{a}\\ln \\left| {\\tan \\left( {\\frac{{ax}}{2} + \\frac{\\pi }{4}} \\right)} \\right| + c"
},
{
"id": 60,
"title": "Limit of Sine X over X as X Approaches Zero",
"equation": "\\mathop {\\lim }\\limits_{x \\to 0} \\frac{{\\sin x}}{x} = 1"
},
{
"id": 61,
"title": "Limit of Tangent X over X as X Approaches Zero",
"equation": "\\mathop {\\lim }\\limits_{x \\to 0} \\frac{{\\tan x}}{x} = 1"
},
{
"id": 62,
"title": "Area of a circle",
"equation": "A = \\pi r^2"
},
{
"id": 63,
"title": "Area of an ellipse",
"equation": "A = \\pi r_1 r_2"
},
{
"id": 64,
"title": "Area of an equilateral triangle",
"equation": "A = \\frac{{h^2 \\sqrt 3 }}{3}"
},
{
"id": 65,
"title": "Area of a parallelogram",
"equation": "A = bh"
},
{
"id": 66,
"title": "Area of a rectangle",
"equation": "A = lw"
},
{
"id": 67,
"title": "Area of a regular polygon",
"equation": "A = \\frac{{nsr}}{2} = \\frac{{pr}}{2}"
},
{
"id": 68,
"title": "Area of a rhombus",
"equation": "A = \\frac{{x_1 x_2 }}{2}"
},
{
"id": 69,
"title": "Area of a sector",
"equation": "A = \\frac{{\\theta r^2 }}{2}"
},
{
"id": 70,
"title": "Area of a square",
"equation": "A = x^2"
},
{
"id": 71,
"title": "Area of a trapezoid",
"equation": "A = \\frac{1}{2}(x_1 + x_2 )h"
},
{
"id": 72,
"title": "Area of a triangle",
"equation": "A = \\frac{1}{2}bh"
},
{
"id": 73,
"title": "Volume of a cone",
"equation": "V = \\frac{{Bh}}{3} = \\frac{{\\pi r^2 h}}{3}"
},
{
"id": 74,
"title": "Volume of a sphere",
"equation": "V = \\frac{{4\\pi r^3 }}{3}"
},
{
"id": 75,
"title": "Volume of a pyramid",
"equation": "V = \\frac{{Bh}}{3}"
},
{
"id": 76,
"title": "Volume of a pyramid",
"equation": "V = \\frac{{Bh}}{3}"
},
{
"id": 77,
"title": "Volume of a cube",
"equation": "V = x^3"
},
{
"id": 78,
"title": "Volume of a cuboid",
"equation": "V = lhw"
},
{
"id": 79,
"title": "Volume of a cylinder",
"equation": "V = Bh = \\pi r^2 h"
},
{
"id": 80,
"title": "Volume of a prism",
"equation": "V = Bh"
},
{
"id": 81,
"title": "Ideal gas equation",
"equation": "PV = nRT"
},
{
"id": 82,
"title": "kinetic energy",
"equation": "E_k = \\frac{1}{2}mv^2"
},
{
"id": 83,
"title": "equation of linear motion",
"equation": "x\\left( t \\right) = x_o + vt + \\frac{1}{2}at^2"
},
{
"id": 84,
"title": "Surface area of a sphere",
"equation": "S = 4\\pi r^2"
},
{
"id": 85,
"title": "Surface area of a cylinder",
"equation": "S = 2\\pi r^2 + 2\\pi rh"
},
{
"id": 86,
"title": "Surface area of a cuboid",
"equation": "S = 2lw + 2lh + 2wh"
},
{
"id": 87,
"title": "Surface area of a cube",
"equation": "S = 6x^2"
},
{
"id": 88,
"title": "Refractive index",
"equation": "n = \\frac{{\\sin {\\rm{ }}i}}{{\\sin {\\rm{ }}r}} = \\frac{{{\\rm{depth}}}}{{{\\rm{apparent depth}}}}"
},
{
"id": 89,
"title": "Einstein\u0027s relativistic mass-energy relation",
"equation": "E = mc^2"
},
{
"id": 90,
"title": "spring constant",
"equation": "k = \\frac{F}{x}"
},
{
"id": 91,
"title": "simple harmonic motion acceleration",
"equation": "a = - \\omega ^2 x = - \\omega ^2 r\\sin (\\omega t)"
},
{
"id": 92,
"title": "Adibiatic change",
"equation": "PV = k"
},
{
"id": 93,
"title": "Ampere\u0027s law",
