-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
527 lines (431 loc) · 23.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import argparse
import math
import os
import time
from random import sample
import torch
import torch.distributed as dist
import wandb
from numpy import finfo
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
import logger
from data_utils import TextMelLoader, TextMelCollate
from distributed import apply_gradient_allreduce
from hparams import HParams
from loss_function import Tacotron2Loss
from model import Tacotron2, Discriminator, LinearDiscriminator
from utils import get_mask_from_lengths
def round_(tensor, decimals):
if type(tensor) is float:
return round(tensor, decimals)
return str(tensor.cpu().detach().numpy().round(decimals))
def gradient_penalty(discriminator, real_data, generated_data, real_lengths, generated_lengths):
batch_size = real_data.size()[0]
# Calculate interpolation
alpha = torch.rand(batch_size, 1, 1).cuda()
if real_data.size(2) < generated_data.size(2):
alpha = alpha.expand_as(real_data)
interpolated = alpha * real_data.data + (1 - alpha) * generated_data.data[:, :, :real_data.size(2)]
mask = get_mask_from_lengths(real_lengths).unsqueeze(1)
else:
alpha = alpha.expand_as(generated_data)
interpolated = alpha * real_data.data[:, :, :generated_data.size(2)] + (1 - alpha) * generated_data.data
mask = get_mask_from_lengths(generated_lengths).unsqueeze(1)
mask = mask.expand_as(interpolated)
interpolated = interpolated.masked_fill_(mask == False, 0)
interpolated = Variable(interpolated, requires_grad=True).cuda()
# Calculate probability of interpolated examples
prob_interpolated = discriminator(interpolated.transpose(1, 2))
# Calculate gradients of probabilities with respect to examples
gradients = torch_grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(prob_interpolated.size()).cuda(),
create_graph=True, retain_graph=True)[0]
gradients = gradients.masked_fill_(mask == False, 0)
# Gradients have shape (batch_size, num_channels, img_width, img_height),
# so flatten to easily take norm per example in batch
gradients = gradients.reshape(batch_size, -1)
# Derivatives of the gradient close to 0 can cause problems because of
# the square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Return gradient penalty
return ((gradients_norm - 1) ** 2).mean()
def reduce_tensor(tensor, n_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= n_gpus
return rt
def init_distributed(hparams, n_gpus, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing Distributed")
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(
backend=hparams.dist_backend, init_method=hparams.dist_url,
world_size=n_gpus, rank=rank, group_name=group_name)
print("Done initializing distributed")
def prepare_dataloaders(hparams, wavs_path):
# Get data, data loaders and collate function ready
trainset = TextMelLoader(hparams.training_files, hparams, wavs_path)
valset = TextMelLoader(hparams.validation_files, hparams, wavs_path)
collate_fn = TextMelCollate(hparams.n_frames_per_step)
if hparams.distributed_run:
train_sampler = DistributedSampler(trainset)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle,
sampler=train_sampler,
batch_size=hparams.batch_size, pin_memory=False,
drop_last=True, collate_fn=collate_fn)
return train_loader, valset, collate_fn
def load_model(hparams):
generator = Tacotron2(hparams).cuda()
disciminator = LinearDiscriminator(hparams) if hparams.discriminator_type == 'linear' else Discriminator(hparams)
disciminator = disciminator.cuda()
