Brogrammer94
/
Spatial-transcriptomics-reveals-molecular-dysfunction-associated-with-cortical-Lewy-pathology
Public
forked from Goralsth/Spatial-transcriptomics-reveals-molecular-dysfunction-associated-with-cortical-Lewy-pathology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GeoMx_Analysis_Pipeline_Mu_NatComms_Final.Rmd
2267 lines (1431 loc) · 72 KB
/
GeoMx_Analysis_Pipeline_Mu_NatComms_Final.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Pipeline_For GeoMX_Data_Analysis"
author: "Thomas Goralski"
date: '2022-07-22'
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This pipeline is intended for expedient analysis of raw data from Nanostring's GeoMx spatial transcriptomics platform.
The following is adapted from the GeoMxTools package Vignettes, and "Spatial Data Analysis Report" from Daniel Newhouse on a data analysis contract. The following includes code/functions adapted from these, my own code, and combinations thereof.
This code will walk through each of graphs in the figures of the publication Spatial Transcriptomics Reveals Molecular Dysfunction Associated with Cortical Lewy Pathology. Use this code to reproduce graphs in the figures that were produced using R for the mouse experiments.
First use the Helper_Functions_Pipeline_Mu_NatComms.RMD file to load in all the functions you will need for this pipeline.
To begin, We load in packages
Now we load our packages
```{r loading packages}
#make list of all packages you will need
library_list<- c( "NanoStringNCTools", "GeomxTools", "EnvStats", "ggiraph", "SpatialDecon", "reshape" , "reshape2", "knitr", "dplyr", "ggplot2", "ggforce","cowplot", "scales", "umap", "Rtsne", "pheatmap", "ggrepel", "rentrez", "RColorBrewer", "Polychrome", "plyr", "openxlsx", "psych", "kableExtra", "GGally", "magick", "circlize", "pals", "ggupset", "tidyr", "ggpubr", "ggprism", "Biobase", "FactoMineR", "svglite", "corrplot", "pheatmap", "readr", "qusage", "GSVA", "GSEABase", "ggcorrplot","ggbreak")
#load in all libraries... Install all packages that error here
get_libraries(library_list)
#If you get an eeror, there is no package called... Install that package
```
Establish Directories and folders. This will allow data to automatically be exproted to set directories based on your working directory.
```{r Create Directories}
# # datadir is the location of dcc files, pkc file(s), and images (if applicable). Ensure these file are in working directory
datadir<- getwd()
# Initiate a date tag & directory naming
date_tag <- format(Sys.Date(), "%Y%m%d")
outdir <- paste0("output_", date_tag)
object_dir <- file.path(outdir, "R_objects")
qc_dir <- file.path(outdir, "qc")
# Initialize output directory for static images, tables, and serialized R objects.
dir.create(outdir, recursive = TRUE) #output directory for results
dir.create(object_dir, recursive = TRUE) #directory with raw files
dir.create(qc_dir, recursive = TRUE) #QC output directory
```
First we load in the probe data. The "probe_data_mu.RDS" file must be in the object directory created above. To find this folder after running the above code chunk, go to the working directory. Open the folder labeled "output_(today's date)". Then open the folder labeled "R_objects". The file needs to be in this folder.
```{r loading data}
#First check if file exits
if(file.exists(file.path(object_dir, "probe_data_mu.RDS"))){
probe_data <- readRDS(file.path(object_dir, "probe_data_mu.RDS"))
}
```
Next we specify features (genes) of interest, and ensure they are present in the dataset. In addition we identify annotation data that we want to visualize throughout QC (allows to check if specific parameters are causing problems with data), and ensure they are present in the data.
```{r Select most important factors/ffeatures}
foi <- c("Map2", "Rbfox3", "Itgam", "Adgre1", "Aif1", "Snca") #specify genes ("features") of interest.
if(any(!foi %in% fData(probe_data)$Target)) { #check to see if all foi are in dataset
foi_not_found <- foi[!foi %in% fData(probe_data)$Target]
foi_not_found_msg <- paste0("Some features of interest were not found in this dataset. Please check the ",
"following features to ensure they are correctly entered: ",
formatList(foi_not_found), ".")
