diff --git a/.github/workflows/main.yaml b/.github/workflows/main.yaml
new file mode 100644
index 0000000..1d06de3
--- /dev/null
+++ b/.github/workflows/main.yaml
@@ -0,0 +1,98 @@
+name: workflow
+
+on:
+ push:
+ branches:
+ - main
+ paths-ignore:
+ - 'README.md'
+
+permissions:
+ id-token: write
+ contents: read
+
+jobs:
+ integration:
+ name: Continuous Integration
+ runs-on: ubuntu-latest
+ steps:
+ - name: Checkout Code
+ uses: actions/checkout@v3
+
+ - name: Lint code
+ run: echo "Linting repository"
+
+ - name: Run unit tests
+ run: echo "Running unit tests"
+
+ build-and-push-ecr-image:
+ name: Continuous Delivery
+ needs: integration
+ runs-on: ubuntu-latest
+ steps:
+ - name: Checkout Code
+ uses: actions/checkout@v3
+
+ - name: Install Utilities
+ run: |
+ sudo apt-get update
+ sudo apt-get install -y jq unzip
+ - name: Configure AWS credentials
+ uses: aws-actions/configure-aws-credentials@v1
+ with:
+ aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
+ aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
+ aws-region: ${{ secrets.AWS_REGION }}
+
+ - name: Login to Amazon ECR
+ id: login-ecr
+ uses: aws-actions/amazon-ecr-login@v1
+
+ - name: Build, tag, and push image to Amazon ECR
+ id: build-image
+ env:
+ ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }}
+ ECR_REPOSITORY: ${{ secrets.ECR_REPOSITORY_NAME }}
+ IMAGE_TAG: latest
+ run: |
+ # Build a docker container and
+ # push it to ECR so that it can
+ # be deployed to ECS.
+ docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .
+ docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
+ echo "::set-output name=image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"
+
+
+ Continuous-Deployment:
+ needs: build-and-push-ecr-image
+ runs-on: self-hosted
+ steps:
+ - name: Checkout
+ uses: actions/checkout@v3
+
+ - name: Configure AWS credentials
+ uses: aws-actions/configure-aws-credentials@v1
+ with:
+ aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
+ aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
+ aws-region: ${{ secrets.AWS_REGION }}
+
+ - name: Login to Amazon ECR
+ id: login-ecr
+ uses: aws-actions/amazon-ecr-login@v1
+
+
+ - name: Pull latest images
+ run: |
+ docker pull ${{secrets.AWS_ECR_LOGIN_URI}}/${{ secrets.ECR_REPOSITORY_NAME }}:latest
+
+ # - name: Stop and remove container if running
+ # run: |
+ # docker ps -q --filter "name=mltest" | grep -q . && docker stop mltest && docker rm -fv mltest
+
+ - name: Run Docker Image to serve users
+ run: |
+ docker run -d -p 8080:8080 --ipc="host" --name=mltest -e 'AWS_ACCESS_KEY_ID=${{ secrets.AWS_ACCESS_KEY_ID }}' -e 'AWS_SECRET_ACCESS_KEY=${{ secrets.AWS_SECRET_ACCESS_KEY }}' -e 'AWS_REGION=${{ secrets.AWS_REGION }}' ${{secrets.AWS_ECR_LOGIN_URI}}/${{ secrets.ECR_REPOSITORY_NAME }}:latest
+ - name: Clean previous images and containers
+ run: |
+ docker system prune -f
\ No newline at end of file
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..c8404b5
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,131 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+mlproject.egg-info
diff --git a/Dockerfile b/Dockerfile
new file mode 100644
index 0000000..a25afb1
--- /dev/null
+++ b/Dockerfile
@@ -0,0 +1,8 @@
+FROM python:3.8-slim-buster
+WORKDIR /app
+COPY . /app
+
+RUN apt update -y && apt install awscli -y
+
+RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 unzip -y && pip install -r requirements.txt
+CMD ["python3", "app.py"]
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..0d8e620
--- /dev/null
+++ b/README.md
@@ -0,0 +1,37 @@
+## End to End MAchine Learning Project
+
+1. Docker Build checked
+2. Github Workflow
+3. Iam User In AWS
+
+## Docker Setup In EC2 commands to be Executed
+
+#optinal
+
+sudo apt-get update -y
+
+sudo apt-get upgrade
+
+#required
+
+curl -fsSL https://get.docker.com -o get-docker.sh
+
+sudo sh get-docker.sh
+
+sudo usermod -aG docker ubuntu
+
+newgrp docker
+
+## Configure EC2 as self-hosted runner:
+
+## Setup github secrets:
+
+AWS_ACCESS_KEY_ID=
+
+AWS_SECRET_ACCESS_KEY=
+
+AWS_REGION = us-east-1
+
+AWS_ECR_LOGIN_URI = demo>> 566373416292.dkr.ecr.ap-south-1.amazonaws.com
+
+ECR_REPOSITORY_NAME = simple-app
diff --git a/app.py b/app.py
new file mode 100644
index 0000000..2721575
--- /dev/null
+++ b/app.py
@@ -0,0 +1,46 @@
+from flask import Flask,request,render_template
+import numpy as np
+import pandas as pd
+
+
+from sklearn.preprocessing import StandardScaler
+from src.pipeline.predict_pipeline import CustomData,PredictPipeline
+
+application=Flask(__name__)
+
+app=application
+
+## Route for a home page
+
+@app.route('/')
+def index():
+ return render_template('index.html')
+
+@app.route('/predictdata',methods=['GET','POST'])
+def predict_datapoint():
+ if request.method=='GET':
+ return render_template('home.html')
+ else:
+ data=CustomData(
+ gender=request.form.get('gender'),
+ race_ethnicity=request.form.get('ethnicity'),
+ parental_level_of_education=request.form.get('parental_level_of_education'),
+ lunch=request.form.get('lunch'),
+ test_preparation_course=request.form.get('test_preparation_course'),
+ reading_score=float(request.form.get('writing_score')),
+ writing_score=float(request.form.get('reading_score')))
+
+ pred_df=data.get_data_as_data_frame()
+ print(pred_df)
+
+ predict_pipeline=PredictPipeline()
+ results=predict_pipeline.predict(pred_df)
+ return render_template('home.html',results=results[0])
+
+
+
+if __name__=="__main__":
+ # app.run(host="0.0.0.0",port=8080)
+ app.run(host='0.0.0.0', port=8080)
+
+
diff --git a/artifacts/data.csv b/artifacts/data.csv
new file mode 100644
index 0000000..72bd8af
--- /dev/null
+++ b/artifacts/data.csv
@@ -0,0 +1,1001 @@
+gender,race_ethnicity,parental_level_of_education,lunch,test_preparation_course,math_score,reading_score,writing_score
+female,group B,bachelor's degree,standard,none,72,72,74
+female,group C,some college,standard,completed,69,90,88
+female,group B,master's degree,standard,none,90,95,93
+male,group A,associate's degree,free/reduced,none,47,57,44
+male,group C,some college,standard,none,76,78,75
+female,group B,associate's degree,standard,none,71,83,78
+female,group B,some college,standard,completed,88,95,92
+male,group B,some college,free/reduced,none,40,43,39
+male,group D,high school,free/reduced,completed,64,64,67
+female,group B,high school,free/reduced,none,38,60,50
+male,group C,associate's degree,standard,none,58,54,52
+male,group D,associate's degree,standard,none,40,52,43
+female,group B,high school,standard,none,65,81,73
+male,group A,some college,standard,completed,78,72,70
+female,group A,master's degree,standard,none,50,53,58
+female,group C,some high school,standard,none,69,75,78
+male,group C,high school,standard,none,88,89,86
+female,group B,some high school,free/reduced,none,18,32,28
+male,group C,master's degree,free/reduced,completed,46,42,46
+female,group C,associate's degree,free/reduced,none,54,58,61
+male,group D,high school,standard,none,66,69,63
+female,group B,some college,free/reduced,completed,65,75,70
+male,group D,some college,standard,none,44,54,53
+female,group C,some high school,standard,none,69,73,73
+male,group D,bachelor's degree,free/reduced,completed,74,71,80
+male,group A,master's degree,free/reduced,none,73,74,72
+male,group B,some college,standard,none,69,54,55
+female,group C,bachelor's degree,standard,none,67,69,75
+male,group C,high school,standard,none,70,70,65
+female,group D,master's degree,standard,none,62,70,75
+female,group D,some college,standard,none,69,74,74
+female,group B,some college,standard,none,63,65,61
+female,group E,master's degree,free/reduced,none,56,72,65
+male,group D,some college,standard,none,40,42,38
+male,group E,some college,standard,none,97,87,82
+male,group E,associate's degree,standard,completed,81,81,79
+female,group D,associate's degree,standard,none,74,81,83
+female,group D,some high school,free/reduced,none,50,64,59
+female,group D,associate's degree,free/reduced,completed,75,90,88
+male,group B,associate's degree,free/reduced,none,57,56,57
+male,group C,associate's degree,free/reduced,none,55,61,54
+female,group C,associate's degree,standard,none,58,73,68
+female,group B,associate's degree,standard,none,53,58,65
+male,group B,some college,free/reduced,completed,59,65,66
+female,group E,associate's degree,free/reduced,none,50,56,54
+male,group B,associate's degree,standard,none,65,54,57
+female,group A,associate's degree,standard,completed,55,65,62
+female,group C,high school,standard,none,66,71,76
+female,group D,associate's degree,free/reduced,completed,57,74,76
+male,group C,high school,standard,completed,82,84,82
+male,group E,some college,standard,none,53,55,48
+male,group E,associate's degree,free/reduced,completed,77,69,68
+male,group C,some college,standard,none,53,44,42
+male,group D,high school,standard,none,88,78,75
+female,group C,some high school,free/reduced,completed,71,84,87
+female,group C,high school,free/reduced,none,33,41,43
+female,group E,associate's degree,standard,completed,82,85,86
+male,group D,associate's degree,standard,none,52,55,49
+male,group D,some college,standard,completed,58,59,58
+female,group C,some high school,free/reduced,none,0,17,10
+male,group E,bachelor's degree,free/reduced,completed,79,74,72
+male,group A,some high school,free/reduced,none,39,39,34
+male,group A,associate's degree,free/reduced,none,62,61,55
+female,group C,associate's degree,standard,none,69,80,71
+female,group D,some high school,standard,none,59,58,59
+male,group B,some high school,standard,none,67,64,61
+male,group D,some high school,free/reduced,none,45,37,37
+female,group C,some college,standard,none,60,72,74
+male,group B,associate's degree,free/reduced,none,61,58,56
+female,group C,associate's degree,standard,none,39,64,57
+female,group D,some college,free/reduced,completed,58,63,73
+male,group D,some college,standard,completed,63,55,63
+female,group A,associate's degree,free/reduced,none,41,51,48
+male,group C,some high school,free/reduced,none,61,57,56
+male,group C,some high school,standard,none,49,49,41
+male,group B,associate's degree,free/reduced,none,44,41,38
+male,group E,some high school,standard,none,30,26,22
+male,group A,bachelor's degree,standard,completed,80,78,81
+female,group D,some high school,standard,completed,61,74,72
+female,group E,master's degree,standard,none,62,68,68
+female,group B,associate's degree,standard,none,47,49,50
+male,group B,high school,free/reduced,none,49,45,45
+male,group A,some college,free/reduced,completed,50,47,54
+male,group E,associate's degree,standard,none,72,64,63
+male,group D,high school,free/reduced,none,42,39,34
+female,group C,some college,standard,none,73,80,82
+female,group C,some college,free/reduced,none,76,83,88
+female,group D,associate's degree,standard,none,71,71,74
+female,group A,some college,standard,none,58,70,67
+female,group D,some high school,standard,none,73,86,82
+female,group C,bachelor's degree,standard,none,65,72,74