if hparams.fp16_run:
generator.decoder.attention_layer.score_mask_value = finfo('float16').min
if hparams.distributed_run:
generator = apply_gradient_allreduce(generator)
disciminator = apply_gradient_allreduce(disciminator)
return generator, disciminator
def warm_start_model(checkpoint_path, model, ignore_layers):
assert os.path.isfile(checkpoint_path)
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model_dict = checkpoint_dict['state_dict']
if len(ignore_layers) > 0:
model_dict = {k: v for k, v in model_dict.items()
if k not in ignore_layers}
dummy_dict = model.state_dict()
dummy_dict.update(model_dict)
model_dict = dummy_dict
model.load_state_dict(model_dict)
return model
def load_checkpoint(checkpoint_path, model, g_optimizer, d_optimizer):
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
g_optimizer.load_state_dict(checkpoint_dict['g_optimizer'])
g_learning_rate = checkpoint_dict['g_learning_rate']
d_optimizer.load_state_dict(checkpoint_dict['d_optimizer'])
d_learning_rate = checkpoint_dict['d_learning_rate']
iteration = checkpoint_dict['iteration']
print("Loaded checkpoint '{}' from iteration {}".format(
checkpoint_path, iteration))
return model, g_optimizer, d_optimizer, g_learning_rate, d_learning_rate, iteration
def save_checkpoint(model, g_optimizer, g_learning_rate, d_optimizer, d_learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
torch.save({'iteration': iteration,
'state_dict': model.state_dict(),
'g_optimizer': g_optimizer.state_dict(),
'g_learning_rate': g_learning_rate,
'd_optimizer': d_optimizer.state_dict(),
'd_learning_rate': d_learning_rate}, filepath)
def validate(model, criterion, valset, iteration, batch_size, n_gpus,
collate_fn, distributed_run, rank):
"""Handles all the validation scoring and printing"""
model.eval()
with torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
shuffle=False, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_mel_loss, val_gate_loss, val_attn_loss = 0.0, 0.0, 0.0
for i, batch in enumerate(val_loader):
x, y = model.parse_batch(batch)
y_pred = model(x)
mel_loss, gate_loss, attn_loss = criterion(y_pred, y, x[1], x[-1])
if distributed_run:
reduced_mel_val_loss = reduce_tensor(mel_loss.data, n_gpus).item()
reduced_gate_val_loss = reduce_tensor(gate_loss.data, n_gpus).item()
reduced_attn_val_loss = reduce_tensor(attn_loss.data, n_gpus).item()
else:
reduced_mel_val_loss = mel_loss.item()
reduced_gate_val_loss = gate_loss.item()
reduced_attn_val_loss = gate_loss.item()
val_mel_loss += reduced_mel_val_loss
val_gate_loss += reduced_gate_val_loss
val_attn_loss += reduced_attn_val_loss
input_lengths, output_lengths = x[1], x[-1]
val_mel_loss = val_mel_loss / (i + 1)
val_gate_loss = val_gate_loss / (i + 1)
val_attn_loss = val_attn_loss / (i + 1)
if iteration > hparams.attn_steps:
val_attn_loss = 0
model.train()
if rank == 0:
print(f"{iteration} Validation mel loss {val_mel_loss} gate loss {val_gate_loss}")
logger.log_validation(val_mel_loss, val_gate_loss, val_attn_loss, y, y_pred, input_lengths, output_lengths,
iteration, args.waveglow_path)
return val_mel_loss + val_gate_loss
def train(output_directory, checkpoint_path, warm_start, n_gpus,
rank, group_name, hparams, wavs_path):
"""Training and validation logging results to tensorboard and stdout
Params
------
output_directory (string): directory to save checkpoints
checkpoint_path(string): checkpoint path
n_gpus (int): number of gpus
rank (int): rank of current gpu
hparams (object): comma separated list of "name=value" pairs.
wavs_path (string): path to the wav files.