foi <- foi[foi %in% fData(probe_data)$Target]
}
#enter the factors you'd like to track through QC from annotation data
factors_of_interest <- c("slide", "mouse","segment", "layer", "AllenscData") #identify annotation data to track through QC
#define factors of interest that are not of classs numeric for graphing purposes
factors_of_interest_non_numeric<-c("slide" , "segment", "AllenscData")
#assign factor to color sankey plot by
sankey_focal_factor <- factors_of_interest[3] #color by segment
gene_detection_rate_color_by<- "segment"
allow_list <- c(foi)
if(any(!factors_of_interest %in% colnames(pData(probe_data)))) { #check if factors are present in data
facs_not_found <- factors_of_interest[!factors_of_interest %in% colnames(pData(probe_data))]
facs_not_found_msg <- paste0("Some factors of interest were not found, please check the ",
"following features to ensure they are correctly entered: ",
facs_not_found, ".")
factors_of_interest <- factors_of_interest[factors_of_interest %in% colnames(pData(probe_data))]
}
# Stop if the focal factor for sankey was not present (e.g., removed in above logic)
if(!sankey_focal_factor %in% factors_of_interest){
stop("The Sankey focal factor is not present in factors_of_interest.")
}
```
SPecify parameters for the data table reports on QC metrics
```{r Set datable Parameters}
#specifc paramters for data tbale outputs from QC analysis
dt_params =
list(dom = "lfBtip",
buttons = list(list(extend = "copy"),
list(extend = "csv", filename = "ExampleDataSummary.csv"),
list(extend = "excel", filename = "ExampleDataSummary.xlsx")),
autoWidth = TRUE,
searching = TRUE,
scrollX = TRUE,
pagingType = "simple",
scrollCollapse = TRUE,
fixedColumns = list(leftColumns = 1))
```
Specify specific QC thresholds. For reporduction of graphs from figures in the manuscript, run the metrics as is written.
```{r Set QC Parameters}
#specifcy QC parameters
QC_params <- list(
minSegmentReads = 1000, # segment QC thresholds
percentTrimmed = 80,
percentStitched = 80,
percentAligned = 75,
percentSaturation = 50,
minNegativeCount = 1,
maxNTCCount = 9000,
minNuclei = 0, #to recreate dans analysis no nuclei filtering can happen
minArea = 50,
minProbeCount = 10, # probe QC thresholds
minProbeRatio = 0.1,
outlierTestAlpha = 0.01,
percentFailGrubbs = 20,
loqCutoff = 1,
highCountCutoff = 10000
)
loq_feature_filter_proportion <- 0.10 # feature needs to be in at least this proportion of samples globally
loq_segment_filter_proportion <- 0.03 # Remove samples with low proportion of features above LOQ
#specify column name from pData in probe data file that determines segmentation strategy
index<-which(colnames(pData(probe_data))=="segment")
segment<- colnames(pData(probe_data))[index]
```
Below we get our QC report.
All plots will be automatically saved to your directory paths in their relevant folder(s). In addition, relevant plots will be printed here. The function has saved the normalized data "target_data" to your "R_objects" directory
This will produce the Sankey Plot in Fig 3d
in a file called "SanKey_afterQC.svg" in the "QC" directory inside your output directory.
It will also produce the figures in supplemental figure 7.
```{r run QC}
probe_data@phenoData@data$layer<-as.character(probe_data@phenoData@data$layer)
run_qc(Dataset = probe_data[,], Parameters = QC_params, segment_id = segment)
```
Read in the normalized data
```{r Read in Normalized Data}
#reading normalized data
target_data<-readRDS(file.path(object_dir, "target_data.RDS"))
# here we respecify ACAd and ACAv as just ACA. This was performed because preliminary analysis did not show many difference between the ventral and dorsal portion of the ACA in our data.
#Convert ACAv and ACAd Regions to just ACA
regions <- target_data@phenoData@data[["region"]]
ind_ACA<-grep(".*ACA.*", regions)
pData(target_data)$region[ind_ACA]="ACA"
```
Within Slide Analysis: Brain Regions
Now we make the PCA plot from fig 3e.