+male,group C,high school,free/reduced,none,27,34,36
+male,group C,high school,standard,none,71,79,71
+male,group C,associate's degree,free/reduced,completed,43,45,50
+female,group B,some college,standard,none,79,86,92
+male,group C,associate's degree,free/reduced,completed,78,81,82
+male,group B,some high school,standard,completed,65,66,62
+female,group E,some college,standard,completed,63,72,70
+female,group D,some college,free/reduced,none,58,67,62
+female,group D,bachelor's degree,standard,none,65,67,62
+male,group B,some college,standard,none,79,67,67
+male,group D,bachelor's degree,standard,completed,68,74,74
+female,group D,associate's degree,standard,none,85,91,89
+male,group B,high school,standard,completed,60,44,47
+male,group C,some college,standard,completed,98,86,90
+female,group C,some college,standard,none,58,67,72
+female,group D,master's degree,standard,none,87,100,100
+male,group E,associate's degree,standard,completed,66,63,64
+female,group B,associate's degree,free/reduced,none,52,76,70
+female,group B,some high school,standard,none,70,64,72
+female,group D,associate's degree,free/reduced,completed,77,89,98
+male,group C,high school,standard,none,62,55,49
+male,group A,associate's degree,standard,none,54,53,47
+female,group D,some college,standard,none,51,58,54
+female,group E,bachelor's degree,standard,completed,99,100,100
+male,group C,high school,standard,none,84,77,74
+female,group B,bachelor's degree,free/reduced,none,75,85,82
+female,group D,bachelor's degree,standard,none,78,82,79
+female,group D,some high school,standard,none,51,63,61
+female,group C,some college,standard,none,55,69,65
+female,group C,bachelor's degree,standard,completed,79,92,89
+male,group B,associate's degree,standard,completed,91,89,92
+female,group C,some college,standard,completed,88,93,93
+male,group D,high school,free/reduced,none,63,57,56
+male,group E,some college,standard,none,83,80,73
+female,group B,high school,standard,none,87,95,86
+male,group B,some high school,standard,none,72,68,67
+male,group D,some college,standard,completed,65,77,74
+male,group D,master's degree,standard,none,82,82,74
+female,group A,bachelor's degree,standard,none,51,49,51
+male,group D,master's degree,standard,none,89,84,82
+male,group C,some high school,free/reduced,completed,53,37,40
+male,group E,some college,free/reduced,completed,87,74,70
+female,group C,some college,standard,completed,75,81,84
+male,group D,bachelor's degree,free/reduced,completed,74,79,75
+male,group C,bachelor's degree,standard,none,58,55,48
+male,group B,some high school,standard,completed,51,54,41
+male,group E,high school,standard,none,70,55,56
+female,group C,associate's degree,standard,none,59,66,67
+male,group D,some college,standard,completed,71,61,69
+female,group D,some high school,standard,none,76,72,71
+female,group C,some college,free/reduced,none,59,62,64
+female,group E,some college,free/reduced,completed,42,55,54
+male,group A,high school,standard,none,57,43,47
+male,group D,some college,standard,none,88,73,78
+female,group C,some college,free/reduced,none,22,39,33
+male,group B,some high school,standard,none,88,84,75
+male,group C,associate's degree,free/reduced,none,73,68,66
+female,group D,bachelor's degree,standard,completed,68,75,81
+male,group E,associate's degree,free/reduced,completed,100,100,93
+male,group A,some high school,standard,completed,62,67,69
+male,group A,bachelor's degree,standard,none,77,67,68
+female,group B,associate's degree,standard,completed,59,70,66
+male,group D,bachelor's degree,standard,none,54,49,47
+male,group D,some high school,standard,none,62,67,61
+female,group C,some college,standard,completed,70,89,88
+female,group E,high school,free/reduced,completed,66,74,78
+male,group B,some college,free/reduced,none,60,60,60
+female,group B,associate's degree,standard,completed,61,86,87
+male,group D,associate's degree,free/reduced,none,66,62,64
+male,group B,associate's degree,free/reduced,completed,82,78,74
+female,group E,some college,free/reduced,completed,75,88,85
+male,group B,master's degree,free/reduced,none,49,53,52
+male,group C,high school,standard,none,52,53,49
+female,group E,master's degree,standard,none,81,92,91
+female,group C,bachelor's degree,standard,completed,96,100,100
+male,group C,high school,free/reduced,completed,53,51,51
+female,group B,master's degree,free/reduced,completed,58,76,78
+female,group B,high school,standard,completed,68,83,78
+female,group C,some college,free/reduced,completed,67,75,70
+male,group A,high school,standard,completed,72,73,74
+male,group E,some high school,standard,none,94,88,78
+female,group D,some college,standard,none,79,86,81
+female,group C,associate's degree,standard,none,63,67,70
+female,group C,bachelor's degree,free/reduced,completed,43,51,54
+female,group C,master's degree,standard,completed,81,91,87
+female,group B,high school,free/reduced,completed,46,54,58
+female,group C,associate's degree,standard,completed,71,77,77
+female,group B,master's degree,free/reduced,completed,52,70,62
+female,group D,some high school,standard,completed,97,100,100
+male,group C,master's degree,free/reduced,completed,62,68,75
+female,group C,some college,free/reduced,none,46,64,66
+female,group E,high school,standard,none,50,50,47
+female,group D,associate's degree,standard,none,65,69,70
+male,group C,some high school,free/reduced,completed,45,52,49
+male,group C,associate's degree,free/reduced,completed,65,67,65
+male,group E,high school,standard,none,80,76,65
+male,group D,some high school,standard,completed,62,66,68
+male,group B,some high school,free/reduced,none,48,52,45
+female,group C,bachelor's degree,standard,none,77,88,87
+female,group E,associate's degree,standard,none,66,65,69
+male,group D,some college,standard,completed,76,83,79
+female,group B,some high school,standard,none,62,64,66
+male,group D,some college,standard,completed,77,62,62
+female,group C,master's degree,standard,completed,69,84,85
+male,group D,associate's degree,standard,none,61,55,52
+male,group C,some high school,free/reduced,completed,59,69,65
+male,group E,high school,free/reduced,none,55,56,51
+female,group B,some college,free/reduced,none,45,53,55
+female,group B,bachelor's degree,free/reduced,none,78,79,76
+female,group C,associate's degree,standard,completed,67,84,86
+female,group D,some college,free/reduced,none,65,81,77
+male,group C,associate's degree,standard,none,69,77,69
+female,group B,associate's degree,standard,none,57,69,68
+male,group C,some college,standard,none,59,41,42
+male,group D,some high school,standard,completed,74,71,78
+male,group E,bachelor's degree,standard,none,82,62,62
+male,group E,high school,standard,completed,81,80,76
+female,group B,some college,free/reduced,none,74,81,76
+female,group B,some college,free/reduced,none,58,61,66
+male,group D,some high school,free/reduced,completed,80,79,79
+male,group C,some college,free/reduced,none,35,28,27
+female,group C,high school,free/reduced,none,42,62,60
+male,group C,associate's degree,free/reduced,completed,60,51,56
+male,group E,high school,standard,completed,87,91,81
+male,group B,some high school,standard,completed,84,83,75
+female,group E,associate's degree,free/reduced,completed,83,86,88
+female,group C,high school,free/reduced,none,34,42,39
+male,group B,high school,free/reduced,none,66,77,70
+male,group B,some high school,standard,completed,61,56,56
+female,group D,high school,standard,completed,56,68,74
+male,group B,associate's degree,standard,none,87,85,73
+female,group C,some high school,free/reduced,none,55,65,62
+male,group D,some high school,standard,none,86,80,75
+female,group B,associate's degree,standard,completed,52,66,73
+female,group E,master's degree,free/reduced,none,45,56,54
+female,group C,some college,standard,none,72,72,71
+male,group D,high school,standard,none,57,50,54
+male,group A,some high school,free/reduced,none,68,72,64
+female,group C,some college,standard,completed,88,95,94
+male,group D,some college,standard,none,76,64,66
+male,group C,associate's degree,standard,none,46,43,42
+female,group B,bachelor's degree,standard,none,67,86,83
+male,group E,some high school,standard,none,92,87,78
+male,group C,bachelor's degree,standard,completed,83,82,84
+male,group D,associate's degree,standard,none,80,75,77
+male,group D,bachelor's degree,free/reduced,none,63,66,67
+female,group D,some high school,standard,completed,64,60,74
+male,group B,some college,standard,none,54,52,51
+male,group C,associate's degree,standard,none,84,80,80
+male,group D,high school,free/reduced,completed,73,68,66
+female,group E,bachelor's degree,standard,none,80,83,83
+female,group D,high school,standard,none,56,52,55
+male,group E,some college,standard,none,59,51,43
+male,group D,some high school,standard,none,75,74,69
+male,group C,associate's degree,standard,none,85,76,71
+male,group E,associate's degree,standard,none,89,76,74
+female,group B,high school,standard,completed,58,70,68
+female,group B,high school,standard,none,65,64,62
+male,group C,high school,standard,none,68,60,53
+male,group A,some high school,standard,completed,47,49,49
+female,group D,some college,free/reduced,none,71,83,83
+female,group B,some high school,standard,completed,60,70,70
+male,group D,master's degree,standard,none,80,80,72
+male,group D,high school,standard,none,54,52,52
+female,group E,some college,standard,none,62,73,70
+female,group C,associate's degree,free/reduced,none,64,73,68
+male,group C,associate's degree,standard,completed,78,77,77
+female,group B,some college,standard,none,70,75,78
+female,group C,master's degree,free/reduced,completed,65,81,81
+female,group C,some high school,free/reduced,completed,64,79,77
+male,group C,some college,standard,completed,79,79,78
+female,group C,some high school,free/reduced,none,44,50,51
+female,group E,high school,standard,none,99,93,90
+male,group D,high school,standard,none,76,73,68
+male,group D,some high school,free/reduced,none,59,42,41
+female,group C,bachelor's degree,standard,none,63,75,81
+female,group D,high school,standard,none,69,72,77
+female,group D,associate's degree,standard,completed,88,92,95
+female,group E,some college,free/reduced,none,71,76,70
+male,group C,bachelor's degree,standard,none,69,63,61
+male,group C,some college,standard,none,58,49,42
+female,group D,associate's degree,free/reduced,none,47,53,58
+female,group D,some college,standard,none,65,70,71
+male,group B,some college,standard,completed,88,85,76
+male,group C,bachelor's degree,standard,none,83,78,73
+female,group C,some high school,standard,completed,85,92,93
+female,group E,high school,standard,completed,59,63,75
+female,group C,some high school,free/reduced,none,65,86,80
+male,group B,bachelor's degree,free/reduced,none,73,56,57
+male,group D,high school,standard,none,53,52,42
+male,group D,high school,standard,none,45,48,46
+female,group D,bachelor's degree,free/reduced,none,73,79,84