"""
if hparams.distributed_run:
init_distributed(hparams, n_gpus, rank, group_name)
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
torch.manual_seed(hparams.seed)
torch.cuda.manual_seed(hparams.seed)
generator, discriminator = load_model(hparams)
wandb.watch(generator, log='all', log_freq=hparams.iters_per_checkpoint)
wandb.watch(discriminator, log='all', log_freq=hparams.iters_per_checkpoint)
g_learning_rate = hparams.g_learning_rate
d_learning_rate = hparams.d_learning_rate
g_optimizer = torch.optim.Adam(generator.parameters(), lr=g_learning_rate, weight_decay=hparams.weight_decay)
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=d_learning_rate, weight_decay=hparams.weight_decay)
if hparams.fp16_run:
from apex import amp
generator, g_optimizer = amp.initialize(generator, g_optimizer, opt_level='O2')
discriminator, d_optimizer = amp.initialize(discriminator, d_optimizer, opt_level='O2')
if hparams.distributed_run:
generator = apply_gradient_allreduce(generator)
discriminator = apply_gradient_allreduce(discriminator)
criterion = Tacotron2Loss()
train_loader, valset, collate_fn = prepare_dataloaders(hparams, wavs_path)
# Load checkpoint if one exists
iteration = 0
epoch_offset = 0
if checkpoint_path is not None:
if warm_start:
generator = warm_start_model(checkpoint_path, generator, hparams.ignore_layers)
else:
generator, g_optimizer, d_optimizer, _g_learning_rate, _d_learning_rate, iteration = load_checkpoint(
checkpoint_path, generator, g_optimizer, d_optimizer)
if hparams.use_saved_learning_rate:
g_learning_rate = _g_learning_rate
d_learning_rate = _d_learning_rate
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
generator.train()
discriminator.train()
is_overflow = False
gen_times, disc_times = 1, 0
prev_check = None
generated_mel_list = []
# ================ MAIN TRAINING LOOP! ===================
n_epochs = hparams.epochs
if hparams.iterations is not None and hparams.iterations > 0:
n_epochs = int(hparams.iterations / len(train_loader)) + 1
progress_bar = tqdm(range(epoch_offset, n_epochs))
iter_rep = 10000
gen_warm = 5
prev_val_loss = float('inf')
best_val_loss = float('inf')
best_val_loss_path = None
for epoch in progress_bar:
progress_bar.set_description(f'Epoch {epoch}')
progress_bar_2 = tqdm(enumerate(train_loader), total=len(train_loader))
for i, batch in progress_bar_2:
start = time.perf_counter()
do_disc = False
if iteration >= iter_rep and iteration - iter_rep * int(iteration / iter_rep) < 100:
# Every 10k iterations train discriminator for 100 iterations.
do_disc = True
if iteration > gen_warm and (disc_times > 0 or iteration < hparams.disc_warmp_up or do_disc):
""" Train Discriminator """
for param_group in d_optimizer.param_groups:
param_group['lr'] = d_learning_rate
for p in discriminator.parameters(): # reset requires_grad
p.requires_grad = True
discriminator.zero_grad()
x, y = generator.parse_batch(batch)
real_mel, output_lengths = x[2], x[-1]
# how well can it label as real?
real_loss = real * discriminator.adversarial_loss(real_mel, output_lengths)
if len(generated_mel_list) > disc_times - 1:
generated_mel, generated_output_lengths = generated_mel_list[disc_times - 1]
if iteration < hparams.disc_warmp_up:
generated_mel, generated_output_lengths = sample(generated_mel_list, 1)[0]