```{r PCA}
#makle dataset with each AOI as rownames, each gene,and pdata as columns
PCA_data<-t(assayDataElement(object = target_data, elt = "log_q"))
PCA_data<- cbind.data.frame(pData(target_data)$area ,pData(target_data)$layer, pData(target_data)$AOINucleiCount, pData(target_data)$slide, pData(target_data)$segment, pData(target_data)$AllenscData, PCA_data )
#create vector of names of the pData you want in PCA. Order them quantitative, then qualitative
pca_colnames<-c("area" ,"layer", "AOINucleiCount" , "slide", "segment", "AllenscData")
#place column names
colnames(PCA_data)[1:length(pca_colnames)]<-pca_colnames
target_PCA<-FactoMineR::PCA(X= PCA_data,
ncp=10, #number of principle components to keep in dataset
scale.unit = TRUE, #scales based on z-score... important for PCA, leave true
ind.sup= NULL,
quanti.sup= quantitative_factors, #vector of the indexes of pheno data that is quantitative
quali.sup = qualitative_factors , #vector of indexes of the pheno data that is qualitative
row.w= NULL, # weights for rows
col.w= NULL, # weights for columns
graph=FALSE, #whether graph should be auto displayed
axes= c(1,2) # which components to display
)
colnames(target_PCA$var$coord) <- gsub("Dim.",
paste0(the_prefix, "var_coords_"), colnames(target_PCA$ind$coord))
ind_pca<-target_PCA[["ind"]][["coord"]]
p <- ggplot(data=target_data@phenoData@data,
aes(x=ind_pca[,1], y=ind_pca[,2])) +
geom_point(aes(color=target_data@phenoData@data$segment,
shape=region), alpha=0.5, size=0.2) +
labs(x=paste0("PCA 1 (", round(target_PCA$eig[1,2]), "%)"),
y=paste0("PCA 2 (", round(target_PCA$eig[2,2]), "%)"),
title="PCA") +
theme_bw(base_size=2) +
theme(legend.position = "right",
legend.text = element_text( size = 1.5),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
)+
scale_color_manual(values = c("NeuN"="dodgerblue2",
"pSyn"= "firebrick1"))
p
```
Now we will make the graph for fig 3f. This requires a few extra functions to be defined.
In this analysis we save log2 fold change estimates and P-values across all levels in the factor of interest. We also apply a Benjamini-Hochberg multiple test correction.
```{r define fomrat for LMM results}
formatLMMResults <- function(lmm_results, p_adjust_method="fdr") {
if(!inherits(lmm_results, "matrix")){
stop("lmm_results needs be a matrix, See ?GeomxTools::mixedModelDE.")
}
if(!all(c("anova", "lsmeans") %in% rownames(lmm_results))){
stop("Expected row names of lmm_results to have anova and lsmeans.")
}
df <- do.call(rbind, lmm_results["lsmeans", ])
contrasts <- rownames(df)
# Make sure there are not multiple " - " present in contrasts
for(i in unique(contrasts)){
if(length(strsplit(i, split=" - ")[[1]])>2){
stop(paste0("Contrast \'", i, "\' has more than two split points. Please rename contrasts first."))
}
}
# Contrast are of the for B - A. Convert to comparisons of the form
# A vs B.
df <- as.data.frame(df)
contrast_pairs <- strsplit(contrasts, split=" - ")
df$Comparison <- paste0(unlist(lapply(contrast_pairs, "[[", 2L)), " vs ", unlist(lapply(contrast_pairs, "[[", 1L)))
colnames(df)[which(names(df) == "Pr(>|t|)")] <- "P"
row.names(df) <- NULL
# Add feature names
df$Feature <- rep(colnames(lmm_results), each=nrow(lmm_results["lsmeans",][[1]]))
# P-adjustment based on subsets of data faceted by Comparison
df <- ddply(df, .(Comparison), function(x){
x$padj <- p.adjust(x$P, method = p_adjust_method)
return(x)
})
df <- df[, c("Feature", "Comparison", "Estimate","P", "padj")]