+female,group D,some college,free/reduced,completed,70,78,78
+female,group B,some high school,standard,none,37,46,46
+male,group B,associate's degree,standard,completed,81,82,82
+male,group E,associate's degree,standard,completed,97,82,88
+female,group B,some high school,standard,none,67,89,82
+male,group B,bachelor's degree,free/reduced,none,88,75,76
+male,group E,some high school,standard,completed,77,76,77
+male,group C,associate's degree,standard,none,76,70,68
+male,group D,some high school,standard,none,86,73,70
+male,group C,some high school,standard,completed,63,60,57
+female,group E,bachelor's degree,standard,none,65,73,75
+male,group D,high school,free/reduced,completed,78,77,80
+male,group B,associate's degree,free/reduced,none,67,62,60
+male,group A,some high school,standard,completed,46,41,43
+male,group E,associate's degree,standard,completed,71,74,68
+male,group C,high school,free/reduced,completed,40,46,50
+male,group D,associate's degree,free/reduced,none,90,87,75
+male,group A,some college,free/reduced,completed,81,78,81
+male,group D,some high school,free/reduced,none,56,54,52
+female,group C,associate's degree,standard,completed,67,84,81
+male,group B,associate's degree,standard,none,80,76,64
+female,group C,associate's degree,standard,completed,74,75,83
+male,group A,some college,standard,none,69,67,69
+male,group E,some college,standard,completed,99,87,81
+male,group C,some high school,standard,none,51,52,44
+female,group B,associate's degree,free/reduced,none,53,71,67
+female,group D,high school,free/reduced,none,49,57,52
+female,group B,associate's degree,standard,none,73,76,80
+male,group B,bachelor's degree,standard,none,66,60,57
+male,group D,bachelor's degree,standard,completed,67,61,68
+female,group C,associate's degree,free/reduced,completed,68,67,69
+female,group C,bachelor's degree,standard,completed,59,64,75
+male,group C,high school,standard,none,71,66,65
+female,group D,master's degree,standard,completed,77,82,91
+male,group C,associate's degree,standard,none,83,72,78
+male,group B,bachelor's degree,standard,none,63,71,69
+female,group D,associate's degree,free/reduced,none,56,65,63
+female,group C,high school,free/reduced,completed,67,79,84
+female,group E,high school,standard,none,75,86,79
+female,group C,some college,standard,none,71,81,80
+female,group C,some high school,free/reduced,none,43,53,53
+female,group C,high school,free/reduced,none,41,46,43
+female,group C,some college,standard,none,82,90,94
+male,group C,some college,standard,none,61,61,62
+male,group A,some college,free/reduced,none,28,23,19
+male,group C,associate's degree,standard,completed,82,75,77
+female,group B,some high school,standard,none,41,55,51
+male,group C,high school,standard,none,71,60,61
+male,group C,associate's degree,standard,none,47,37,35
+male,group E,associate's degree,standard,completed,62,56,53
+male,group B,associate's degree,standard,none,90,78,81
+female,group C,bachelor's degree,standard,none,83,93,95
+female,group B,some college,free/reduced,none,61,68,66
+male,group D,some high school,standard,completed,76,70,69
+male,group C,associate's degree,standard,none,49,51,43
+female,group B,some high school,free/reduced,none,24,38,27
+female,group D,some high school,free/reduced,completed,35,55,60
+male,group C,high school,free/reduced,none,58,61,52
+female,group C,high school,standard,none,61,73,63
+female,group B,high school,standard,completed,69,76,74
+male,group D,associate's degree,standard,completed,67,72,67
+male,group D,some college,standard,none,79,73,67
+female,group C,high school,standard,none,72,80,75
+male,group B,some college,standard,none,62,61,57
+female,group C,bachelor's degree,standard,completed,77,94,95
+male,group D,high school,free/reduced,none,75,74,66
+male,group E,associate's degree,standard,none,87,74,76
+female,group B,bachelor's degree,standard,none,52,65,69
+male,group E,some college,standard,none,66,57,52
+female,group C,some college,standard,completed,63,78,80
+female,group C,associate's degree,standard,none,46,58,57
+female,group C,some college,standard,none,59,71,70
+female,group B,bachelor's degree,standard,none,61,72,70
+male,group A,associate's degree,standard,none,63,61,61
+female,group C,some college,free/reduced,completed,42,66,69
+male,group D,some college,free/reduced,none,59,62,61
+female,group D,some college,standard,none,80,90,89
+female,group B,high school,standard,none,58,62,59
+male,group B,some high school,standard,completed,85,84,78
+female,group C,some college,standard,none,52,58,58
+female,group D,some high school,free/reduced,none,27,34,32
+male,group C,some college,standard,none,59,60,58
+male,group A,bachelor's degree,free/reduced,completed,49,58,60
+male,group C,high school,standard,completed,69,58,53
+male,group C,bachelor's degree,free/reduced,none,61,66,61
+female,group A,some high school,free/reduced,none,44,64,58
+female,group D,some high school,standard,none,73,84,85
+male,group E,some college,standard,none,84,77,71
+female,group C,some college,free/reduced,completed,45,73,70
+male,group D,some high school,standard,none,74,74,72
+female,group D,some college,standard,completed,82,97,96
+female,group D,bachelor's degree,standard,none,59,70,73
+male,group E,associate's degree,free/reduced,none,46,43,41
+female,group D,some high school,standard,none,80,90,82
+female,group D,master's degree,free/reduced,completed,85,95,100
+female,group A,some high school,standard,none,71,83,77
+male,group A,bachelor's degree,standard,none,66,64,62
+female,group B,associate's degree,standard,none,80,86,83
+male,group C,associate's degree,standard,completed,87,100,95
+male,group C,master's degree,free/reduced,none,79,81,71
+female,group E,some high school,free/reduced,none,38,49,45
+female,group A,some high school,free/reduced,none,38,43,43
+female,group E,some college,standard,none,67,76,75
+female,group E,bachelor's degree,standard,none,64,73,70
+female,group C,associate's degree,free/reduced,none,57,78,67
+female,group D,high school,standard,none,62,64,64
+male,group D,master's degree,standard,none,73,70,75
+male,group E,some high school,free/reduced,completed,73,67,59
+female,group D,some college,standard,none,77,68,77
+male,group E,some college,standard,none,76,67,67
+male,group C,associate's degree,standard,completed,57,54,56
+female,group C,some high school,standard,completed,65,74,77
+male,group A,high school,free/reduced,none,48,45,41
+female,group B,high school,free/reduced,none,50,67,63
+female,group C,associate's degree,standard,none,85,89,95
+male,group B,some high school,standard,none,74,63,57
+male,group D,some high school,standard,none,60,59,54
+female,group C,some high school,standard,completed,59,54,67
+male,group A,some college,standard,none,53,43,43
+female,group A,some college,free/reduced,none,49,65,55
+female,group D,high school,standard,completed,88,99,100
+female,group C,high school,standard,none,54,59,62
+female,group C,some high school,standard,none,63,73,68
+male,group B,associate's degree,standard,completed,65,65,63
+female,group B,associate's degree,standard,none,82,80,77
+female,group D,high school,free/reduced,completed,52,57,56
+male,group D,associate's degree,standard,completed,87,84,85
+female,group D,master's degree,standard,completed,70,71,74
+male,group E,some college,standard,completed,84,83,78
+male,group D,associate's degree,standard,none,71,66,60
+male,group B,some high school,standard,completed,63,67,67
+female,group C,bachelor's degree,free/reduced,completed,51,72,79
+male,group E,high school,standard,none,84,73,69
+male,group C,bachelor's degree,standard,completed,71,74,68
+male,group C,associate's degree,standard,none,74,73,67
+male,group D,some college,standard,none,68,59,62
+male,group E,high school,free/reduced,completed,57,56,54
+female,group C,associate's degree,free/reduced,completed,82,93,93
+female,group D,high school,standard,completed,57,58,64
+female,group D,master's degree,free/reduced,completed,47,58,67
+female,group A,some high school,standard,completed,59,85,80
+male,group B,some college,free/reduced,none,41,39,34
+female,group C,some college,free/reduced,none,62,67,62
+male,group C,bachelor's degree,standard,none,86,83,86
+male,group C,some high school,free/reduced,none,69,71,65
+male,group A,some high school,free/reduced,none,65,59,53
+male,group C,some high school,free/reduced,none,68,63,54
+male,group C,associate's degree,free/reduced,none,64,66,59
+female,group C,high school,standard,none,61,72,70
+male,group C,high school,standard,none,61,56,55
+female,group A,some high school,free/reduced,none,47,59,50
+male,group C,some high school,standard,none,73,66,66
+male,group C,some college,free/reduced,completed,50,48,53
+male,group D,associate's degree,standard,none,75,68,64
+male,group D,associate's degree,free/reduced,none,75,66,73
+male,group C,high school,standard,none,70,56,51
+male,group D,some high school,standard,completed,89,88,82
+female,group C,some college,standard,completed,67,81,79
+female,group D,high school,standard,none,78,81,80
+female,group A,some high school,free/reduced,none,59,73,69
+female,group B,associate's degree,standard,none,73,83,76
+male,group A,some high school,free/reduced,none,79,82,73
+female,group C,some high school,standard,completed,67,74,77
+male,group D,some college,free/reduced,none,69,66,60
+male,group C,high school,standard,completed,86,81,80
+male,group B,high school,standard,none,47,46,42
+male,group B,associate's degree,standard,none,81,73,72
+female,group C,some college,free/reduced,completed,64,85,85
+female,group E,some college,standard,none,100,92,97
+female,group C,associate's degree,free/reduced,none,65,77,74
+male,group C,some college,free/reduced,none,65,58,49
+female,group C,associate's degree,free/reduced,none,53,61,62
+male,group C,bachelor's degree,free/reduced,none,37,56,47
+female,group D,bachelor's degree,standard,none,79,89,89
+male,group D,associate's degree,free/reduced,none,53,54,48
+female,group E,bachelor's degree,standard,none,100,100,100
+male,group B,high school,standard,completed,72,65,68
+male,group C,bachelor's degree,free/reduced,none,53,58,55
+male,group B,some college,free/reduced,none,54,54,45
+female,group E,some college,standard,none,71,70,76
+female,group C,some college,free/reduced,none,77,90,91
+male,group A,bachelor's degree,standard,completed,75,58,62
+female,group C,some college,standard,none,84,87,91
+female,group D,associate's degree,free/reduced,none,26,31,38
+male,group A,high school,free/reduced,completed,72,67,65
+female,group A,high school,free/reduced,completed,77,88,85
+male,group C,some college,standard,none,91,74,76
+female,group C,associate's degree,standard,completed,83,85,90
+female,group C,high school,standard,none,63,69,74
+female,group C,associate's degree,standard,completed,68,86,84
+female,group D,some high school,standard,none,59,67,61
+female,group B,associate's degree,standard,completed,90,90,91
+female,group D,bachelor's degree,standard,completed,71,76,83
