forked from isohrab/Pupil-locator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
269 lines (211 loc) · 7.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import cv2
import os
from scipy.interpolate import splprep, splev
from collections import namedtuple
from config import config
from skimage import io
from glob import glob
DataElement = namedtuple('DataElement', ['keys', 'item'])
def check_dir(path):
if not os.path.exists(path):
os.makedirs(path)
def rf(low, high):
"""
return a random float number between [low, high)
:param low: lower bound
:param high: higher bound (excluded)
:return: a float number between [low, high)
"""
if low >= high:
return low
return np.random.uniform(low, high)
def ri(low, high):
"""
return a random int number between [low, high)
:param low: lower bound
:param high: higher bound (excluded)
:return: an int number between [low, high)
"""
if low >= high:
return low
return np.random.randint(low, high)
def annotator(color, img, x, y, w=10, h=None, a=0):
"""
draw a circle around predicted pupil
:param img: input frame
:param x: x-position
:param y: y-position
:param w: width of pupil
:param h: height of pupil
:return: an image with a circle around the pupil
"""
if color is None:
color = (0, 250, 250)
c = 1
if np.ndim(img) == 2:
img = np.expand_dims(img, -1)
elif np.ndim(img) == 3:
c = img.shape[2]
if c == 1:
img = np.concatenate((img, img, img), axis=2)
l1xs = int(x - 3)
l1ys = int(y)
l1xe = int(x + 3)
l1ye = int(y)
l2xs = int(x)
l2ys = int(y - 3)
l2xe = int(x)
l2ye = int(y + 3)
img = cv2.line(img, (l1xs, l1ys), (l1xe, l1ye), color, 1)
img = cv2.line(img, (l2xs, l2ys), (l2xe, l2ye), color, 1)
# We predict only width!
if h is None:
h = w
# draw ellipse
img = cv2.ellipse(img, ((x, y), (w, h), a), color, 1)
return img
def create_noisy_video(data_path='data/valid_data.csv', length=60, fps=5, with_label=False, augmentor=None):
"""
create a sample video based random image.
Of course it is not a valid solution to test the model with already seen images.
It is just to check the speed of model. based on different FPS
:param data_path: CSV file for input data
:param length: length of video in second
:param fps: number of frame per second
:param with_label: if true, show true label on the video
:return: a noisy video (file name) for test purpose.
"""
# read CSV
data_list = []
with open(data_path, "r") as f:
for line in f:
# values: [ img_path, x, y, w, h , a]
values = line.strip().split(",")
data_list.append([values[0], # image path
values[1], # x
values[2]]) # y
# number image to make the video
images_len = fps * length
np.random.shuffle(data_list)
start_idx = np.random.randint(0, len(data_list) - images_len)
selected_images = data_list[start_idx:start_idx + images_len]
output_fn = 'video_{}s_{}fps.avi'.format(length, fps)
video = cv2.VideoWriter(output_fn, cv2.VideoWriter_fourcc(*"XVID"), fps,
(config["input_height"], config["input_width"]))
for i in selected_images:
img = cv2.imread(i[0], cv2.IMREAD_GRAYSCALE)
x = float(i[1])
y = float(i[2])
# w = float(i[3])
# h = float(i[4])
# a = float(i[5])
label = [x, y]
if augmentor is not None:
img, label = augmentor.addNoise(img, label)
img = np.asarray(img, dtype=np.uint8)
if with_label:
img = annotator((0, 250, 0), img, *label)
font = cv2.FONT_HERSHEY_PLAIN
texts = i[0].split("/")
text = texts[2] + "/" + texts[3] + "/" + texts[4]
img = cv2.putText(img, text, (5, 10), font, 0.8, (0, 250, 0), 1, cv2.LINE_8)
else:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
video.write(img)
cv2.destroyAllWindows()
video.release()
return output_fn
def change_channel(img, num_channel=1):
"""
Get frame and normalize values between 0 and 1 and then based num channel reshape it to desired channel
:param frame: the input image, a numpy array
:param num_channel: desired number of channel
:return: normalized frame with num_channel
"""
img = np.expand_dims(img, -1)
if num_channel == 3:
img = np.concatenate((img, img, img), axis=2)
return img
def gray_normalizer(gray):
"""
get a grayscale image with pixel value 0-255
and return normalized pixel with value between -1,1
:param gray: input grayscale image
:return: normalized grayscale image
"""
# average mean over all training images ( without noise)
gray = gray * 1/255
out_gray = np.asarray(gray - 0.5, dtype=np.float32)
return out_gray
def gray_denormalizer(gray):
"""
Get a normalized gray image and convert to value 0-255
:param gray: normalized grayscale image
:return: denormalized grayscale image
"""
# average mean over all training images ( without noise)
out_gray = gray + 0.5
out_gray = np.asarray(out_gray * 255, dtype=np.uint8)
return out_gray
def save_dict(dict, save_path):
with open(save_path, mode="w") as f:
for key, val in dict.items():
f.write(key+";"+str(val)+"\n")
print("Class dict saved successfully at: {}".format(save_path))
def load_dict(load_path):
dict = {}
with open(load_path, mode="r") as f:
for line in f:
key, val = line.split(";")
dict[key] = int(val)
print("Class dict loaded successfuly at: {}".format(load_path))
return dict
def smooth_contour(cnt):
x, y = cnt.T
x = x.tolist()[0]
y = y.tolist()[0]
tck, u = splprep([x, y], u=None, s=1.0, per=1)
u_new = np.linspace(u.min(), u.max(), 10)
x_new, y_new = splev(u_new, tck, der=0)
res_array = [[[int(i[0]), int(i[1])]] for i in zip(x_new,y_new)]
return np.array(res_array, dtype=np.int32)
def data_generator(data_path, actors):
if not len(actors):
actor_list = glob(data_path + '/*/')
else:
actor_list = [f'{data_path}/{actor}/' for actor in actors]
keys = []
for actor_path in actor_list:
actor_key = os.path.basename(actor_path[:-1]) # [:-1] because last character is '/'
keys.append(actor_key)
domain_list = glob(actor_path + '*/')
for domain_path in domain_list:
domain_key = os.path.basename(domain_path[:-1])
keys.append(domain_key)
segment_list = glob(domain_path + '*/')
for segment_path in segment_list:
segment_key = os.path.basename(segment_path[:-1])
keys.append(segment_key)
frames = glob(segment_path + 'frames/*.jpg')
frames = sorted(frames, key=lambda x: int(os.path.basename(x)[:-4]))
for frame_path in frames:
image = io.imread(frame_path)
frame_key = os.path.basename(frame_path)[:-4]
keys.append(frame_key)
yield DataElement(keys, image)
keys.pop()
keys.pop()
keys.pop()
keys.pop()
def distance(u, v):
diff = u - v
return np.sqrt((diff**2).sum())
def eye_aspect_ratio(cnt):
cnt = cnt.reshape(-1, 2)
numerator = distance(cnt[1], cnt[5]) + distance(cnt[2], cnt[4])
denomenator = 2 * distance(cnt[0], cnt[3])
return numerator / denomenator
if __name__ == "__main__":
ag = Augmentor('data/noisy_videos', config)
create_noisy_video(with_label=True, augmentor=ag)