colnames(df)[colnames(df)=="padj"] <- toupper(p_adjust_method) # 'FDR' used in standard Report
return(df)
}
```
Here we define output directory for the Differential expression graphs
```{r}
de_plot_dir <-file.path(outdir, "DE", "Plots")
de_data_dir <- file.path(outdir, "DE", "Data")
dir.create(de_plot_dir,recursive = TRUE)
dir.create(de_data_dir, recursive = TRUE)
```
Now we run the analysis and plot the graph
```{r Run LMM on Layer 5 vs 6}
# convert test variables to factors
pData(target_data)$testRegion <-
factor(pData(target_data)$segment, c("pSyn", "NeuN"))
vec<-unique(target_data@phenoData@data$mouse)
pData(target_data)[["random"]] <-
factor(pData(target_data)$mouse, c(vec))
vec<-unique(target_data@phenoData@data$layer)
pData(target_data)[["Layer"]] <-
factor(pData(target_data)$layer, c(vec))
# run LMM:
# formula follows conventions defined by the lme4 package
results12 <- c()
for(status in c( "5", "6")) {
ind <- which(pData(target_data)$Layer == status)
mixedOutmc <-
mixedModelDE(target_data[, ind],
elt = "log_q",
modelFormula = ~ testRegion + (1|random),
groupVar = "testRegion",
nCores = parallel::detectCores()-1,
multiCore = TRUE)
# format results as data.frame
results11 <-formatLMMResults(mixedOutmc)
results11$contrast<-status
results12 <- rbind(results11,results12)
print(status)
}
results12$Gene<-results12$Feature
#remove neg probe from data
# sub<-grep(".*NegP.*", results$Feature)
# results12<-results12[-sub,]
# Categorize Results based on P-value & FDR for plotting
results12$Color[results12$P < 0.05 & results12$Estimate>0] <- "Enriched in L5 P < 0.05"
results12$Color[results12$P < 0.05 & results12$Estimate<0] <- "Enriched in L6 P < 0.05"
results12$Color[results12$FDR < 0.05 & results12$Estimate>0] <- "Enriched in L5 FDR < 0.05"
results12$Color[results12$FDR < 0.05 & results12$Estimate<0] <- "Enriched in L6 FDR < 0.05"
results12$Color[results12$FDR < 0.01 & results12$Estimate>0 ] <- "Enriched in L5 FDR < 0.01"
results12$Color[results12$FDR < 0.01 & results12$Estimate<0 ] <- "Enriched in L6 FDR < 0.01"
results12$Color <- factor(results12$Color,
levels = c("NS or FC < 0.5", "P < 0.05",
"FDR < 0.05", "FDR < 0.01"))
# pick top genes for either side of volcano to label
# order genes for convenience:
results12$invert_P <- (-log10(results12$P)) * sign(results12$Estimate)
top_g <- c()
for(i in unique(results12$contrast)){
vec<-which(results12$contrast==i)
top_g <- c(top_g,
results12[vec, 'Gene'][order(results12[vec, 'invert_P'], decreasing = TRUE)[1:5]],
results12[vec, 'Gene'][order(results12[vec, 'invert_P'], decreasing = FALSE)[1:5]])
}
top_g <- unique(top_g)
# Graph results
highlight_top_g<-subset(results12, Gene %in% top_g & P<0.05 & Color != "NS or FC < 0.5")
diff_exp3<-ggplot(results12,
aes(x = Estimate, y = -log10(`P`),
color = Color, label = Gene)) +
geom_vline(xintercept = c(0.5, -0.5), lty = "dashed", size=0.2) +
geom_hline(yintercept = -log10(0.05), lty = "dashed", size=0.2) +
geom_point(size=0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, alpha=0.3) +
labs(x = "log2(FC)",
y = "Significance, -log10(P)",
color = "Key") +
scale_color_manual(values = c(`Enriched in L5 FDR < 0.01`= "green",
`Enriched in L5 FDR < 0.05` = "green3",
`Enriched in L5 P < 0.05` = "greenyellow",
`Enriched in L6 FDR < 0.01` = "mediumorchid1",
`Enriched in L6 FDR < 0.05` = "mediumorchid4",
`Enriched in L6 P < 0.05` = "thistle",
#`P < 0.05` = "orange2",
`NS or FC < 0.5` = "gray"),