+male,group E,bachelor's degree,standard,completed,76,62,66
+male,group D,associate's degree,standard,none,80,68,72
+female,group D,master's degree,standard,none,55,64,70
+male,group E,associate's degree,standard,none,76,71,67
+male,group B,high school,standard,completed,73,71,68
+female,group D,associate's degree,free/reduced,none,52,59,56
+male,group C,some college,free/reduced,none,68,68,61
+male,group A,high school,standard,none,59,52,46
+female,group B,associate's degree,standard,none,49,52,54
+male,group C,high school,standard,none,70,74,71
+male,group D,some college,free/reduced,none,61,47,56
+female,group C,associate's degree,free/reduced,none,60,75,74
+male,group B,some high school,standard,completed,64,53,57
+male,group A,associate's degree,free/reduced,completed,79,82,82
+female,group A,associate's degree,free/reduced,none,65,85,76
+female,group C,associate's degree,standard,none,64,64,70
+female,group C,some college,standard,none,83,83,90
+female,group C,bachelor's degree,standard,none,81,88,90
+female,group B,high school,standard,none,54,64,68
+male,group D,high school,standard,completed,68,64,66
+female,group C,some college,standard,none,54,48,52
+female,group D,some college,free/reduced,completed,59,78,76
+female,group B,some high school,standard,none,66,69,68
+male,group E,some college,standard,none,76,71,72
+female,group D,master's degree,standard,none,74,79,82
+female,group B,associate's degree,standard,completed,94,87,92
+male,group C,some college,free/reduced,none,63,61,54
+female,group E,associate's degree,standard,completed,95,89,92
+female,group D,master's degree,free/reduced,none,40,59,54
+female,group B,some high school,standard,none,82,82,80
+male,group A,high school,standard,none,68,70,66
+male,group B,bachelor's degree,free/reduced,none,55,59,54
+male,group C,master's degree,standard,none,79,78,77
+female,group C,bachelor's degree,standard,none,86,92,87
+male,group D,some college,standard,none,76,71,73
+male,group A,some high school,standard,none,64,50,43
+male,group D,some high school,free/reduced,none,62,49,52
+female,group B,some high school,standard,completed,54,61,62
+female,group B,master's degree,free/reduced,completed,77,97,94
+female,group C,some high school,standard,completed,76,87,85
+female,group D,some college,standard,none,74,89,84
+female,group E,some college,standard,completed,66,74,73
+female,group D,some high school,standard,completed,66,78,78
+female,group B,high school,free/reduced,completed,67,78,79
+male,group D,some college,standard,none,71,49,52
+female,group C,associate's degree,standard,none,91,86,84
+male,group D,bachelor's degree,standard,none,69,58,57
+male,group C,master's degree,free/reduced,none,54,59,50
+male,group C,high school,standard,completed,53,52,49
+male,group E,some college,standard,none,68,60,59
+male,group C,some high school,free/reduced,completed,56,61,60
+female,group C,high school,free/reduced,none,36,53,43
+female,group D,bachelor's degree,free/reduced,none,29,41,47
+female,group C,associate's degree,standard,none,62,74,70
+female,group C,associate's degree,standard,completed,68,67,73
+female,group C,some high school,standard,none,47,54,53
+male,group E,associate's degree,standard,completed,62,61,58
+female,group E,associate's degree,standard,completed,79,88,94
+male,group B,high school,standard,completed,73,69,68
+female,group C,bachelor's degree,free/reduced,completed,66,83,83
+male,group C,associate's degree,standard,completed,51,60,58
+female,group D,high school,standard,none,51,66,62
+male,group E,bachelor's degree,standard,completed,85,66,71
+male,group A,associate's degree,standard,completed,97,92,86
+male,group C,high school,standard,completed,75,69,68
+male,group D,associate's degree,free/reduced,completed,79,82,80
+female,group C,associate's degree,standard,none,81,77,79
+female,group D,associate's degree,standard,none,82,95,89
+female,group D,master's degree,standard,none,64,63,66
+male,group E,some high school,free/reduced,completed,78,83,80
+female,group A,some high school,standard,completed,92,100,97
+male,group C,high school,standard,completed,72,67,64
+female,group C,high school,free/reduced,none,62,67,64
+male,group C,master's degree,standard,none,79,72,69
+male,group C,some high school,free/reduced,none,79,76,65
+male,group B,bachelor's degree,free/reduced,completed,87,90,88
+female,group B,associate's degree,standard,none,40,48,50
+male,group D,some college,free/reduced,none,77,62,64
+male,group E,associate's degree,standard,none,53,45,40
+female,group C,some college,free/reduced,none,32,39,33
+female,group C,associate's degree,standard,completed,55,72,79
+male,group C,master's degree,free/reduced,none,61,67,66
+female,group B,associate's degree,free/reduced,none,53,70,70
+male,group D,some high school,standard,none,73,66,62
+female,group D,some college,standard,completed,74,75,79
+female,group C,some college,standard,none,63,74,74
+male,group C,bachelor's degree,standard,completed,96,90,92
+female,group D,some college,free/reduced,completed,63,80,80
+male,group B,bachelor's degree,free/reduced,none,48,51,46
+male,group B,associate's degree,standard,none,48,43,45
+female,group E,bachelor's degree,free/reduced,completed,92,100,100
+female,group D,master's degree,free/reduced,completed,61,71,78
+male,group B,high school,free/reduced,none,63,48,47
+male,group D,bachelor's degree,free/reduced,none,68,68,67
+male,group B,some college,standard,completed,71,75,70
+male,group A,bachelor's degree,standard,none,91,96,92
+female,group C,some college,standard,none,53,62,56
+female,group C,high school,free/reduced,completed,50,66,64
+female,group E,high school,standard,none,74,81,71
+male,group A,associate's degree,free/reduced,completed,40,55,53
+male,group A,some college,standard,completed,61,51,52
+female,group B,high school,standard,none,81,91,89
+female,group B,some college,free/reduced,completed,48,56,58
+female,group D,master's degree,standard,none,53,61,68
+female,group D,some high school,standard,none,81,97,96
+female,group E,some high school,standard,none,77,79,80
+female,group D,bachelor's degree,free/reduced,none,63,73,78
+female,group D,associate's degree,standard,completed,73,75,80
+female,group D,some college,standard,none,69,77,77
+female,group C,associate's degree,standard,none,65,76,76
+female,group A,high school,standard,none,55,73,73
+female,group C,bachelor's degree,free/reduced,none,44,63,62
+female,group C,some college,standard,none,54,64,65
+female,group A,some high school,standard,none,48,66,65
+male,group C,some college,free/reduced,none,58,57,54
+male,group A,some high school,standard,none,71,62,50
+male,group E,bachelor's degree,standard,none,68,68,64
+female,group E,high school,standard,none,74,76,73
+female,group C,bachelor's degree,standard,completed,92,100,99
+female,group C,bachelor's degree,standard,completed,56,79,72
+male,group B,high school,free/reduced,none,30,24,15
+male,group A,some high school,standard,none,53,54,48
+female,group D,high school,standard,none,69,77,73
+female,group D,some high school,standard,none,65,82,81
+female,group D,master's degree,standard,none,54,60,63
+female,group C,high school,standard,none,29,29,30
+female,group E,some college,standard,none,76,78,80
+male,group D,high school,free/reduced,none,60,57,51
+male,group D,master's degree,free/reduced,completed,84,89,90
+male,group C,some high school,standard,none,75,72,62
+female,group C,associate's degree,standard,none,85,84,82
+female,group C,master's degree,free/reduced,none,40,58,54
+female,group E,some college,standard,none,61,64,62
+female,group B,associate's degree,standard,none,58,63,65
+male,group D,some college,free/reduced,completed,69,60,63
+female,group C,some college,standard,none,58,59,66
+male,group C,bachelor's degree,standard,completed,94,90,91
+female,group C,associate's degree,standard,none,65,77,74
+female,group A,associate's degree,standard,none,82,93,93
+female,group C,high school,standard,none,60,68,72
+female,group E,bachelor's degree,standard,none,37,45,38
+male,group D,bachelor's degree,standard,none,88,78,83
+male,group D,master's degree,standard,none,95,81,84
+male,group C,associate's degree,free/reduced,completed,65,73,68
+female,group C,high school,free/reduced,none,35,61,54
+male,group B,bachelor's degree,free/reduced,none,62,63,56
+male,group C,high school,free/reduced,completed,58,51,52
+male,group A,some college,standard,completed,100,96,86
+female,group E,bachelor's degree,free/reduced,none,61,58,62
+male,group D,some college,standard,completed,100,97,99
+male,group B,associate's degree,free/reduced,completed,69,70,63
+male,group D,associate's degree,standard,none,61,48,46
+male,group D,some college,free/reduced,none,49,57,46
+female,group C,some high school,standard,completed,44,51,55
+male,group D,some college,standard,none,67,64,70
+male,group B,high school,standard,none,79,60,65
+female,group B,bachelor's degree,standard,completed,66,74,81
+female,group C,high school,standard,none,75,88,85
+male,group D,some high school,standard,none,84,84,80
+male,group A,high school,standard,none,71,74,64
+female,group B,high school,free/reduced,completed,67,80,81
+female,group D,some high school,standard,completed,80,92,88
+male,group E,some college,standard,none,86,76,74
+female,group D,associate's degree,standard,none,76,74,73
+male,group D,high school,standard,none,41,52,51
+female,group D,associate's degree,free/reduced,completed,74,88,90
+female,group B,some high school,free/reduced,none,72,81,79
+female,group E,high school,standard,completed,74,79,80
+male,group B,high school,standard,none,70,65,60
+female,group B,bachelor's degree,standard,completed,65,81,81
+female,group D,associate's degree,standard,none,59,70,65
+female,group E,high school,free/reduced,none,64,62,68
+female,group B,high school,standard,none,50,53,55
+female,group D,some college,standard,completed,69,79,81
+male,group C,some high school,free/reduced,completed,51,56,53
+female,group A,high school,standard,completed,68,80,76
+female,group D,some college,standard,completed,85,86,98
+female,group A,associate's degree,standard,completed,65,70,74
+female,group B,some high school,standard,none,73,79,79
+female,group B,some college,standard,none,62,67,67
+male,group C,associate's degree,free/reduced,none,77,67,64
+male,group D,some high school,standard,none,69,66,61
+female,group D,associate's degree,free/reduced,none,43,60,58
+male,group D,associate's degree,standard,none,90,87,85
+male,group C,some college,free/reduced,none,74,77,73
+male,group C,some high school,standard,none,73,66,63
+female,group D,some college,free/reduced,none,55,71,69
+female,group C,high school,standard,none,65,69,67
+male,group D,associate's degree,standard,none,80,63,63
+female,group C,some high school,free/reduced,completed,50,60,60
+female,group C,some college,free/reduced,completed,63,73,71
+female,group B,bachelor's degree,free/reduced,none,77,85,87
