forked from chriscianfarani/efn_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
80 lines (69 loc) · 2.28 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from __future__ import print_function
import h5py
import numpy as np
import os
data_path = '/storage/local/data1/gpuscratch/ccianfar/'
expt_name = None
def get_hdf5_dir(dir, qcd):
'''
'PF_vars' key dimensions: (event number, kinematic variable, jet object)
- for jet objects, index 0 is the jet itself, and indices 1-10 are jet constituents
- kinematic variables:
- 0 - momentum
- 1 - energy
- 2 - charge
- 3 - phi position
- 4 - eta position
'''
X = None
Y = None
for filename in os.listdir(dir):
print('Processing ' + dir + filename, end='\r')
f = h5py.File(dir + filename, 'r')
length = f['jets'].shape[0]
length = min(length, 950)
if length == 0:
continue
x = f['jets'][:length]
y = np.ones(length)
if qcd:
y = np.zeros(length)
if X is None and Y is None:
X = np.array(x)
Y = np.array(y)
else:
X = np.append(X, x, axis=0)
Y = np.append(Y, y, axis=0)
print()
return X, Y
def load_data(num_datapoints, name):
#top_dir = '/uscms_data/d3/ehinkle/elise/ttbar_outputNEW/'
#qcd_dir = '/uscms_data/d3/ehinkle/elise/qcd_outputNEW/'
expt_name = name
if os.path.exists(data_path + expt_name + '.hdf5'):
f = h5py.File(data_path + expt_name + '.hdf5', 'r')
length = f['jets'].shape[0]
jets = f['jets'][:length]
labels = f['labels'][:length]
return jets[:num_datapoints], labels[:num_datapoints]
top_dir = data_path + expt_name + '/TOP/'
qcd_dir = data_path + expt_name + '/QCD/'
qcdX, qcdY = get_hdf5_dir(qcd_dir, True)
topX, topY = get_hdf5_dir(top_dir, False)
# topX = np.swapaxes(topX, 1, 2)
# qcdX = np.swapaxes(qcdX, 1, 2)
print('Top shape: ' + str(topX.shape))
print('QCD shape: ' + str(qcdX.shape))
X = np.concatenate((topX, qcdX))
Y = np.concatenate((topY, qcdY))
indices = np.arange(X.shape[0])
np.random.shuffle(indices)
X = X[indices]
Y = Y[indices]
return X[:num_datapoints], Y[:num_datapoints]
if __name__ == '__main__':
X, Y = load_data(2)
print(X)
print('X shape: ', str(X.shape))
print(Y)
print('Y shape: ', str(Y.shape))