guide = guide_legend(override.aes = list(size = 0.5))) +
scale_y_continuous(expand = expansion(mult = c(0,0.05))) +
geom_text_repel(data = subset(results12, Gene %in% top_g & P<0.05 & Color != "NS or FC < 0.5"),
size = 1.5, point.padding = 0.1, color = "black",
min.segment.length = .3, box.padding = .1, lwd = .2,
max.overlaps = 50, segment.size=0.05, force = 10, max.time = 3) +
theme_bw(base_size = 6) +
theme(axis.line = element_line(color='black'),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank())+
theme(legend.position = "bottom",
legend.key.size= unit(0.00001, 'cm'),
legend.title = element_text(size = 2),
legend.text = element_text(size=2),
legend.key.height = unit(0.3, 'cm'),
legend.key.width = unit(3, 'cm')) +
geom_point(data=highlight_top_g, alpha=0.9, size=0.5)+
facet_wrap(~contrast, nrow = 1, ncol = 3)
ggsave("Volc_by_Layer.png", diff_exp3_cell, width = 14, height = 7, units = "cm",path = v)
ggsave("Volc_by_Layer.pdf", diff_exp3_cell, width = 14, height = 7, units = "cm",path = de_plot_dir)
```
Now we make the heatmap for fig 4a
First we must calculate the differential expression between the pSyn and NeuN segments
```{r calculate DE psyn vs neun}
# convert test variables to factors
pData(target_data)$testRegion <-
factor(pData(target_data)$segment, c("pSyn", "NeuN"))
vec<-unique(target_data@phenoData@data$mouse)
pData(target_data)[["random"]] <-
factor(pData(target_data)$mouse, c(vec))
vec<-unique(target_data@phenoData@data$layer)
pData(target_data)[["Layer"]] <-
factor(pData(target_data)$layer, c(vec))
vec<-unique(target_data@phenoData@data$region)
pData(target_data)[["Region"]] <-
factor(pData(target_data)$region, c(vec))
mixedOutmc <-
mixedModelDE(target_data[,],
elt = "log_q",
modelFormula = ~ testRegion * Layer * Region + (1|random),
groupVar = "testRegion",
nCores = parallel::detectCores()-1,
multiCore = TRUE)
# format results as data.frame
results30<-formatLMMResults(mixedOutmc)
#make gene nmae column
results30$Gene<-results30$Feature
#remove negative probe
ind<-which(results30$Gene=="NegProbe-WTX")
results30<-results30[-ind,]
results30$Color[results30$P < 0.05 & results30$Estimate>0] <- "Enriched in pSyn P < 0.05"
results30$Color[results30$P < 0.05 & results30$Estimate<0] <- "Enriched in NeuN P < 0.05"
results30$Color[results30$FDR < 0.05 & results30$Estimate>0] <- "Enriched in pSyn FDR < 0.05"
results30$Color[results30$FDR < 0.05 & results30$Estimate<0] <- "Enriched in NeuN FDR < 0.05"
results30$Color[results30$FDR < 0.01 & results30$Estimate>0 ] <- "Enriched in pSyn FDR < 0.01"
results30$Color[results30$FDR < 0.01 & results30$Estimate<0 ] <- "Enriched in NeuN FDR < 0.01"
results30$Color[abs(results30$Estimate) < 0.5] <- "NS or FC < 0.5"
results30$Color <- factor(results30$Color,
levels = c("NS or FC < 0.5" , "Enriched in pSyn FDR < 0.05", "Enriched in NeuN FDR < 0.05","Enriched in pSyn P < 0.05", "Enriched in NeuN P < 0.05", "Enriched in pSyn FDR < 0.01", "Enriched in NeuN FDR < 0.01" ))
```
Now we plot the heatmap
```{r all sig gene heatmap}
sig_genes_psyn<-which(results30$Color=="Enriched in pSyn FDR < 0.01")
sig_genes_NeuN<-which(results30$Color=="Enriched in NeuN FDR < 0.01")
sig_genes<-c(sig_genes_NeuN,sig_genes_psyn)
sig_genes<-results30$Feature[sig_genes]
de_heat_dat_noSub<-target_data[sig_genes,]
annots<-de_heat_dat_noSub@phenoData@data
annots<-annots[,c(3,7,22)]
ann_colors<- list(
segment= c(NeuN="steelblue1", pSyn="firebrick1"),