"equation": "\\oint_C {Bd\\ell = \\mu _0 I_C }"
},
{
"id": 94,
"title": "Angular Momentum",
"equation": "M = I\\omega"
},
{
"id": 95,
"title": "Beat frequency",
"equation": "f = f_1 - f_2"
},
{
"id": 96,
"title": "Charles\u0027 Law",
"equation": "\\frac{V}{t} = k"
},
{
"id": 97,
"title": "de Broglie wavelength",
"equation": "\\lambda = \\frac{h}{{mv}}"
},
{
"id": 98,
"title": "Voltage equation",
"equation": "V = IR"
},
{
"id": 99,
"title": "Zurich sunspot number",
"equation": "R = k(f + 10g)"
},
{
"id": 100,
"title": "Yukawa Potential",
"equation": "V = \\frac{{V_\\theta e^{ - kr} }}{r}"
},
{
"id": 101,
"title": "Young\u0027s modulus",
"equation": "\\Upsilon = \\frac{{{F \\mathord{\\left/ {\\vphantom {F A}} \\right. \\kern-\\nulldelimiterspace} A}}}{{{{\\Delta L} \\mathord{\\left/ {\\vphantom {{\\Delta L} L}} \\right. \\kern-\\nulldelimiterspace} L}}} = \\frac{{{\\rm{Stress}}}}{{{\\rm{Strain}}}}"
},
{
"id": 102,
"title": "Newton\u0027s Second Law (Force)",
"equation": "F = ma"
},
{
"id": 103,
"title": "Z-transform time domain convolution (z domain multiplication) property",
"equation": "h(n) * x(n) \\Leftrightarrow H(z)X(z)"
},
{
"id": 104,
"title": "Z-transform linearity property",
"equation": "a_1 x_1 (n) + a_2 x_2 (n) \\Leftrightarrow a_1 X_1 (z) + a_2 X_2 (z)"
},
{
"id": 105,
"title": "Z-transform translation (time shift) property",
"equation": "x(n - m) \\Leftrightarrow z^{ - m} X(z)"
},
{
"id": 106,
"title": "Z-transform multiplication by an exponential (z domain scaling) property",
"equation": "a^n x\\left( n \\right) \\Leftrightarrow X\\left( {\\frac{z}{a}} \\right)"
},
{
"id": 107,
"title": "Z-transform multiplication by a ramp (z domain differentiation) property",
"equation": "nx\\left( n \\right) \\Leftrightarrow - z\\frac{{dX(z)}}{{dz}}"
},
{
"id": 108,
"title": "Z-transform multiplication by a ramp (z domain differentiation) property",
"equation": "nx\\left( n \\right) \\Leftrightarrow - z\\frac{{dX(z)}}{{dz}}"
},
{
"id": 109,
"title": "Z-transform time domain multiplication (z domain convolution) property",
"equation": "h(n)x(n) \\Leftrightarrow \\frac{1}{{2\\pi j}}\\oint_C {H\\left( v \\right)X\\left( {z/v} \\right)\\mathop v\\nolimits^{ - 1} dv}"
},
{
"id": 110,
"title": "Z-transform initial value theorem",
"equation": "x\\left( {0^ - } \\right) = \\mathop {\\lim }\\limits_{z \\to \\infty } X\\left( z \\right)"
},
{
"id": 111,
"title": "Z-transform final value theorem. Valid only if polues of (z-1)X(z) are inside the unit circle.",
"equation": "x\\left( \\infty \\right) = \\mathop {\\lim }\\limits_{z \\to 1} \\left( {z - 1} \\right)X\\left( z \\right)"
},
{
"id": 112,
"title": "Z-transform of delta",
"equation": "\\delta (n) \\Leftrightarrow 1"
},
{
"id": 113,
"title": "Z-transform of shifted delta",
"equation": "\\delta (n - m) \\Leftrightarrow z^{ - m} ,\\left| z \\right| \u003e 1"
},
{
"id": 114,
"title": "Z-transform of unit step function",
"equation": "u(n) \\Leftrightarrow \\frac{z}{{z - 1}},\\left| z \\right| \u003e 1"
},
{
"id": 115,
"title": "Z-transform involving the unit step function",