# how well can it label as fake?
fake_loss = fake * discriminator.adversarial_loss(generated_mel.detach(), generated_output_lengths)
# discriminator loss is the average of these
discriminator_loss = (real_loss + fake_loss) / 2
extra_log = ''
if hparams.clipping_value > 0:
torch.nn.utils.clip_grad_norm_(discriminator.parameters(), hparams.clipping_value)
elif hparams.gradient_penalty_lambda > 0:
gp = gradient_penalty(discriminator, real_mel, generated_mel.detach(), output_lengths,
generated_output_lengths)
extra_log = f' GP {round_(gp, 3)} '
discriminator_loss += hparams.gradient_penalty_lambda * gp
logger.log_values(step=iteration, gradient_penalty=gp)
if hparams.distributed_run:
reduced_loss = reduce_tensor(discriminator_loss.data, n_gpus).item()
else:
reduced_loss = discriminator_loss.item()
if hparams.fp16_run:
with amp.scale_loss(discriminator_loss, d_optimizer) as scaled_loss:
scaled_loss.backward()
else:
discriminator_loss.backward()
d_optimizer.step()
duration = time.perf_counter() - start
progress_bar_2.set_description(
f"{iteration} Discriminator loss {round(reduced_loss, 6)} "
f"real loss {round_(real_loss, 6)} fake loss {round_(fake_loss, 6)} {extra_log}"
)
logger.log_values(step=iteration, discriminator_loss=reduced_loss, real_loss=real_loss,
fake_loss=fake_loss, discriminator_learning_rate=d_learning_rate,
discriminator_duration=duration)
disc_times += 1
if disc_times > hparams.d_freq and iteration >= hparams.disc_warmp_up:
disc_times = 0
gen_times = 1
else:
""" Train Generator """
for param_group in g_optimizer.param_groups:
param_group['lr'] = g_learning_rate
for p in discriminator.parameters(): # reset requires_grad
p.requires_grad = False
generator.zero_grad()
x, y = generator.parse_batch(batch)
y_pred = generator(x)
generated_mel = y_pred[1]
generated_output_lengths = x[-1]
generated_mel_list.append([generated_mel, generated_output_lengths])
if len(generated_mel_list) > hparams.d_freq:
generated_mel_list.pop(0)
mel_loss, gate_loss, atten_loss = criterion(y_pred, y, x[1], x[-1])
taco_loss = mel_loss + gate_loss
adv_loss = 0
if hparams.d_freq > 0:
adv_loss = real * discriminator.adversarial_loss(generated_mel, generated_output_lengths)
total_loss = taco_loss + adv_loss
if iteration < hparams.attn_steps:
total_loss += 10 * atten_loss
if hparams.distributed_run:
reduced_loss = reduce_tensor(total_loss.data, n_gpus).item()
else:
reduced_loss = total_loss.item()
if hparams.fp16_run:
with amp.scale_loss(total_loss, g_optimizer) as scaled_loss:
scaled_loss.backward()
else:
total_loss.backward()
if hparams.fp16_run:
grad_norm = torch.nn.utils.clip_grad_norm_(
amp.master_params(g_optimizer), hparams.grad_clip_thresh)
is_overflow = math.isnan(grad_norm)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(
generator.parameters(), hparams.grad_clip_thresh)
g_optimizer.step()
if not is_overflow and rank == 0:
duration = time.perf_counter() - start
progress_bar_2.set_description(f"{iteration} Generator loss {round(reduced_loss, 6)} "
f"Taco loss {round_(taco_loss, 6)} "
f"Grad Norm {round_(grad_norm, 6)}")
logger.log_values(step=iteration, generator_loss=total_loss, adversarial_loss=adv_loss,
mel_loss=mel_loss, gate_loss=gate_loss, grad_norm=grad_norm,
generator_learning_rate=g_learning_rate, generation_duration=duration)
if iteration < hparams.attn_steps:
logger.log_values(step=iteration, attention_loss=atten_loss)
gen_times += 1
if gen_times > hparams.g_freq and hparams.d_freq > 0:
gen_times = 0
disc_times = 1
iteration += 1
if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0):
val_out = validation_step(best_val_loss, best_val_loss_path, collate_fn, criterion, d_learning_rate,
d_optimizer, g_learning_rate, g_optimizer, generator, hparams, iteration,
n_gpus, output_directory, prev_check, prev_val_loss, rank, valset)
prev_val_loss, best_val_loss, best_val_loss_path, prev_check = val_out
if iteration % hparams.reduce_lr_steps_every == 0 and hparams.reduce_lr_steps_every > 0:
g_learning_rate /= 2
d_learning_rate /= 2
if hparams.iterations is not None and iteration >= hparams.iterations:
