forked from ChiWeiHsiao/DeepVO-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
132 lines (116 loc) · 5.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
from params import par
from torch.autograd import Variable
from torch.nn.init import kaiming_normal_, orthogonal_
import numpy as np
def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1, dropout=0):
if batchNorm:
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=False),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.1, inplace=True),
nn.Dropout(dropout)#, inplace=True)
)
else:
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True),
nn.LeakyReLU(0.1, inplace=True),
nn.Dropout(dropout)#, inplace=True)
)
class DeepVO(nn.Module):
def __init__(self, imsize1, imsize2, batchNorm=True):
super(DeepVO,self).__init__()
# CNN
self.batchNorm = batchNorm
self.clip = par.clip
self.conv1 = conv(self.batchNorm, 6, 64, kernel_size=7, stride=2, dropout=par.conv_dropout[0])
self.conv2 = conv(self.batchNorm, 64, 128, kernel_size=5, stride=2, dropout=par.conv_dropout[1])
self.conv3 = conv(self.batchNorm, 128, 256, kernel_size=5, stride=2, dropout=par.conv_dropout[2])
self.conv3_1 = conv(self.batchNorm, 256, 256, kernel_size=3, stride=1, dropout=par.conv_dropout[3])
self.conv4 = conv(self.batchNorm, 256, 512, kernel_size=3, stride=2, dropout=par.conv_dropout[4])
self.conv4_1 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=1, dropout=par.conv_dropout[5])
self.conv5 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=2, dropout=par.conv_dropout[6])
self.conv5_1 = conv(self.batchNorm, 512, 512, kernel_size=3, stride=1, dropout=par.conv_dropout[7])
self.conv6 = conv(self.batchNorm, 512, 1024, kernel_size=3, stride=2, dropout=par.conv_dropout[8])
# Comput the shape based on diff image size
__tmp = Variable(torch.zeros(1, 6, imsize1, imsize2))
__tmp = self.encode_image(__tmp)
# RNN
self.rnn = nn.LSTM(
input_size=int(np.prod(__tmp.size())),
hidden_size=par.rnn_hidden_size,
num_layers=2,
dropout=par.rnn_dropout_between,
batch_first=True)
self.rnn_drop_out = nn.Dropout(par.rnn_dropout_out)
self.linear = nn.Linear(in_features=par.rnn_hidden_size, out_features=6)
# Initilization
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear):
kaiming_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.LSTM):
# layer 1
kaiming_normal_(m.weight_ih_l0) #orthogonal_(m.weight_ih_l0)
kaiming_normal_(m.weight_hh_l0)
m.bias_ih_l0.data.zero_()
m.bias_hh_l0.data.zero_()
# Set forget gate bias to 1 (remember)
n = m.bias_hh_l0.size(0)
start, end = n//4, n//2
m.bias_hh_l0.data[start:end].fill_(1.)
# layer 2
kaiming_normal_(m.weight_ih_l1) #orthogonal_(m.weight_ih_l1)
kaiming_normal_(m.weight_hh_l1)
m.bias_ih_l1.data.zero_()
m.bias_hh_l1.data.zero_()
n = m.bias_hh_l1.size(0)
start, end = n//4, n//2
m.bias_hh_l1.data[start:end].fill_(1.)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
# x: (batch, seq_len, channel, width, height)
# stack_image
x = torch.cat(( x[:, :-1], x[:, 1:]), dim=2)
batch_size = x.size(0)
seq_len = x.size(1)
# CNN
x = x.view(batch_size*seq_len, x.size(2), x.size(3), x.size(4))
x = self.encode_image(x)
x = x.view(batch_size, seq_len, -1)
# RNN
out, hc = self.rnn(x)
out = self.rnn_drop_out(out)
out = self.linear(out)
return out
def encode_image(self, x):
out_conv2 = self.conv2(self.conv1(x))
out_conv3 = self.conv3_1(self.conv3(out_conv2))
out_conv4 = self.conv4_1(self.conv4(out_conv3))
out_conv5 = self.conv5_1(self.conv5(out_conv4))
out_conv6 = self.conv6(out_conv5)
return out_conv6
def weight_parameters(self):
return [param for name, param in self.named_parameters() if 'weight' in name]
def bias_parameters(self):
return [param for name, param in self.named_parameters() if 'bias' in name]
def get_loss(self, x, y):
predicted = self.forward(x)
y = y[:, 1:, :] # (batch, seq, dim_pose)
# Weighted MSE Loss
angle_loss = torch.nn.functional.mse_loss(predicted[:,:,:3], y[:,:,:3])
translation_loss = torch.nn.functional.mse_loss(predicted[:,:,3:], y[:,:,3:])
loss = (100 * angle_loss + translation_loss)
return loss
def step(self, x, y, optimizer):
optimizer.zero_grad()
loss = self.get_loss(x, y)
loss.backward()
if self.clip != None:
torch.nn.utils.clip_grad_norm(self.rnn.parameters(), self.clip)
optimizer.step()
return loss