"equation": "nu(n) \\Leftrightarrow \\frac{z}{{\\left( {z - 1} \\right)^2 }},\\left| z \\right| \u003e 1"
},
{
"id": 116,
"title": "Z-transform involving the unit step function",
"equation": "n^2 u(n) \\Leftrightarrow \\frac{{z\\left( {z + 1} \\right)}}{{\\left( {z - 1} \\right)^3 }},\\left| z \\right| \u003e 1"
},
{
"id": 117,
"title": "Z-transform involving the unit step function",
"equation": "n^3 u(n) \\Leftrightarrow \\frac{{z\\left( {z^2 + 4z + 1} \\right)}}{{\\left( {z - 1} \\right)^4 }},\\left| z \\right| \u003e 1"
},
{
"id": 118,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "a^n u(n) \\Leftrightarrow \\frac{z}{{\\left( {z - a} \\right)}},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 119,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "na^n u(n) \\Leftrightarrow \\frac{{az}}{{\\left( {z - a} \\right)^2 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 120,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "n^2 a^n u(n) \\Leftrightarrow \\frac{{az(z + a)}}{{\\left( {z - a} \\right)^3 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 121,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "n^3 a^n u(n) \\Leftrightarrow \\frac{{az(z^2 + 4az + a^2 )}}{{\\left( {z - a} \\right)^4 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 122,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "na^{n - 1} u(n) \\Leftrightarrow \\frac{z}{{\\left( {z - a} \\right)^2 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 123,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "\\frac{1}{2}n(n - 1)a^{n - 2} u(n) \\Leftrightarrow \\frac{z}{{\\left( {z - a} \\right)^3 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 124,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "\\frac{1}{6}n(n - 1)(n - 2)a^{n - 3} u(n) \\Leftrightarrow \\frac{z}{{\\left( {z - a} \\right)^4 }},\\left| z \\right| \u003e \\left| a \\right|"
},
{
"id": 125,
"title": "Z-transform involving the unit step function and an exponential",
"equation": "e^n u(n) \\Leftrightarrow \\frac{z}{{\\left( {z - e} \\right)}},\\left| z \\right| \u003e \\left| e \\right|"
},
{
"id": 126,
"title": "Z-transform involving the unit step function and sine",
"equation": "\\sin (\\omega _o n)u(n) \\Leftrightarrow \\frac{{z\\sin \\omega _o }}{{\\left( {z^2 - 2z\\cos \\omega _o + 1} \\right)}},\\left| z \\right| \u003e 1"
},
{
"id": 127,
"title": "Z-transform involving the unit step function and cosine",
"equation": "\\cos (\\omega _o n)u(n) \\Leftrightarrow \\frac{{z(z - \\cos \\omega _o )}}{{\\left( {z^2 - 2z\\cos \\omega _o + 1} \\right)}},\\left| z \\right| \u003e 1"
},
{
"id": 128,
"title": "Z-transform involving the unit step function and cosine",
"equation": "\\cos (\\omega _o n + \\theta )u(n) \\Leftrightarrow \\frac{{z[z\\cos \\theta - \\cos (\\omega _o - \\theta )]}}{{\\left( {z^2 - 2z\\cos \\omega _o + 1} \\right)}},\\left| z \\right| \u003e 1"
},
{
"id": 129,
"title": "Z-transform involving the unit step function and sine",
"equation": "\\sin (\\omega _o n + \\theta )u(n) \\Leftrightarrow \\frac{{z[z\\sin \\theta + \\sin (\\omega _o - \\theta )]}}{{\\left( {z^2 - 2z\\cos \\omega _o + 1} \\right)}},\\left| z \\right| \u003e 1"