Layer= c("5"="greenyellow","6"="mediumorchid1"),
region= c(ACA= "lightcyan2" ,MOp="sandybrown" , MOs="maroon3")
)
max<-max(target_data@assayData$log_q)
min<-min(target_data@assayData$log_q)
color_pal<-(colorRampPalette(c("#0092b5", "white", "#a6ce39"))(121))
heat_dat_maxmin<-de_heat_dat_noSub@assayData$log_q
p<-pheatmap(heat_dat_maxmin[,],
scale = "row",
show_rownames = FALSE, show_colnames = FALSE,
border_color = NA,
clustering_method = "average",
cluster_rows = TRUE,
cluster_cols = TRUE,
clustering_distance_cols = "correlation",
annotation_col = annots,
annotation_colors = ann_colors,
#breaks = seq(min, 6 , 0.2) ,
color = color_pal
)
ggsave("Heatmap_FDR0.01_noSub.pdf",plot=p, width = 14, height = 14, units = "cm",path = de_plot_dir)
```
Now lets get fig 4b
```{r volcano plot of DE analysis}
results30$invert_P <- (-log10(results30$P)) * sign(results30$Estimate)
top_g <- c()
top_gene1<-results30[, 'Gene'][order(results30[, 'invert_P'], decreasing = TRUE)[1:15]]
top_gene2<-results30[, 'Gene'][order(results30[, 'invert_P'], decreasing = FALSE)[1:15]]
top_g<-c(top_gene1,top_gene2)
top_g <- unique(top_g)
highlight_top_g<-subset(results30, Gene %in% top_g & P<0.05 & Color != "NS or FC < 0.5")
# Graph results30
diff_exp3<-ggplot(results30,
aes(x = Estimate, y = -log10(`P`),
color = Color, label = Gene)) +
geom_vline(xintercept = c(0.5, -0.5), lty = "dashed", size=0.2) +
geom_hline(yintercept = -log10(0.05), lty = "dashed", size=0.2) +
geom_point(size=0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, alpha=0.3) +
labs(x = "log2(FC)",
y = "Significance, -log10(P)",
color = "Key") +
scale_color_manual(values = c(`Enriched in pSyn FDR < 0.01`= "firebrick1",
`Enriched in pSyn FDR < 0.05` = "rosybrown2",
`Enriched in pSyn P < 0.05` = "rosybrown3",
`Enriched in NeuN FDR < 0.01` = "dodgerblue2",
`Enriched in NeuN FDR < 0.05` = "slategray2",
`Enriched in NeuN P < 0.05` = "slategray3",
#`P < 0.05` = "orange2",
`NS or FC < 0.5` = "gray"),
guide = guide_legend(override.aes = list(size = 0.5))) +
scale_y_continuous(expand = expansion(mult = c(0,0.05))) +
geom_text_repel(data = subset(results30, Gene %in% top_g & P<0.05 & Color != "NS or FC < 0.5"),
size = 1.5, point.padding = 0.1, color = "black",
min.segment.length = .3, box.padding = .1, lwd = .2,
max.overlaps = 50, segment.size=0.05, force = 10, max.time = 3) +
theme_bw(base_size = 6) +
theme(axis.line = element_line(color='black'),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank())+
theme(legend.position = "bottom",
legend.key.size= unit(0.00001, 'cm'),
legend.title = element_text(size = 2),
legend.text = element_text(size=2),
legend.key.height = unit(0.3, 'cm'),
legend.key.width = unit(3, 'cm')) +
geom_point(data=highlight_top_g, alpha=0.9, size=0.5)
diff_exp3
ggsave("volc_all.png", width = 14, height = 7, units = "cm",path = de_plot_dir)
ggsave("volc_all.pdf", width = 14, height = 7, units = "cm",path = de_plot_dir)
```
Now lets make Fig. 4c
```{r}
top_g<- c("Stx1b", "Cplx1", "Dnajc5", "Nsf", "Grin2a", "Ndufc2", "Atp5d", "Ndufv2", "Psap", "Sort1", "Rpn1", "Psma5", "Psma7", "Herc3", "Usp25", "Rpa2", "Ercc4", "Utp15", "Bcl2", "Rtkn2", "Kif21a", "Stmn2", "Itgam", "Ccl19")
#begin violin plotting
prop<-target_data@assayData$log_q
annots<-target_data@phenoData@data
violin_df <- cbind(annots %>% dplyr::select(eval(segment), mouse),
t(prop))
violin_df <- violin_df %>% tidyr::pivot_longer(cols=-c(1,2), names_to = "Feature", values_to = "Expression")
