forked from yxgeee/FD-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
baseline.py
200 lines (170 loc) · 7.71 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import numpy as np
import os, sys
from bisect import bisect_right
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
from torch.backends import cudnn
from torch.utils.data import DataLoader
from reid import datasets
from reid import models
from reid.utils.data import transforms as T
from reid.utils.data.preprocessor import Preprocessor
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict
from reid.utils.data.sampler import RandomPairSampler
from reid.models.embedding import EltwiseSubEmbed
from reid.models.multi_branch import SiameseNet
from reid.evaluators import CascadeEvaluator
from reid.trainers import SiameseTrainer
def get_data(name, split_id, data_dir, height, width, batch_size, workers,
combine_trainval, np_ratio):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root, split_id=split_id)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_set = dataset.trainval if combine_trainval else dataset.train
train_transformer = T.Compose([
T.RandomSizedRectCrop(height, width),
T.RandomSizedEarser(),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalizer,
])
test_transformer = T.Compose([
T.RectScale(height, width),
T.ToTensor(),
normalizer,
])
train_loader = DataLoader(
Preprocessor(train_set, root=dataset.images_dir,
transform=train_transformer),
sampler=RandomPairSampler(train_set, neg_pos_ratio=np_ratio),
batch_size=batch_size, num_workers=workers, pin_memory=False)
val_loader = DataLoader(
Preprocessor(dataset.val, root=dataset.images_dir,
transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=False)
test_loader = DataLoader(
Preprocessor(list(set(dataset.query) | set(dataset.gallery)),
root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=False)
return dataset, train_loader, val_loader, test_loader
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.benchmark = True
# Redirect print to both console and log file
if not args.evaluate:
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
else:
log_dir = osp.dirname(args.resume)
sys.stdout = Logger(osp.join(log_dir, 'log_test.txt'))
# print("==========\nArgs:{}\n==========".format(args))
# Create data loaders
if args.height is None or args.width is None:
args.height, args.width = (256, 128)
dataset, train_loader, val_loader, test_loader = \
get_data(args.dataset, args.split, args.data_dir, args.height,
args.width, args.batch_size, args.workers,
args.combine_trainval, args.np_ratio)
# Create model
base_model = models.create(args.arch, cut_at_pooling=True)
embed_model = EltwiseSubEmbed(use_batch_norm=True, use_classifier=True,
num_features=2048, num_classes=2)
model = SiameseNet(base_model, embed_model)
model = nn.DataParallel(model).cuda()
# Evaluator
evaluator = CascadeEvaluator(
torch.nn.DataParallel(base_model).cuda(),
embed_model,
embed_dist_fn=lambda x: F.softmax(Variable(x), dim=1).data[:, 0])
# Load from checkpoint
best_mAP = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
model.load_state_dict(checkpoint)
print("Test the loaded model:")
top1, mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, rerank_topk=100, dataset=args.dataset)
best_mAP = mAP
if args.evaluate:
return
# Criterion
criterion = nn.CrossEntropyLoss().cuda()
# Optimizer
param_groups = [
{'params': model.module.base_model.parameters(), 'lr_mult': 1.0},
{'params': model.module.embed_model.parameters(), 'lr_mult': 1.0}]
optimizer = torch.optim.SGD(param_groups, args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
# Trainer
trainer = SiameseTrainer(model, criterion)
# Schedule learning rate
def adjust_lr(epoch):
lr = args.lr * (0.1 ** (epoch // args.step_size))
for g in optimizer.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
# Start training
for epoch in range(0, args.epochs):
adjust_lr(epoch)
trainer.train(epoch, train_loader, optimizer, base_lr=args.lr)
if epoch % args.eval_step==0:
mAP = evaluator.evaluate(val_loader, dataset.val, dataset.val, top1=False)
is_best = mAP > best_mAP
best_mAP = max(mAP, best_mAP)
save_checkpoint({
'state_dict': model.state_dict()
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
print('\n * Finished epoch {:3d} mAP: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, mAP, best_mAP, ' *' if is_best else ''))
# Final test
print('Test with best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, dataset=args.dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Siamese reID baseline")
# data
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--split', type=int, default=0)
parser.add_argument('--height', type=int,
help="input height, default: 256 for resnet")
parser.add_argument('--width', type=int,
help="input width, default: 128 for resnet")
parser.add_argument('--combine-trainval', action='store_true',
help="train and val sets together for training, "
"val set alone for validation")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
# optimizer
parser.add_argument('--lr', type=float, default=0.01, help="learning rate")
parser.add_argument('--np-ratio', type=int, default=3)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--step-size', type=int, default=40)
# training configs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--eval-step', type=int, default=20, help="evaluation step")
parser.add_argument('--seed', type=int, default=1)
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'datasets'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'checkpoints'))
main(parser.parse_args())