},
{
"id": 130,
"title": "Z-transform involving the unit step function and sine",
"equation": "\\sin (\\omega _o n + \\theta )u(n) \\Leftrightarrow \\frac{{z[z\\sin \\theta + \\sin (\\omega _o - \\theta )]}}{{\\left( {z^2 - 2z\\cos \\omega _o + 1} \\right)}},\\left| z \\right| \u003e 1"
},
{
"id": 131,
"title": "Z-transform involving the unit step function and hyperbolic sine",
"equation": "\\sinh (\\omega _o n)u(n) \\Leftrightarrow \\frac{{z\\sinh \\omega _o }}{{\\left( {z^2 - 2z\\cosh \\omega _o + 1} \\right)}},\\left| z \\right| \u003e e^{\\omega _o }"
},
{
"id": 132,
"title": "Z-transform involving the unit step function and hyperbolic cosine",
"equation": "\\cosh (\\omega _o n)u(n) \\Leftrightarrow \\frac{{z(z - \\cosh \\omega _o )}}{{\\left( {z^2 - 2z\\cosh \\omega _o + 1} \\right)}},\\left| z \\right| \u003e e^{\\omega _o }"
},
{
"id": 133,
"title": "Laplace transform of Kroeneker delta function",
"equation": "\\delta (t) \\Leftrightarrow 1"
},
{
"id": 134,
"title": "Laplace transform of unit step function times a constant (K)",
"equation": "Ku(t) \\Leftrightarrow \\frac{K}{s}"
},
{
"id": 135,
"title": "Laplace transform involving the unit step function",
"equation": "tu(t) \\Leftrightarrow \\frac{1}{{s^2 }}"
},
{
"id": 136,
"title": "Laplace transform involving the unit step function",
"equation": "t^n u(t) \\Leftrightarrow \\frac{{n!}}{{s^{n + 1} }}"
},
{
"id": 137,
"title": "Laplace transform involving the unit step function and an exponential",
"equation": "Ke^{ - at} u(t) \\Leftrightarrow \\frac{K}{{s + a}}"
},
{
"id": 138,
"title": "Laplace transform involving the unit step function and an exponential",
"equation": "t^n e^{ - at} u(t) \\Leftrightarrow \\frac{{n!}}{{(s + a)^{n + 1} }}"
},
{
"id": 139,
"title": "Laplace transform involving the unit step function and sine",
"equation": "\\sin (\\Omega t)u(t) \\Leftrightarrow \\frac{\\Omega }{{(s^2 + \\Omega ^2 )}}"
},
{
"id": 140,
"title": "Laplace transform involving the unit step function and cosine",
"equation": "\\cos (\\Omega t)u(t) \\Leftrightarrow \\frac{s}{{(s^2 + \\Omega ^2 )}}"
},
{
"id": 141,
"title": "Laplace transform involving the unit step function, cosine, and an exponential",
"equation": "e^{ - at} \\cos (\\Omega t)u(t) \\Leftrightarrow \\frac{{s + a}}{{(s + a)^2 + \\Omega ^2 }}"
},
{
"id": 142,
"title": "Laplace transform involving the unit step function, sine, and an exponential",
"equation": "e^{ - at} \\sin (\\Omega t)u(t) \\Leftrightarrow \\frac{\\Omega }{{(s + a)^2 + \\Omega ^2 }}"
},
{
"id": 143,
"title": "Laplace transform linearity property",
"equation": "a_1 x_1 (t) + a_2 x_2 (t) \\Leftrightarrow a_1 X_1 (s) + a_2 X_2 (s)"
},
{
"id": 144,
"title": "Laplace transform Nth time domain derivative property",
"equation": "\\frac{{d^n x(t)}}{{dt^n }} \\Leftrightarrow s^n X(s)"
},
{
"id": 145,
"title": "Laplace transform integral property",
"equation": "\\int\\limits_0^t {x(\\tau )d} \\tau \\Leftrightarrow \\frac{1}{s}X(s)"
},
{
"id": 146,
"title": "Laplace transform time domain shifting property",
"equation": "x(t - a)u(t - a) \\Leftrightarrow e^{ - as} X(s + a)"