+male,group C,some college,standard,none,73,74,61
+male,group D,associate's degree,standard,completed,81,72,77
+female,group C,high school,free/reduced,none,66,76,68
+male,group D,associate's degree,free/reduced,none,52,57,50
+female,group C,some college,standard,none,69,78,76
+female,group C,associate's degree,standard,completed,65,84,84
+female,group D,high school,standard,completed,69,77,78
+female,group B,some college,standard,completed,50,64,66
+female,group E,some college,standard,completed,73,78,76
+female,group C,some high school,standard,completed,70,82,76
+male,group D,associate's degree,free/reduced,none,81,75,78
+male,group D,some college,free/reduced,none,63,61,60
+female,group D,high school,standard,none,67,72,74
+male,group B,high school,standard,none,60,68,60
+male,group B,high school,standard,none,62,55,54
+female,group C,some high school,free/reduced,completed,29,40,44
+male,group B,some college,standard,completed,62,66,68
+female,group E,master's degree,standard,completed,94,99,100
+male,group E,some college,standard,completed,85,75,68
+male,group D,associate's degree,free/reduced,none,77,78,73
+male,group A,high school,free/reduced,none,53,58,44
+male,group E,some college,free/reduced,none,93,90,83
+female,group C,associate's degree,standard,none,49,53,53
+female,group E,associate's degree,free/reduced,none,73,76,78
+female,group C,bachelor's degree,free/reduced,completed,66,74,81
+female,group D,associate's degree,standard,none,77,77,73
+female,group C,some high school,standard,none,49,63,56
+female,group D,some college,free/reduced,none,79,89,86
+female,group C,associate's degree,standard,completed,75,82,90
+female,group A,bachelor's degree,standard,none,59,72,70
+female,group D,associate's degree,standard,completed,57,78,79
+male,group C,high school,free/reduced,none,66,66,59
+female,group E,bachelor's degree,standard,completed,79,81,82
+female,group B,some high school,standard,none,57,67,72
+male,group A,bachelor's degree,standard,completed,87,84,87
+female,group D,some college,standard,none,63,64,67
+female,group B,some high school,free/reduced,completed,59,63,64
+male,group A,bachelor's degree,free/reduced,none,62,72,65
+male,group D,high school,standard,none,46,34,36
+male,group C,some college,standard,none,66,59,52
+male,group D,high school,standard,none,89,87,79
+female,group D,associate's degree,free/reduced,completed,42,61,58
+male,group C,some college,standard,completed,93,84,90
+female,group E,some high school,standard,completed,80,85,85
+female,group D,some college,standard,none,98,100,99
+male,group D,master's degree,standard,none,81,81,84
+female,group B,some high school,standard,completed,60,70,74
+female,group B,associate's degree,free/reduced,completed,76,94,87
+male,group C,associate's degree,standard,completed,73,78,72
+female,group C,associate's degree,standard,completed,96,96,99
+female,group C,high school,standard,none,76,76,74
+male,group E,associate's degree,free/reduced,completed,91,73,80
+female,group C,some college,free/reduced,none,62,72,70
+male,group D,some high school,free/reduced,completed,55,59,59
+female,group B,some high school,free/reduced,completed,74,90,88
+male,group C,high school,standard,none,50,48,42
+male,group B,some college,standard,none,47,43,41
+male,group E,some college,standard,completed,81,74,71
+female,group E,associate's degree,standard,completed,65,75,77
+male,group E,some high school,standard,completed,68,51,57
+female,group D,high school,free/reduced,none,73,92,84
+male,group C,some college,standard,none,53,39,37
+female,group B,associate's degree,free/reduced,completed,68,77,80
+male,group A,some high school,free/reduced,none,55,46,43
+female,group C,some college,standard,completed,87,89,94
+male,group D,some high school,standard,none,55,47,44
+female,group E,some college,free/reduced,none,53,58,57
+male,group C,master's degree,standard,none,67,57,59
+male,group C,associate's degree,standard,none,92,79,84
+female,group B,some college,free/reduced,completed,53,66,73
+male,group D,associate's degree,standard,none,81,71,73
+male,group C,high school,free/reduced,none,61,60,55
+male,group D,bachelor's degree,standard,none,80,73,72
+female,group A,associate's degree,free/reduced,none,37,57,56
+female,group C,high school,standard,none,81,84,82
+female,group C,associate's degree,standard,completed,59,73,72
+male,group B,some college,free/reduced,none,55,55,47
+male,group D,associate's degree,standard,none,72,79,74
+male,group D,high school,standard,none,69,75,71
+male,group C,some college,standard,none,69,64,68
+female,group C,bachelor's degree,free/reduced,none,50,60,59
+male,group B,some college,standard,completed,87,84,86
+male,group D,some high school,standard,completed,71,69,68
+male,group E,some college,standard,none,68,72,65
+male,group C,master's degree,free/reduced,completed,79,77,75
+female,group C,some high school,standard,completed,77,90,85
+male,group C,associate's degree,free/reduced,none,58,55,53
+female,group E,associate's degree,standard,none,84,95,92
+male,group D,some college,standard,none,55,58,52
+male,group E,bachelor's degree,free/reduced,completed,70,68,72
+female,group D,some college,free/reduced,completed,52,59,65
+male,group B,some college,standard,completed,69,77,77
+female,group C,high school,free/reduced,none,53,72,64
+female,group D,some high school,standard,none,48,58,54
+male,group D,some high school,standard,completed,78,81,86
+female,group B,high school,standard,none,62,62,63
+male,group D,some college,standard,none,60,63,59
+female,group B,high school,standard,none,74,72,72
+female,group C,high school,standard,completed,58,75,77
+male,group B,high school,standard,completed,76,62,60
+female,group D,some high school,standard,none,68,71,75
+male,group A,some college,free/reduced,none,58,60,57
+male,group B,high school,standard,none,52,48,49
+male,group D,bachelor's degree,standard,none,75,73,74
+female,group B,some high school,free/reduced,completed,52,67,72
+female,group C,bachelor's degree,free/reduced,none,62,78,79
+male,group B,some college,standard,none,66,65,60
+female,group B,some high school,free/reduced,none,49,58,55
+female,group B,high school,standard,none,66,72,70
+female,group C,some college,free/reduced,none,35,44,43
+female,group A,some college,standard,completed,72,79,82
+male,group E,associate's degree,standard,completed,94,85,82
+female,group D,associate's degree,free/reduced,none,46,56,57
+female,group B,master's degree,standard,none,77,90,84
+female,group B,high school,free/reduced,completed,76,85,82
+female,group C,associate's degree,standard,completed,52,59,62
+male,group C,bachelor's degree,standard,completed,91,81,79
+female,group B,some high school,standard,completed,32,51,44
+female,group E,some high school,free/reduced,none,72,79,77
+female,group B,some college,standard,none,19,38,32
+male,group C,associate's degree,free/reduced,none,68,65,61
+female,group C,master's degree,free/reduced,none,52,65,61
+female,group B,high school,standard,none,48,62,60
+female,group D,some college,free/reduced,none,60,66,70
+male,group D,high school,free/reduced,none,66,74,69
+male,group E,some high school,standard,completed,89,84,77
+female,group B,high school,standard,none,42,52,51
+female,group E,associate's degree,free/reduced,completed,57,68,73
+male,group D,high school,standard,none,70,70,70
+female,group E,associate's degree,free/reduced,none,70,84,81
+male,group E,some college,standard,none,69,60,54
+female,group C,associate's degree,standard,none,52,55,57
+male,group C,some high school,standard,completed,67,73,68
+male,group C,some high school,standard,completed,76,80,73
+female,group E,associate's degree,standard,none,87,94,95
+female,group B,some college,standard,none,82,85,87
+female,group C,some college,standard,none,73,76,78
+male,group A,some college,free/reduced,none,75,81,74
+female,group D,some college,free/reduced,none,64,74,75
+female,group E,high school,free/reduced,none,41,45,40
+male,group C,high school,standard,none,90,75,69
+male,group B,bachelor's degree,standard,none,59,54,51
+male,group A,some high school,standard,none,51,31,36
+male,group A,high school,free/reduced,none,45,47,49
+female,group C,master's degree,standard,completed,54,64,67
+male,group E,some high school,standard,completed,87,84,76
+female,group C,high school,standard,none,72,80,83
+male,group B,some high school,standard,completed,94,86,87
+female,group A,bachelor's degree,standard,none,45,59,64
+male,group D,bachelor's degree,free/reduced,completed,61,70,76
+female,group B,high school,free/reduced,none,60,72,68
+female,group C,some high school,standard,none,77,91,88
+female,group A,some high school,standard,completed,85,90,92
+female,group D,bachelor's degree,free/reduced,none,78,90,93
+male,group E,some college,free/reduced,completed,49,52,51
+female,group B,high school,free/reduced,none,71,87,82
+female,group C,some high school,free/reduced,none,48,58,52
+male,group C,high school,standard,none,62,67,58
+female,group C,associate's degree,free/reduced,completed,56,68,70
+female,group C,some high school,standard,none,65,69,76
+female,group D,some high school,free/reduced,completed,69,86,81
+male,group B,some high school,standard,none,68,54,53
+female,group A,some college,free/reduced,none,61,60,57
+female,group C,bachelor's degree,free/reduced,completed,74,86,89
+male,group A,bachelor's degree,standard,none,64,60,58
+female,group B,high school,standard,completed,77,82,89
+male,group B,some college,standard,none,58,50,45
+female,group C,high school,standard,completed,60,64,74
+male,group E,high school,standard,none,73,64,57
+female,group A,high school,standard,completed,75,82,79
+male,group B,associate's degree,free/reduced,completed,58,57,53
+female,group C,associate's degree,standard,none,66,77,73
+female,group D,high school,free/reduced,none,39,52,46
+male,group C,some high school,standard,none,64,58,51
+female,group B,high school,free/reduced,completed,23,44,36
+male,group B,some college,free/reduced,completed,74,77,76
+female,group D,some high school,free/reduced,completed,40,65,64
+male,group E,master's degree,standard,none,90,85,84
+male,group C,master's degree,standard,completed,91,85,85
+male,group D,high school,standard,none,64,54,50
+female,group C,high school,standard,none,59,72,68
+male,group D,associate's degree,standard,none,80,75,69
+male,group C,master's degree,standard,none,71,67,67
+female,group A,high school,standard,none,61,68,63
+female,group E,some college,standard,none,87,85,93
+male,group E,some high school,standard,none,82,67,61
+male,group C,some high school,standard,none,62,64,55
+female,group B,bachelor's degree,standard,none,97,97,96
+male,group B,some college,free/reduced,none,75,68,65
+female,group C,bachelor's degree,standard,none,65,79,81
+male,group B,high school,standard,completed,52,49,46
+male,group C,associate's degree,free/reduced,none,87,73,72
+female,group C,associate's degree,standard,none,53,62,53