violin_p_df <- filter(results30, Feature %in% top_g)
violin_p_df <- violin_p_df %>% tidyr::separate(col = Comparison, into=c("group1", "group2"), sep=" vs ")
violin_p_df$FDR <- signif(violin_p_df$FDR, 3)
violin_p_df$P <- signif(violin_p_df$P, 3)
violin_exp_max <- ddply(violin_df, .(Feature), summarize,
y.position=(max(Expression)*1.1)) # +1 for safe log2
violin_p_df <- base::merge(violin_p_df, violin_exp_max, by="Feature")
violin_df<-base::merge(violin_p_df, violin_df, by="Feature")
violin_df$FDR<-signif(violin_df$FDR, 3)
p <- ggplot(violin_df,
aes(x=segment, y=Expression, fill=segment)) +
geom_violin(alpha=0.2) +
geom_jitter(width=0.1, height=0, size = 0.5) +
scale_fill_manual(values = c("blue", "red", "grey")) +
facet_wrap(~Feature, scales = "free_y", ncol = 8) +
labs(x = eval(segment), y = "Expression (log q3 normalized counts)") +
scale_y_continuous(expand = expansion(mult = 0.2)) +
expand_limits(y=0)+
theme_bw(base_size = 14) +
theme( plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank())+
guides(fill=guide_legend(title = eval(segment)))
p <- p + ggprism::add_pvalue(
violin_p_df,
label="FDR = {FDR}", label.size = 3.6,
y.position = violin_p_df$y.position
) + theme(legend.position="bottom")
#p
ggsave("Region_Violins.png", p, width = 50, height = 30, units = "cm",path = de_plot_dir)
ggsave("Region_Violins.pdf", p, width = 50, height = 30, units = "cm",path = de_plot_dir)
```
Now let's get 5a and 5c
This involved importing data from the human data and determining the overlap
```{r}
geneSet_data <- geneSetAnalysis(object = target_data,
elt = "log_q",
geneSet = GSEA_plot_dir,
convertFrom = "ENTREZID",
species = "Mm",
minSize = 5,
maxSize = 500)
geneSetDE_contrast1<-
mixedModelDE(geneSet_data,
modelFormula = ~ testRegion + (1|random),
groupVar = "testRegion",
nCores = parallel::detectCores()-1,
multiCore = TRUE)
geneSet_results_contrast1 <- formatLMMResults(geneSetDE_contrast1)
top_feat_mu<- getTopFeatures(geneSet_results_contrast1, n_features = 50,
est_thr = 0.5, fdr_thr = 0.001)
#save the top features to load in with human data
saveRDS(top_feat_mu,"top_genesets_mu")
#load in the human top features
top_feat_human<-readRDS("top_genesets_human")
#now check if any don't match directionalility between mouse and human
all_mouse<-unlist(top_feat_mu[3])
all_human<-unlist(top_feat_human[3])
conserved_all<-all_human %in% all_mouse
conserved_all_list<-all_human[conserved_all]
geneset_ind<-c()
for (i in conserved_all_list){
geneset_sub<-which(geneSet_data@featureData@data$GeneSet==i)
geneset_ind<-c(geneset_sub,geneset_ind)
}
annots<-geneSet_data@phenoData@data
annots<-annots[,c(3,7,22)]
ann_colors<- list(
segment= c(NeuN="steelblue1", pSyn="firebrick1"),
layer= c("5"="greenyellow","6"="mediumorchid1","2/3"="sandybrown")
)
heatmap_geneset<-geneSet_data@assayData$ssgsea
label_ge1 <- unique(top_feat$all)
heatmap_geneset<-geneSet_data@assayData$ssgsea
p<-pheatmap(heatmap_geneset[geneset_ind,],
scale = "row",
show_rownames = TRUE, show_colnames = FALSE,
border_color = NA,
clustering_method = "average",
cluster_rows = TRUE,
cluster_cols = TRUE,
clustering_distance_cols = "correlation",
annotation_col = annots,
annotation_colors = ann_colors,
#breaks = seq(min, 6 , 0.2) ,
color = color_pal,
fontsize_row=5,
fontsize=5,
treeheight_row=10,
treeheight_col=25
)
ggsave("Heatmap_Genesets_Of_Interest_Conserved_Mu.pdf",plot=p, width = 14, height = 14, units = "cm",path = gsea_plot_dir)