},
{
"id": 147,
"title": "Laplace transform time domain scaling property",
"equation": "x(at)u(t) \\Leftrightarrow \\frac{1}{a}X\\left( {\\frac{s}{a}} \\right)"
},
{
"id": 148,
"title": "Laplace transform time varying coefficient (s domain differentiation) property",
"equation": "tx(t)u(t) \\Leftrightarrow \\frac{{ - dX(s)}}{{ds}}"
},
{
"id": 149,
"title": "Laplace transform time domain linear convolution (s domain multiplication) property",
"equation": "\\int\\limits_0^\\infty {x_1 (\\tau )x_2 (t - \\tau )d\\tau } \\Leftrightarrow X_1 (s)X_2 (s)"
},
{
"id": 150,
"title": "Laplace transform final value theorem (valid if poles of sX(s) are in left half of s plane).",
"equation": "x(\\infty ) = \\mathop {\\lim }\\limits_{s \\to 0} sX(s)"
},
{
"id": 151,
"title": "Laplace transform initial value theorem",
"equation": "x(0^ + ) = \\mathop {\\lim }\\limits_{s \\to \\infty } sX(s)"
},
{
"id": 152,
"title": "Laplace transform definition",
"equation": "X(s) = \\int\\limits_0^\\infty {x(t)e^{ - st} dt}"
},
{
"id": 153,
"title": "Z transform definition",
"equation": "X(z) \\buildrel \\Delta \\over = \\sum\\limits_{n = - \\infty }^\\infty {x(n)z^{ - n} }"
},
{
"id": 154,
"title": "Discrete-Time Fourier linearity theorem",
"equation": "ax(n) + by(n) \\Leftrightarrow aX(e^{j\\omega } ) + bY(e^{j\\omega } )"
},
{
"id": 155,
"title": "Discrete-Time Fourier time shift property",
"equation": "x(n - n_o ) \\Leftrightarrow e^{ - j\\omega n_o } X(e^{j\\omega } )"
},
{
"id": 156,
"title": "Discrete-Time Fourier frequency shift property",
"equation": "e^{ + j\\omega _o n} x(n) \\Leftrightarrow X(e^{j(\\omega - \\omega _o )} )"
},
{
"id": 157,
"title": "Discrete-Time Fourier time reversal property",
"equation": "x( - n) \\Leftrightarrow X(e^{ - j\\omega } )"
},
{
"id": 158,
"title": "Discrete-Time Fourier time reversal property; x(n) real",
"equation": "x( - n) \\Leftrightarrow X^* (e^{j\\omega } )"
},
{
"id": 159,
"title": "Discrete-Time Fourier frequency differentiation property",
"equation": "nx(n) \\Leftrightarrow j\\frac{{dX(e^{j\\omega } )}}{{d\\omega }}"
},
{
"id": 160,
"title": "Discrete-Time Fourier time/space convolution property",
"equation": "x(n) * y(n) \\Leftrightarrow X(e^{j\\omega } )Y(e^{j\\omega } )"
},
{
"id": 161,
"title": "Discrete-Time Fourier windowing, modulation, frequency convolution property",
"equation": "x(n)y(n) \\Leftrightarrow \\frac{1}{{2\\pi }}\\int\\limits_{ - \\pi }^\\pi {X(e^{j\\theta } )Y(e^{j(\\omega - \\theta )} )d\\theta }"
},
{
"id": 162,
"title": "Discrete-Time Fourier transform - Parseval\u0027s Theorem",
"equation": "\\sum\\limits_{n = - \\infty }^\\infty {\\left| {x(n)} \\right|^2 } = \\frac{1}{{2\\pi }}\\int\\limits_{ - \\pi }^\\pi {\\left| {X(e^{j\\omega } )} \\right|^2 d\\omega }"
},
{
"id": 163,
"title": "Discrete-Time Fourier transform - Parseval\u0027s Theorem",
"equation": "\\sum\\limits_{n = - \\infty }^\\infty {x(n)y^* (n)} = \\frac{1}{{2\\pi }}\\int\\limits_{ - \\pi }^\\pi {X(e^{j\\omega } )Y^* (e^{j\\omega } )d\\omega }"
},
{
"id": 164,
"title": "Discrete-Time Fourier transform of delta",
