-
Notifications
You must be signed in to change notification settings - Fork 2
/
RawArrow.agda
44 lines (37 loc) · 1.43 KB
/
RawArrow.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
module RawArrow where
{- Answer to http://stackoverflow.com/q/13112642/53974, derived from
the other answer. -}
open import Data.Product --actually needed by RawArrow
open import Data.Fin --only for examples
open import Data.Nat --ditto
record RawArrow (A : (S : Set) → (T : {s : S} → Set) → Set) : Set₁ where
field
arr : ∀ {B C} → (B → C) → A B C
_>>>_ : ∀ {B C D} → A B C → A C D → A B D
first : ∀ {B C D} → A B C → A (B × D) (C × D)
second : ∀ {B C D} → A B C → A (D × B) (D × C)
_***_ : ∀ {B C B' C'} → A B C → A B' C' → A (B × B') (C × C')
_&&&_ : ∀ {B C C'} → A B C → A B C' → A B (C × C')
_=>_ : (S : Set) → (T : {s : S} → Set) → Set
A => B = (a : A) -> B {a}
test1 : Set
test1 = ℕ => ℕ
-- With → we can also write:
test2 : Set
test2 = (n : ℕ) → Fin n
-- But also with =>, though it's more cumbersome:
test3 : Set
test3 = ℕ => (λ {n : ℕ} → Fin n)
--Note that since _=>_ uses Set instead of being level-polymorphic, it's still
--somewhat limited. But I won't go the full way.
--fnRawArrow : RawArrow _=>_
-- Alternatively:
fnRawArrow : RawArrow (λ A B → (a : A) → B {a})
fnRawArrow = record
{ arr = λ f → f
; _>>>_ = λ g f x → f (g x)
; first = λ { f (x , y) → (f x , y) }
; second = λ { f (x , y) → (x , f y) }
; _***_ = λ { f g (x , y) → (f x , g y) }
; _&&&_ = λ f g x → (f x , g x)
}