+female,group E,master's degree,free/reduced,none,81,86,87
+male,group D,bachelor's degree,free/reduced,completed,39,42,38
+female,group C,some college,standard,completed,71,71,80
+male,group C,associate's degree,standard,none,97,93,91
+male,group D,some college,standard,completed,82,82,88
+male,group C,high school,free/reduced,none,59,53,52
+male,group B,associate's degree,standard,none,61,42,41
+male,group E,associate's degree,free/reduced,completed,78,74,72
+male,group C,associate's degree,free/reduced,none,49,51,51
+male,group B,high school,standard,none,59,58,47
+female,group C,some college,standard,completed,70,72,76
+male,group B,associate's degree,standard,completed,82,84,78
+male,group E,associate's degree,free/reduced,none,90,90,82
+female,group C,bachelor's degree,free/reduced,none,43,62,61
+male,group C,some college,free/reduced,none,80,64,66
+male,group D,some college,standard,none,81,82,84
+male,group C,some high school,standard,none,57,61,54
+female,group D,some high school,standard,none,59,72,80
+female,group D,associate's degree,standard,none,64,76,74
+male,group C,bachelor's degree,standard,completed,63,64,66
+female,group E,bachelor's degree,standard,completed,71,70,70
+female,group B,high school,free/reduced,none,64,73,71
+male,group D,bachelor's degree,free/reduced,none,55,46,44
+female,group E,associate's degree,standard,none,51,51,54
+female,group C,associate's degree,standard,completed,62,76,80
+female,group E,associate's degree,standard,completed,93,100,95
+male,group C,high school,free/reduced,none,54,72,59
+female,group D,some college,free/reduced,none,69,65,74
+male,group D,high school,free/reduced,none,44,51,48
+female,group E,some college,standard,completed,86,85,91
+female,group E,associate's degree,standard,none,85,92,85
+female,group A,master's degree,free/reduced,none,50,67,73
+male,group D,some high school,standard,completed,88,74,75
+female,group E,associate's degree,standard,none,59,62,69
+female,group E,some high school,free/reduced,none,32,34,38
+male,group B,high school,free/reduced,none,36,29,27
+female,group B,some high school,free/reduced,completed,63,78,79
+male,group D,associate's degree,standard,completed,67,54,63
+female,group D,some high school,standard,completed,65,78,82
+male,group D,master's degree,standard,none,85,84,89
+female,group C,master's degree,standard,none,73,78,74
+female,group A,high school,free/reduced,completed,34,48,41
+female,group D,bachelor's degree,free/reduced,completed,93,100,100
+female,group D,some high school,free/reduced,none,67,84,84
+male,group D,some college,standard,none,88,77,77
+male,group B,high school,standard,none,57,48,51
+female,group D,some college,standard,completed,79,84,91
+female,group C,bachelor's degree,free/reduced,none,67,75,72
+male,group E,bachelor's degree,standard,completed,70,64,70
+male,group D,bachelor's degree,free/reduced,none,50,42,48
+female,group A,some college,standard,none,69,84,82
+female,group C,bachelor's degree,standard,completed,52,61,66
+female,group C,bachelor's degree,free/reduced,completed,47,62,66
+female,group B,associate's degree,free/reduced,none,46,61,55
+female,group E,some college,standard,none,68,70,66
+male,group E,bachelor's degree,standard,completed,100,100,100
+female,group C,high school,standard,none,44,61,52
+female,group C,associate's degree,standard,completed,57,77,80
+male,group B,some college,standard,completed,91,96,91
+male,group D,high school,free/reduced,none,69,70,67
+female,group C,high school,free/reduced,none,35,53,46
+male,group D,high school,standard,none,72,66,66
+female,group B,associate's degree,free/reduced,none,54,65,65
+male,group D,high school,free/reduced,none,74,70,69
+male,group E,some high school,standard,completed,74,64,60
+male,group E,associate's degree,free/reduced,none,64,56,52
+female,group D,high school,free/reduced,completed,65,61,71
+male,group E,associate's degree,free/reduced,completed,46,43,44
+female,group C,some high school,free/reduced,none,48,56,51
+male,group C,some college,free/reduced,completed,67,74,70
+male,group D,some college,free/reduced,none,62,57,62
+male,group D,associate's degree,free/reduced,completed,61,71,73
+male,group C,bachelor's degree,free/reduced,completed,70,75,74
+male,group C,associate's degree,standard,completed,98,87,90
+male,group D,some college,free/reduced,none,70,63,58
+male,group A,associate's degree,standard,none,67,57,53
+female,group E,high school,free/reduced,none,57,58,57
+male,group D,some college,standard,completed,85,81,85
+male,group D,some high school,standard,completed,77,68,69
+male,group C,master's degree,free/reduced,completed,72,66,72
+female,group D,master's degree,standard,none,78,91,96
+male,group C,high school,standard,none,81,66,64
+male,group A,some high school,free/reduced,completed,61,62,61
+female,group B,high school,standard,none,58,68,61
+female,group C,associate's degree,standard,none,54,61,58
+male,group B,high school,standard,none,82,82,80
+female,group D,some college,free/reduced,none,49,58,60
+male,group B,some high school,free/reduced,completed,49,50,52
+female,group E,high school,free/reduced,completed,57,75,73
+male,group E,high school,standard,none,94,73,71
+female,group D,some college,standard,completed,75,77,83
+female,group E,some high school,free/reduced,none,74,74,72
+male,group C,high school,standard,completed,58,52,54
+female,group C,some college,standard,none,62,69,69
+male,group E,associate's degree,standard,none,72,57,62
+male,group C,some college,standard,none,84,87,81
+female,group D,master's degree,standard,none,92,100,100
+female,group D,high school,standard,none,45,63,59
+male,group C,high school,standard,none,75,81,71
+female,group A,some college,standard,none,56,58,64
+female,group D,some high school,free/reduced,none,48,54,53
+female,group E,associate's degree,standard,none,100,100,100
+female,group C,some high school,free/reduced,completed,65,76,75
+male,group D,some college,standard,none,72,57,58
+female,group D,some college,standard,none,62,70,72
+male,group A,some high school,standard,completed,66,68,64
+male,group C,some college,standard,none,63,63,60
+female,group E,associate's degree,standard,none,68,76,67
+female,group B,bachelor's degree,standard,none,75,84,80
+female,group D,bachelor's degree,standard,none,89,100,100
+male,group C,some high school,standard,completed,78,72,69
+female,group A,high school,free/reduced,completed,53,50,60
+female,group D,some college,free/reduced,none,49,65,61
+female,group A,some college,standard,none,54,63,67
+female,group C,some college,standard,completed,64,82,77
+male,group B,some college,free/reduced,completed,60,62,60
+male,group C,associate's degree,standard,none,62,65,58
+male,group D,high school,standard,completed,55,41,48
+female,group C,associate's degree,standard,none,91,95,94
+female,group B,high school,free/reduced,none,8,24,23
+male,group D,some high school,standard,none,81,78,78
+male,group B,some high school,standard,completed,79,85,86
+female,group A,some college,standard,completed,78,87,91
+female,group C,some high school,standard,none,74,75,82
+male,group A,high school,standard,none,57,51,54
+female,group C,associate's degree,standard,none,40,59,51
+male,group E,some high school,standard,completed,81,75,76
+female,group A,some high school,free/reduced,none,44,45,45
+female,group D,some college,free/reduced,completed,67,86,83
+male,group E,high school,free/reduced,completed,86,81,75
+female,group B,some high school,standard,completed,65,82,78
+female,group D,associate's degree,free/reduced,none,55,76,76
+female,group D,bachelor's degree,free/reduced,none,62,72,74
+male,group A,high school,standard,none,63,63,62
+female,group E,master's degree,standard,completed,88,99,95
+male,group C,high school,free/reduced,none,62,55,55
+female,group C,high school,free/reduced,completed,59,71,65
+female,group D,some college,standard,completed,68,78,77
+female,group D,some college,free/reduced,none,77,86,86
diff --git a/artifacts/model.pkl b/artifacts/model.pkl
new file mode 100644
index 0000000..a14e7c0
Binary files /dev/null and b/artifacts/model.pkl differ
diff --git a/artifacts/preprocessor.pkl b/artifacts/preprocessor.pkl
new file mode 100644
index 0000000..3fbeb94
Binary files /dev/null and b/artifacts/preprocessor.pkl differ
diff --git a/artifacts/test.csv b/artifacts/test.csv
new file mode 100644
index 0000000..c993112
--- /dev/null
+++ b/artifacts/test.csv
@@ -0,0 +1,201 @@
+gender,race_ethnicity,parental_level_of_education,lunch,test_preparation_course,math_score,reading_score,writing_score
+female,group C,associate's degree,standard,none,91,86,84
+female,group B,some college,free/reduced,completed,53,66,73
+male,group D,bachelor's degree,standard,none,80,73,72
+male,group C,some college,free/reduced,none,74,77,73
+male,group E,some college,standard,completed,84,83,78
+male,group D,associate's degree,free/reduced,none,81,75,78
+male,group B,associate's degree,free/reduced,completed,69,70,63
+female,group B,some high school,standard,completed,54,61,62
+male,group C,associate's degree,free/reduced,none,87,73,72
+male,group B,some high school,standard,completed,51,54,41
+male,group A,high school,free/reduced,none,45,47,49
+male,group E,some high school,standard,none,30,26,22
+female,group B,high school,free/reduced,completed,67,80,81
+female,group D,some college,free/reduced,none,49,65,61
+male,group D,some college,standard,completed,85,81,85
+female,group D,some high school,standard,completed,65,78,82
+male,group D,high school,standard,none,53,52,42
+male,group D,bachelor's degree,free/reduced,none,55,46,44
+female,group D,some high school,standard,none,48,58,54
+female,group D,associate's degree,free/reduced,none,56,65,63
+male,group C,master's degree,standard,none,79,72,69
+female,group C,bachelor's degree,free/reduced,completed,43,51,54
+female,group C,some college,free/reduced,completed,45,73,70
+female,group C,high school,free/reduced,none,36,53,43
+male,group D,some high school,free/reduced,completed,80,79,79
+male,group D,associate's degree,standard,none,80,75,77
+male,group D,bachelor's degree,standard,completed,68,74,74
+female,group C,associate's degree,standard,none,40,59,51
+female,group A,high school,free/reduced,completed,34,48,41
+female,group D,some college,free/reduced,none,49,58,60
+male,group B,some college,standard,none,62,61,57
+male,group D,some college,standard,completed,71,61,69
+male,group B,bachelor's degree,free/reduced,none,62,63,56
+male,group E,some college,standard,none,76,71,72
+male,group E,some college,standard,none,84,77,71
+female,group B,some college,free/reduced,none,45,53,55
+male,group D,associate's degree,free/reduced,none,77,78,73
+female,group D,some college,standard,none,69,77,77
+female,group C,master's degree,standard,none,73,78,74
+female,group C,some high school,free/reduced,none,0,17,10
+male,group C,associate's degree,standard,completed,82,75,77
+male,group B,some high school,standard,completed,65,66,62