validation_step(best_val_loss, best_val_loss_path, collate_fn, criterion, d_learning_rate,
d_optimizer, g_learning_rate, g_optimizer, generator, hparams, iteration,
n_gpus, output_directory, prev_check, prev_val_loss, rank, valset)
return
def validation_step(best_val_loss, best_val_loss_path, collate_fn, criterion, d_learning_rate, d_optimizer,
g_learning_rate, g_optimizer, generator, hparams, iteration, n_gpus, output_directory, prev_check,
prev_val_loss, rank, valset):
val_loss = validate(generator, criterion, valset, iteration,
hparams.batch_size, n_gpus, collate_fn,
hparams.distributed_run, rank)
if rank == 0:
file_name = f'/iter={iteration}_val-loss={round(val_loss, 6)}.ckpt'
checkpoint_path = output_directory + file_name
save_checkpoint(generator, g_optimizer, g_learning_rate, d_optimizer, d_learning_rate, iteration,
checkpoint_path)
wandb.save(checkpoint_path)
if prev_check is not None and val_loss < prev_val_loss:
os.remove(prev_check)
if val_loss < best_val_loss:
if best_val_loss_path is not None and os.path.exists(best_val_loss_path):
os.remove(best_val_loss_path)
best_val_loss = val_loss
best_val_loss_path = checkpoint_path
wandb.save(output_directory + '/*.ckpt')
prev_check = checkpoint_path
return val_loss, best_val_loss, best_val_loss_path, prev_check
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output_directory', type=str, required=False, help='directory to save checkpoints')
parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path')
parser.add_argument('--waveglow_path', type=str, default=None, required=False,
help='WaveGlow path to use in validation')
parser.add_argument('--vesus_path', type=str, default=None, help='Vesus dataset path to use')
parser.add_argument('--warm_start', action='store_true', help='load model weights only, ignore specified layers')
parser.add_argument('--n_gpus', type=int, default=1, required=False, help='number of gpus')
parser.add_argument('--rank', type=int, default=0, required=False, help='rank of current gpu')
parser.add_argument('--group_name', type=str, default='group_name', required=False, help='Distributed group name')
parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs')
parser.add_argument('--wavs_path', type=str, required=True, help='path to the wavs files')
parser.add_argument('--resume', type=str, default='', help='ID of a run to resume')
parser.add_argument('--notes', type=str, default='', help='Notes to add to the run')
parser.add_argument('--real', type=int, default=1, required=False, help='value of real mel for Wasserstein loss')
parser.add_argument('--attn_steps', type=int, required=False, help='Use attention loss for the first steps only')
args = parser.parse_args()
hparams = HParams(args.hparams)
hparams.add_params(args)
if not hparams.use_noise:
hparams.noise_size = 0
if hparams.d_freq == 0:
hparams.disc_warmp_up = 0
name = f"{'vesus' if hparams.vesus_path is not None else ''}LJ-" \
f"{'encIn-' if hparams.encoder_inputs else ''}" \
f"{hparams.noise_size}n-" \
f"{'intended' if hparams.use_intended_labels and hparams.use_labels else ''}" \
f"{'labels' if hparams.use_labels and hparams.vesus_path else 'NOlabels'}" \
f"-{'cD' if hparams.discriminator_type != 'linear' else 'lD'}"
print('\033[94m', f'Run {name} started', '\033[0m')
if args.waveglow_path:
import sys
sys.path.append('WaveGlow/')
real = 1
fake = - real
torch.backends.cudnn.enabled = hparams.cudnn_enabled
torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
print("FP16 Run:", hparams.fp16_run)
print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling)
print("Distributed Run:", hparams.distributed_run)
print("cuDNN Enabled:", hparams.cudnn_enabled)
print("cuDNN Benchmark:", hparams.cudnn_benchmark)
wandb.init(project="Compare", config=hparams.__dict__, name=name, notes=args.notes, tags=f'v{hparams.version}')
if args.output_directory is None:
args.output_directory = wandb.run.dir + '/output'
wandb.save(args.output_directory + "/*.ckpt")
train(args.output_directory, args.checkpoint_path,
args.warm_start, args.n_gpus, args.rank, args.group_name, hparams, args.wavs_path)