"equation": "a\\delta (n) \\Leftrightarrow a"
},
{
"id": 165,
"title": "Discrete-Time Fourier transform of shifted delta",
"equation": "\\delta (n - n_o ) \\Leftrightarrow e^{ - j\\omega n_o }"
},
{
"id": 166,
"title": "Discrete-Time Fourier transform of a constant",
"equation": "a \\Leftrightarrow 2\\pi a\\sum\\limits_{k = - \\infty }^\\infty {\\delta (\\omega + 2\\pi k)} ,( - \\infty \u003c n \u003c \\infty )"
},
{
"id": 167,
"title": "Discrete-Time Fourier transform of unit step function",
"equation": "u(n) \\Leftrightarrow \\frac{1}{{(1 - e^{ - j\\omega } )}} + \\sum\\limits_{k = - \\infty }^\\infty {\\pi \\delta (\\omega + 2\\pi k)}"
},
{
"id": 168,
"title": "Discrete-Time Fourier transform of unit step function and exponential",
"equation": "a^n u(n) \\Leftrightarrow \\frac{1}{{(1 - ae^{ - j\\omega } )}},\\left| a \\right| \u003c 1"
},
{
"id": 169,
"title": "Discrete-Time Fourier transform of unit step function and exponential",
"equation": "(n + 1)a^n u(n) \\Leftrightarrow \\frac{1}{{(1 - ae^{ - j\\omega } )^2 }},\\left| a \\right| \u003c 1"
},
{
"id": 170,
"title": "Discrete-Time Fourier transform of complex exponential",
"equation": "e^{j\\omega _o n} \\Leftrightarrow 2\\pi \\sum\\limits_{k = - \\infty }^\\infty {\\delta (\\omega - \\omega _o + 2\\pi k)}"
},
{
"id": 171,
"title": "Discrete-Time Fourier transform of complex exponential",
"equation": "e^{j\\omega _o n} \\Leftrightarrow 2\\pi \\sum\\limits_{k = - \\infty }^\\infty {\\delta (\\omega - \\omega _o + 2\\pi k)}"
},
{
"id": 172,
"title": "Discrete-Time Fourier transform of complex exponential",
"equation": "e^{j\\omega _o n} \\Leftrightarrow 2\\pi \\sum\\limits_{k = - \\infty }^\\infty {\\delta (\\omega - \\omega _o + 2\\pi k)}"
},
{
"id": 173,
"title": "Discrete-Time Fourier transform of a sinc sequence",
"equation": "\\frac{{\\sin (\\omega _c n)}}{n} \\Leftrightarrow X(e^{j\\omega } ) = \\left\\{ {\\begin{array}{*{20}c} {1,\\left| \\omega \\right| \\le \\omega _c } \\\\ {0,\\omega _c \u003c \\left| \\omega \\right| \\le \\omega _c } \\\\ \\end{array}} \\right."
},
{
"id": 174,
"title": "Discrete-Time Fourier transform of a boxcar sequence",
"equation": "x(n) = \\left\\{ {\\begin{array}{*{20}c} {1,0 \\le n \\le N - 1} \\\\ {0,{\\rm{otherwise}}} \\\\ \\end{array} \\Leftrightarrow } \\right.\\frac{{\\sin (\\omega N/2)}}{{\\sin (\\omega /2)}}e^{ - j\\omega (N - 1)/2}"
},
{
"id": 175,
"title": "Discrete-Time Fourier transform definition",
"equation": "X(e^{j\\omega } ) = x(n)e^{ - j\\omega n} ,\\omega {\\rm{in radians}}"
},
{
"id": 176,
"title": "Black Hole Entropy as derived by Stephen Hawking",
"equation": "S = \\frac{{Akc^3 }}{{4\\hbar G}}"
},
{
"id": 177,
"title": "Time-independent, one-dimensional Schr",
"equation": "- \\frac{{\\hbar ^2 }}{{2m}}\\frac{{d^2 \\psi (x)}}{{dx^2 }} + U(x)\\psi (x) = E\\psi (x)"
},
{
"id": 178,
"title": "Time-dependent, one-dimensional Schr",
"equation": "- \\frac{{\\hbar ^2 }}{{2m}}\\frac{{\\partial ^2 \\psi (x,t)}}{{\\partial x^2 }} + U(x)\\psi (x,t) = i\\hbar \\frac{{\\partial \\psi (x,t)}}{{\\partial t}}"
},
{
"id": 179,
"title": "Ohm\u0027s Law",