+male,group D,bachelor's degree,standard,completed,67,61,68
+female,group A,some college,standard,none,54,63,67
+male,group D,associate's degree,free/reduced,none,90,87,75
+female,group E,high school,standard,completed,59,63,75
+male,group D,high school,free/reduced,none,74,70,69
+female,group C,high school,standard,none,29,29,30
+male,group D,some high school,standard,completed,89,88,82
+female,group A,high school,standard,completed,75,82,79
+male,group B,some college,standard,completed,71,75,70
+female,group D,associate's degree,standard,none,64,76,74
+male,group C,some college,standard,completed,79,79,78
+female,group B,some college,free/reduced,completed,48,56,58
+female,group C,some high school,standard,none,69,73,73
+female,group D,some college,standard,none,69,74,74
+male,group D,bachelor's degree,standard,none,88,78,83
+male,group C,associate's degree,standard,none,58,54,52
+male,group B,associate's degree,standard,none,87,85,73
+female,group A,some high school,standard,completed,85,90,92
+male,group A,some high school,standard,completed,46,41,43
+female,group C,some high school,free/reduced,completed,71,84,87
+female,group C,associate's degree,standard,none,81,77,79
+female,group B,some college,free/reduced,none,58,61,66
+male,group D,master's degree,free/reduced,completed,84,89,90
+female,group C,bachelor's degree,free/reduced,completed,66,74,81
+female,group D,some college,free/reduced,none,55,71,69
+male,group C,high school,free/reduced,none,59,53,52
+female,group D,some college,free/reduced,completed,58,63,73
+female,group D,associate's degree,standard,none,82,95,89
+male,group E,associate's degree,standard,completed,66,63,64
+female,group C,bachelor's degree,standard,none,81,88,90
+male,group C,some college,free/reduced,none,58,57,54
+female,group A,associate's degree,free/reduced,none,37,57,56
+male,group C,some high school,standard,completed,63,60,57
+male,group E,some high school,standard,completed,77,76,77
+female,group D,some college,standard,completed,85,86,98
+male,group B,associate's degree,free/reduced,none,57,56,57
+female,group A,some high school,standard,none,48,66,65
+male,group C,some high school,standard,none,51,52,44
+male,group D,some college,free/reduced,none,63,61,60
+male,group D,some high school,free/reduced,none,45,37,37
+male,group C,bachelor's degree,standard,none,83,78,73
+female,group C,some college,standard,none,60,72,74
+male,group B,bachelor's degree,standard,none,63,71,69
+female,group C,high school,free/reduced,none,62,67,64
+female,group D,some college,standard,completed,68,78,77
+female,group B,some high school,standard,completed,60,70,74
+female,group C,some high school,standard,completed,77,90,85
+male,group A,some college,free/reduced,none,28,23,19
+male,group C,master's degree,free/reduced,none,79,81,71
+female,group E,some college,standard,none,100,92,97
+male,group D,bachelor's degree,standard,none,69,58,57
+male,group B,high school,free/reduced,none,66,77,70
+female,group B,some college,standard,none,19,38,32
+male,group D,associate's degree,standard,none,75,68,64
+male,group D,some college,standard,none,60,63,59
+female,group A,some college,standard,none,58,70,67
+female,group C,associate's degree,standard,none,69,80,71
+female,group C,associate's degree,free/reduced,completed,56,68,70
+male,group C,associate's degree,standard,completed,73,78,72
+male,group E,some college,standard,none,66,57,52
+male,group A,associate's degree,standard,none,67,57,53
+female,group C,associate's degree,free/reduced,none,64,73,68
+male,group A,high school,standard,none,71,74,64
+male,group B,high school,standard,none,70,65,60
+male,group E,associate's degree,standard,none,53,45,40
+male,group C,high school,standard,none,75,81,71
+female,group B,high school,standard,completed,68,83,78
+female,group C,high school,standard,none,44,61,52
+female,group D,bachelor's degree,free/reduced,none,29,41,47
+female,group B,high school,free/reduced,none,71,87,82
+male,group A,high school,standard,none,57,51,54
+female,group A,bachelor's degree,standard,none,45,59,64
+female,group C,some college,free/reduced,none,76,83,88
+male,group C,high school,standard,none,61,56,55
+male,group C,some high school,free/reduced,completed,45,52,49
+male,group D,high school,standard,completed,55,41,48
+male,group B,high school,standard,completed,73,69,68
+male,group D,high school,free/reduced,completed,78,77,80
+female,group A,master's degree,free/reduced,none,50,67,73
+female,group C,some college,free/reduced,none,62,67,62
+male,group D,master's degree,standard,none,81,81,84
+female,group C,some high school,free/reduced,completed,64,79,77
+female,group D,some high school,standard,completed,64,60,74
+male,group D,some high school,standard,none,73,66,62
+female,group D,associate's degree,standard,completed,73,75,80
+female,group C,some high school,standard,completed,67,74,77
+male,group B,associate's degree,standard,none,61,42,41
+male,group C,some high school,standard,completed,67,73,68
+female,group D,some high school,standard,none,65,82,81
+male,group D,associate's degree,standard,none,80,75,69
+male,group D,some high school,free/reduced,none,59,42,41
+female,group E,master's degree,standard,completed,88,99,95
+female,group C,associate's degree,standard,none,62,74,70
+female,group C,high school,free/reduced,none,33,41,43
+female,group C,bachelor's degree,standard,completed,79,92,89
+male,group B,some high school,standard,completed,84,83,75
+male,group A,master's degree,free/reduced,none,73,74,72
+female,group A,associate's degree,free/reduced,none,41,51,48
+female,group E,associate's degree,free/reduced,none,50,56,54
+female,group B,high school,standard,completed,58,70,68
+male,group D,some high school,free/reduced,completed,55,59,59
+male,group D,high school,standard,none,45,48,46
+male,group D,some high school,standard,completed,88,74,75
+female,group B,associate's degree,free/reduced,none,46,61,55
+male,group A,some high school,standard,none,51,31,36
+male,group D,some high school,standard,none,75,74,69
+male,group E,some college,free/reduced,completed,49,52,51
+female,group E,high school,standard,none,75,86,79
+female,group E,high school,standard,completed,74,79,80
+female,group B,associate's degree,standard,completed,61,86,87
+male,group C,associate's degree,standard,none,62,65,58
+male,group C,some high school,free/reduced,none,68,63,54
+female,group D,master's degree,standard,none,78,91,96
+female,group E,some college,standard,none,71,70,76
+female,group D,high school,free/reduced,none,49,57,52
+female,group A,bachelor's degree,standard,none,59,72,70
+male,group E,bachelor's degree,free/reduced,completed,79,74,72
+female,group E,associate's degree,standard,none,51,51,54
+female,group C,bachelor's degree,standard,completed,56,79,72
+male,group B,high school,standard,completed,76,62,60
+female,group D,some college,standard,completed,69,79,81
+male,group C,some high school,free/reduced,completed,51,56,53
+male,group D,some college,standard,completed,82,82,88
+male,group C,some college,standard,none,73,74,61
+male,group C,high school,free/reduced,completed,40,46,50
+male,group E,some college,free/reduced,none,93,90,83
+female,group C,bachelor's degree,standard,completed,59,64,75
+female,group B,associate's degree,standard,none,73,76,80
+male,group B,some high school,standard,completed,85,84,78
+male,group E,associate's degree,standard,none,76,71,67
+female,group D,associate's degree,free/reduced,completed,77,89,98
+female,group D,some college,free/reduced,completed,67,86,83
+male,group D,some college,free/reduced,none,61,47,56
+female,group D,some high school,free/reduced,none,27,34,32
+male,group D,high school,standard,none,54,52,52
+female,group C,master's degree,free/reduced,completed,65,81,81
+female,group E,associate's degree,standard,none,87,94,95
+female,group C,some high school,standard,completed,70,82,76
+female,group B,high school,standard,none,54,64,68
+female,group C,high school,free/reduced,none,66,76,68
+female,group D,master's degree,free/reduced,completed,85,95,100
+male,group C,some high school,free/reduced,completed,56,61,60
+male,group E,master's degree,standard,none,90,85,84
+male,group E,high school,standard,none,70,55,56
+female,group B,bachelor's degree,standard,none,61,72,70
+male,group A,bachelor's degree,free/reduced,completed,49,58,60
+male,group C,high school,standard,none,81,66,64
+male,group B,some college,standard,completed,87,84,86
+male,group B,some high school,free/reduced,completed,49,50,52
+male,group B,some high school,standard,none,68,54,53
+male,group C,associate's degree,free/reduced,none,77,67,64
+female,group B,bachelor's degree,free/reduced,none,78,79,76
+male,group C,associate's degree,free/reduced,completed,60,51,56
+female,group D,high school,free/reduced,completed,52,57,56
+male,group E,associate's degree,standard,completed,62,56,53
+female,group B,some college,free/reduced,none,74,81,76
+female,group C,associate's degree,standard,none,65,77,74
+female,group D,some high school,standard,completed,61,74,72
diff --git a/artifacts/train.csv b/artifacts/train.csv
new file mode 100644
index 0000000..376a5ef
--- /dev/null
+++ b/artifacts/train.csv
@@ -0,0 +1,801 @@
+gender,race_ethnicity,parental_level_of_education,lunch,test_preparation_course,math_score,reading_score,writing_score
+female,group D,master's degree,standard,none,62,70,75
+female,group C,bachelor's degree,free/reduced,completed,66,83,83
+female,group D,some college,free/reduced,none,79,89,86
+male,group C,master's degree,free/reduced,none,61,67,66
+male,group E,high school,standard,none,73,64,57
+male,group B,high school,free/reduced,none,30,24,15
+female,group C,bachelor's degree,standard,completed,96,100,100
+female,group C,associate's degree,standard,completed,57,77,80
+male,group D,high school,standard,completed,68,64,66
+female,group C,some high school,free/reduced,none,48,58,52
+male,group B,some high school,standard,none,67,64,61
+female,group C,some college,free/reduced,none,59,62,64
+male,group E,some high school,standard,completed,74,64,60
+female,group C,some high school,standard,none,65,69,76
+female,group B,some college,standard,none,62,67,67
+male,group C,associate's degree,standard,none,47,37,35
+male,group D,associate's degree,standard,none,80,63,63
+male,group C,high school,standard,none,68,60,53
+female,group D,some college,standard,completed,79,84,91
+male,group D,high school,standard,none,89,87,79
+male,group A,some college,standard,none,69,67,69
+female,group E,some college,free/reduced,none,53,58,57
+female,group C,some college,standard,completed,64,82,77
+male,group C,high school,standard,completed,82,84,82
+male,group B,high school,free/reduced,none,36,29,27
+female,group B,master's degree,standard,none,90,95,93
+female,group D,master's degree,standard,none,64,63,66
+female,group B,bachelor's degree,standard,none,52,65,69
+female,group D,some high school,free/reduced,none,67,84,84