```
Now lets plot 5c
```{r Violin plots mu hu conserved}
top_g<-c("Cux2", "Deptor", "Rorb", "Cox5a", "Ndufa10", "Nrxn1", "Snap25", "Dnm1", "Atp6ap2", "Ctsb", "Uba1","USP38", "Usp42", "Pink1", "Lrrk2", "Mapt", "Snca", "Bad", "Casp9", "H2ax", "Nefl", "Septin7", "Tubb4b", "Pak6", "Pde2a")
#begin violin plotting
prop<-target_data@assayData$log_q
annots<-target_data@phenoData@data
violin_df <- cbind(annots %>% dplyr::select(eval(segment), mouse),
t(prop))
violin_df <- violin_df %>% tidyr::pivot_longer(cols=-c(1,2), names_to = "Feature", values_to = "Expression")
violin_p_df <- filter(results30, Feature %in% top_g)
violin_p_df <- violin_p_df %>% tidyr::separate(col = Comparison, into=c("group1", "group2"), sep=" vs ")
violin_p_df$FDR <- signif(violin_p_df$FDR, 3)
violin_p_df$P <- signif(violin_p_df$P, 3)
violin_exp_max <- ddply(violin_df, .(Feature), summarize,
y.position=(max(Expression)*1.1)) # +1 for safe log2
violin_p_df <- base::merge(violin_p_df, violin_exp_max, by="Feature")
violin_df<-base::merge(violin_p_df, violin_df, by="Feature")
violin_df$FDR<-signif(violin_df$FDR, 3)
p <- ggplot(violin_df,
aes(x=segment, y=Expression, fill=segment)) +
geom_violin(alpha=0.2) +
geom_jitter(width=0.1, height=0, size = 0.5) +
scale_fill_manual(values = c("blue", "red", "grey")) +
facet_wrap(~Feature, scales = "free_y", ncol = 8) +
labs(x = eval(segment), y = "Expression (log q3 normalized counts)") +
scale_y_continuous(expand = expansion(mult = 0.2)) +
expand_limits(y=0)+
theme_bw(base_size = 14) +
theme( plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank())+
guides(fill=guide_legend(title = eval(segment)))
p <- p + ggprism::add_pvalue(
violin_p_df,
label="FDR = {FDR}", label.size = 3.6,
y.position = violin_p_df$y.position
) + theme(legend.position="bottom")
#p
ggsave("Overlap_Mu_Violins.png", p, width = 50, height = 30, units = "cm",path = de_plot_dir)
ggsave("Overlap_Mu_Violins.pdf", p, width = 50, height = 30, units = "cm",path = de_plot_dir)
```
Now let's get 5e
```{r heatmap known PD genetic risk factors }
goi<-c("Lrp10", "Htra2", "Prkn", "Gba","Lrrk2", "Atp13a2", "Gigyf2", "Snca", "Pink1", "Uchl1", "Synj1", "Dnajc6", "Park7", "Dnajc13", "Vps35")
de_heat_dat_noSub<-target_data[goi,]
de_heat_dat_noSub<-de_heat_dat_noSub[,order(de_heat_dat_noSub@phenoData@data$segment, decreasing = TRUE)]
annots<-de_heat_dat_noSub@phenoData@data
annots<-annots[,c(3,7,22)]
ann_colors<- list(
segment= c(NeuN="steelblue1", pSyn="firebrick1"),
Layer= c("5"="greenyellow","6"="mediumorchid1"),
region= c(ACA= "lightcyan2" ,MOp="sandybrown" , MOs="maroon3")
)
max<-max(target_data@assayData$log_q)
min<-min(target_data@assayData$log_q)
color_pal<-(colorRampPalette(c("#0092b5", "white", "#a6ce39"))(121))
heat_dat_maxmin<-de_heat_dat_noSub@assayData$log_q
p<-pheatmap(heat_dat_maxmin[,],
scale = "row",
show_rownames = TRUE, show_colnames = FALSE,
border_color = NA,
clustering_method = "average",
cluster_rows = TRUE,
cluster_cols = FALSE,
clustering_distance_cols = "correlation",
annotation_col = annots,
annotation_colors = ann_colors,
#breaks = seq(min, 6 , 0.2) ,
color = color_pal
)
ggsave("Heatmap_Mu_PD_RiskGenes.pdf",plot=p, width = 14, height = 14, units = "cm",path = de_plot_dir)
```
Now let get the graphs for fig 6a
These will require us to calculate the cell type deconvolution, then do plotting. To see how the profile matrix was created, see the "Profile_Matrix_setup_Mu.Rmd" document.
```{r}