-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlogger.py
201 lines (168 loc) · 6.28 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import json
import time
from datetime import datetime
import os
from typing import Any, Dict, List, Optional
from dataclasses import dataclass, asdict
@dataclass
class RAGStep:
"""Data class for recording RAG processing steps"""
name: str
start_time: float = 0.0
end_time: float = 0.0
duration: float = 0.0
metadata: Dict[str, Any] = None
@dataclass
class RetrievalResult:
"""Data class for retrieval results"""
total_docs: int = 0
retrieved_docs: List[Dict] = None
metadata: Dict[str, Any] = None
@dataclass
class RAGLogData:
"""Data class for RAG log data"""
timestamp: str
query: str
total_time: float = 0.0
steps: Dict[str, RAGStep] = None
retrieval_results: Dict[str, RetrievalResult] = None
llm_input: str = ""
llm_output: str = ""
messages: List[Dict] = None
class RAGLogger:
"""Logger for RAG (Retrieval-Augmented Generation) scenarios"""
def __init__(self, log_dir: str = "logs", auto_save: bool = True):
"""
Initialize RAG logger
Args:
log_dir: Directory for storing logs
auto_save: Whether to automatically save logs (when logging ends)
"""
self.log_dir = log_dir
self.auto_save = auto_save
self.start_time = time.time()
# Create log directory structure
self.today = datetime.now().strftime("%Y%m%d")
self.daily_log_dir = os.path.join(self.log_dir, self.today)
os.makedirs(self.daily_log_dir, exist_ok=True)
# Initialize log data
self.step_times = {}
self.log_data = RAGLogData(
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
query="",
steps={},
retrieval_results={},
messages=[]
)
self.info("RAG Logger initialized successfully")
def start_step(self, step_name: str, metadata: Dict[str, Any] = None) -> None:
"""
Start recording a processing step
Args:
step_name: Name of the step
metadata: Metadata related to the step
"""
self.step_times[step_name] = time.time()
self.log_data.steps[step_name] = RAGStep(
name=step_name,
start_time=self.step_times[step_name],
metadata=metadata
)
print(f"[{step_name}] Started...")
def end_step(self, step_name: str, metadata: Dict[str, Any] = None) -> None:
"""
End recording a processing step
Args:
step_name: Name of the step
metadata: Metadata related to the step
"""
if step_name in self.step_times:
end_time = time.time()
duration = end_time - self.step_times[step_name]
step = self.log_data.steps.get(step_name)
if step:
step.end_time = end_time
step.duration = duration
if metadata:
step.metadata = metadata if not step.metadata else {**step.metadata, **metadata}
print(f"[{step_name}] Completed (Duration: {duration:.2f}s)")
def log_retrieval(self,
source: str,
total_docs: int,
retrieved_docs: List[Dict],
metadata: Dict[str, Any] = None) -> None:
"""
Log retrieval results
Args:
source: Retrieval source (e.g., 'text', 'image')
total_docs: Total number of documents
retrieved_docs: List of retrieved documents
metadata: Metadata related to retrieval
"""
self.log_data.retrieval_results[source] = RetrievalResult(
total_docs=total_docs,
retrieved_docs=retrieved_docs,
metadata=metadata
)
print(f"[{source} Retrieval] Retrieved {len(retrieved_docs)} results from {total_docs} documents")
def log_llm(self, llm_input: str, llm_output: str) -> None:
"""
Log LLM interaction
Args:
llm_input: Input content to LLM
llm_output: Output content from LLM
"""
self.log_data.llm_input = llm_input
self.log_data.llm_output = llm_output
print(f"[LLM] Generated response (Length: {len(llm_output)})")
def log_query(self, query: str) -> None:
"""
Log query content
Args:
query: User query content
"""
self.log_data.query = query
print(f"[Query] {query}")
def info(self, message: str) -> None:
"""Log information level message"""
self._log_message("INFO", message)
def warning(self, message: str) -> None:
"""Log warning level message"""
self._log_message("WARNING", message)
def error(self, message: str) -> None:
"""Log error level message"""
self._log_message("ERROR", message)
def _log_message(self, level: str, message: str) -> None:
"""Internal method for logging messages"""
print(f"[{level}] {message}")
if not self.log_data.messages:
self.log_data.messages = []
self.log_data.messages.append({
"level": level,
"message": message,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
def save(self, filename_prefix: str = "rag_log") -> str:
"""
Save log to file
Args:
filename_prefix: Prefix for log filename
Returns:
str: Path to saved log file
"""
self.log_data.total_time = time.time() - self.start_time
# Generate filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{filename_prefix}_{timestamp}.json"
filepath = os.path.join(self.daily_log_dir, filename)
# Convert log data to dictionary
log_dict = asdict(self.log_data)
# Save to file
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(log_dict, f, ensure_ascii=False, indent=2)
print(f"Log saved to: {filepath}")
return filepath
def __del__(self):
"""Destructor - save log if auto_save is enabled"""
if self.auto_save:
self.save()