"equation": "V = IR = I\\left( {\\frac{L}{{\\sigma A}}} \\right) = I\\left( {\\frac{{\\rho L}}{A}} \\right)"
},
{
"id": 180,
"title": "Bohr Radius",
"equation": "a_0 = \\frac{{\\hbar ^2 }}{{m_e ke^2 }}"
},
{
"id": 181,
"title": "Radii of stable orbits in the Bohr model",
"equation": "r = n^2 \\frac{{\\hbar ^2 }}{{m_e kZe^2 }} = n^2 \\frac{{a_0 }}{Z}"
},
{
"id": 182,
"title": "Phase difference between the first and last waves for a single-slit diffraction pattern",
"equation": "\\phi = \\frac{{2\\pi }}{\\lambda }a\\sin \\theta"
},
{
"id": 183,
"title": "single-slit diffraction pattern points of zero intensity",
"equation": "a\\sin \\theta = m\\lambda"
},
{
"id": 184,
"title": "Definition of intensity",
"equation": "I = \\frac{{P_{av} }}{A}"
},
{
"id": 185,
"title": "Superposition of standing waves on a string with both ends fixed",
"equation": "y(x,t) = \\sum\\limits_n {A_n \\cos (\\omega _n t + \\delta _n )\\sin (k_n x)}"
},
{
"id": 186,
"title": "Standing-wave function",
"equation": "y(x,t) = A_n \\cos (\\omega _n t + \\delta _n )\\sin (k_n x)"
},
{
"id": 187,
"title": "Energy transmitted by a harmonic wave",
"equation": "\\Delta E = \\frac{1}{2}\\mu \\omega ^2 A^2 \\Delta x = \\frac{1}{2}\\mu \\omega ^2 A^2 \\upsilon \\Delta t"
},
{
"id": 188,
"title": "Power transmitted by a harmonic wave",
"equation": "P = \\frac{{dE}}{{dt}} = \\frac{1}{2}\\mu \\omega ^2 A^2 \\upsilon"
},
{
"id": 189,
"title": "Harmonic wave function",
"equation": "y(x,t) = A\\sin \\left[ {2\\pi \\left( {\\frac{x}{\\lambda } - \\frac{t}{T}} \\right)} \\right]"
},
{
"id": 190,
"title": "Harmonic wave function",
"equation": "y(x,t) = A\\sin \\left[ {k(x - \\upsilon t)} \\right]"
},
{
"id": 191,
"title": "Velocity at resonance frequency of a driven oscillator",
"equation": "\\upsilon = + A\\omega \\cos \\left( {\\omega t} \\right) = - A\\omega \\sin \\left( {\\omega t - \\frac{\\pi }{2}} \\right)"
},
{
"id": 192,
"title": "Amplitude of a driven oscillation",
"equation": "A = \\frac{{F_0 }}{{\\sqrt {m^2 \\left( {\\omega _0^2 - \\omega ^2 } \\right)^2 + b^2 \\omega ^2 } }}"
},
{
"id": 193,
"title": "Displacement of a driven oscillator",
"equation": "x = A\\cos \\left( {\\omega t + \\delta } \\right)"
},
{
"id": 194,
"title": "Displacement of a slightly damped oscillator",
"equation": "x = A_0 \\exp \\left( { - \\frac{b}{{2m}}t} \\right)\\cos \\left( {\\omega \u0027t + \\delta } \\right)"
},
{
"id": 195,
"title": "Kinetic energy of simple harmonic motion",
"equation": "K = \\frac{1}{2}kA^2 \\sin ^2 \\left( {\\omega t + \\delta } \\right)"
},
{
"id": 196,
"title": "Potential energy of simple harmonic motion",
"equation": "U = \\frac{1}{2}kA^2 \\cos ^2 \\left( {\\omega t + \\delta } \\right)"
},
{
"id": 197,
"title": "Total energy of simple harmonic motion",
"equation": "E_{Total} = \\frac{1}{2}kA^2"
},
{
"id": 198,
"title": "Viscous flow",
"equation": "F = \\eta \\frac{{\\upsilon A}}{z}"
},
{
"id": 199,
"title": "Continuity equation",
"equation": "I_V = \\upsilon A = {\\rm{constant}}"
},
{
"id": 200,
"title": "Hydraulic lift",
"equation": "F_2 = \\frac{{F_1 }}{{A_1 }}A_2 = \\frac{{A_2 }}{{A_1 }}F_1"