+male,group C,associate's degree,standard,completed,51,60,58
+male,group D,some college,standard,none,79,73,67
+male,group A,high school,standard,none,63,63,62
+female,group D,associate's degree,free/reduced,none,52,59,56
+male,group A,associate's degree,free/reduced,completed,40,55,53
+male,group D,some college,standard,none,40,42,38
+female,group B,some college,standard,none,63,65,61
+male,group C,associate's degree,standard,none,46,43,42
+female,group C,some high school,free/reduced,completed,65,76,75
+female,group B,some high school,standard,none,62,64,66
+male,group B,associate's degree,standard,none,90,78,81
+male,group A,associate's degree,free/reduced,none,47,57,44
+male,group C,some college,standard,none,59,41,42
+female,group B,master's degree,free/reduced,completed,77,97,94
+female,group C,associate's degree,standard,none,52,55,57
+male,group E,some college,standard,completed,99,87,81
+female,group B,some high school,standard,none,70,64,72
+male,group C,associate's degree,free/reduced,none,64,66,59
+male,group A,bachelor's degree,standard,completed,80,78,81
+male,group D,high school,free/reduced,none,42,39,34
+male,group E,associate's degree,standard,completed,97,82,88
+male,group A,some college,free/reduced,completed,50,47,54
+female,group B,some high school,standard,completed,65,82,78
+female,group C,master's degree,free/reduced,none,52,65,61
+female,group E,associate's degree,standard,none,59,62,69
+male,group B,some high school,standard,none,74,63,57
+female,group C,some high school,free/reduced,none,43,53,53
+female,group B,high school,free/reduced,completed,67,78,79
+male,group E,bachelor's degree,standard,completed,100,100,100
+male,group D,high school,standard,none,72,66,66
+female,group B,associate's degree,standard,none,71,83,78
+male,group A,some high school,free/reduced,none,55,46,43
+female,group C,some college,standard,none,84,87,91
+female,group E,some college,standard,completed,63,72,70
+female,group C,bachelor's degree,standard,none,63,75,81
+female,group C,some college,free/reduced,completed,42,66,69
+male,group E,associate's degree,free/reduced,completed,78,74,72
+male,group E,some college,standard,none,69,60,54
+female,group B,associate's degree,standard,none,80,86,83
+male,group B,high school,standard,none,79,60,65
+male,group C,associate's degree,standard,completed,87,100,95
+female,group A,associate's degree,free/reduced,none,65,85,76
+female,group D,some high school,standard,none,51,63,61
+male,group D,master's degree,standard,none,85,84,89
+male,group A,some high school,standard,completed,47,49,49
+male,group C,master's degree,free/reduced,none,54,59,50
+female,group B,high school,free/reduced,none,38,60,50
+male,group C,some high school,free/reduced,completed,59,69,65
+male,group D,high school,free/reduced,none,60,57,51
+male,group B,high school,free/reduced,none,49,45,45
+female,group C,associate's degree,standard,completed,52,59,62
+female,group C,bachelor's degree,free/reduced,none,44,63,62
+female,group E,associate's degree,free/reduced,none,70,84,81
+male,group C,associate's degree,standard,none,84,80,80
+male,group C,associate's degree,standard,none,76,70,68
+male,group C,some college,free/reduced,none,35,28,27
+female,group C,associate's degree,standard,completed,96,96,99
+female,group D,some college,standard,none,80,90,89
+male,group B,associate's degree,standard,none,81,73,72
+male,group D,high school,standard,none,57,50,54
+male,group E,high school,standard,none,94,73,71
+male,group B,high school,standard,none,82,82,80
+male,group D,high school,standard,none,70,70,70
+female,group B,associate's degree,standard,completed,94,87,92
+male,group A,bachelor's degree,standard,completed,75,58,62
+female,group C,some college,standard,none,52,58,58
+female,group A,high school,free/reduced,completed,77,88,85
+male,group D,some college,free/reduced,none,70,63,58
+male,group A,some high school,free/reduced,none,65,59,53
+male,group B,some college,free/reduced,none,40,43,39
+female,group C,some college,standard,completed,70,89,88
+male,group D,associate's degree,free/reduced,completed,79,82,80
+female,group C,some college,standard,completed,67,81,79
+male,group C,some college,free/reduced,none,68,68,61
+female,group D,master's degree,free/reduced,completed,47,58,67
+female,group A,some college,standard,completed,72,79,82
+female,group E,high school,free/reduced,completed,57,75,73
+female,group C,bachelor's degree,standard,none,83,93,95
+male,group A,some college,standard,completed,61,51,52
+male,group C,associate's degree,standard,completed,98,87,90
+female,group D,master's degree,free/reduced,completed,61,71,78
+female,group C,bachelor's degree,standard,completed,92,100,99
+female,group C,associate's degree,standard,completed,68,67,73
+female,group E,some high school,standard,none,77,79,80
+male,group C,some college,standard,none,66,59,52
+male,group B,high school,standard,none,47,46,42
+male,group C,some college,free/reduced,none,65,58,49
+male,group A,some high school,free/reduced,none,68,72,64
+female,group C,some college,standard,completed,63,78,80
+female,group D,high school,free/reduced,none,73,92,84
+female,group C,high school,free/reduced,none,42,62,60
+female,group E,master's degree,standard,none,62,68,68
+female,group D,bachelor's degree,standard,completed,68,75,81
+female,group C,associate's degree,standard,completed,67,84,81
+male,group D,some college,free/reduced,none,49,57,46
+female,group C,some college,free/reduced,none,35,44,43
+male,group A,high school,standard,none,68,70,66
+female,group B,high school,standard,completed,69,76,74
+male,group C,high school,standard,none,70,74,71
+female,group E,some high school,standard,completed,80,85,85
+female,group C,some college,standard,completed,75,81,84
+female,group D,some college,standard,none,63,64,67
+male,group B,bachelor's degree,standard,none,66,60,57
+female,group B,some high school,free/reduced,completed,74,90,88
+female,group C,some high school,standard,completed,44,51,55
+female,group B,bachelor's degree,standard,none,72,72,74
+female,group D,master's degree,standard,completed,77,82,91
+male,group D,high school,standard,none,46,34,36
+male,group C,high school,standard,completed,72,67,64
+male,group B,associate's degree,standard,completed,82,84,78
+male,group E,associate's degree,standard,completed,62,61,58
+male,group D,associate's degree,standard,none,80,68,72
+female,group C,high school,standard,none,54,59,62
+female,group D,some college,standard,none,79,86,81
+female,group B,high school,standard,none,87,95,86
+female,group C,some high school,standard,completed,65,74,77
+female,group C,associate's degree,free/reduced,completed,82,93,93
+female,group B,associate's degree,standard,none,40,48,50
+female,group D,bachelor's degree,free/reduced,completed,93,100,100
+female,group C,bachelor's degree,standard,none,65,72,74
+male,group D,some high school,standard,completed,77,68,69
+female,group C,some college,free/reduced,none,46,64,66
+male,group B,some college,standard,completed,88,85,76
+female,group E,some high school,free/reduced,none,32,34,38
+female,group C,associate's degree,standard,none,39,64,57
+male,group D,some high school,standard,none,86,73,70
+male,group C,some high school,free/reduced,completed,53,37,40
+male,group A,some college,free/reduced,completed,81,78,81
+male,group B,some college,free/reduced,none,41,39,34
+male,group C,some college,standard,none,61,61,62
+male,group D,some college,standard,none,88,73,78
+female,group A,some high school,standard,completed,59,85,80
+female,group D,some high school,standard,none,81,97,96
+male,group C,bachelor's degree,standard,none,58,55,48
+female,group C,some college,free/reduced,completed,64,85,85
+female,group E,master's degree,standard,none,81,92,91
+male,group C,high school,standard,none,70,70,65
+female,group C,bachelor's degree,free/reduced,none,62,78,79
+male,group D,some college,standard,completed,77,62,62
+female,group D,high school,standard,none,62,64,64
+female,group E,some college,standard,none,87,85,93
+female,group C,some college,free/reduced,completed,67,75,70
+male,group A,bachelor's degree,free/reduced,none,62,72,65
+female,group D,some high school,standard,none,76,72,71
+female,group C,associate's degree,standard,none,63,67,70
+female,group B,some college,standard,completed,88,95,92
+male,group D,associate's degree,standard,none,72,79,74
+female,group D,master's degree,standard,none,55,64,70
+male,group C,some high school,free/reduced,none,61,57,56
+male,group D,bachelor's degree,free/reduced,none,50,42,48
+male,group E,some high school,standard,completed,87,84,76
+male,group B,some college,standard,none,54,52,51
+female,group C,some college,free/reduced,none,22,39,33
+male,group D,high school,free/reduced,none,66,74,69
+male,group C,bachelor's degree,standard,completed,83,82,84
+female,group D,high school,standard,completed,56,68,74
+female,group B,associate's degree,free/reduced,none,54,65,65
+female,group D,master's degree,standard,none,74,79,82
+male,group E,some college,free/reduced,completed,87,74,70
+male,group E,high school,free/reduced,completed,86,81,75
+male,group B,some college,standard,none,66,65,60
+male,group C,associate's degree,free/reduced,completed,65,67,65
+female,group C,associate's degree,standard,none,58,73,68
+female,group C,associate's degree,standard,completed,75,82,90
+female,group B,associate's degree,free/reduced,none,52,76,70
+female,group C,some college,standard,none,54,64,65
+female,group E,associate's degree,standard,completed,82,85,86
+female,group C,some high school,standard,none,63,73,68
+female,group A,some high school,free/reduced,none,59,73,69
+male,group E,bachelor's degree,free/reduced,completed,70,68,72
+female,group C,high school,free/reduced,completed,59,71,65
+male,group D,bachelor's degree,free/reduced,completed,74,71,80
+male,group A,high school,free/reduced,completed,72,67,65
+male,group A,associate's degree,standard,completed,97,92,86
+female,group C,some high school,standard,none,47,54,53
+male,group D,master's degree,standard,none,95,81,84
+female,group C,some high school,standard,none,49,63,56
+male,group E,associate's degree,free/reduced,none,64,56,52
+female,group B,some high school,free/reduced,none,24,38,27
+male,group E,associate's degree,free/reduced,completed,77,69,68
+male,group B,bachelor's degree,free/reduced,none,55,59,54
+female,group D,some college,standard,none,74,89,84
+male,group D,high school,free/reduced,none,69,70,67
+female,group B,master's degree,standard,none,77,90,84
+male,group D,high school,standard,none,76,73,68
+male,group D,bachelor's degree,free/reduced,completed,61,70,76
+male,group C,some college,standard,completed,93,84,90
+male,group B,high school,standard,none,62,55,54
+male,group A,bachelor's degree,standard,none,64,60,58
+female,group D,some high school,standard,completed,66,78,78
+male,group C,high school,standard,completed,86,81,80
+male,group C,master's degree,free/reduced,completed,46,42,46
+female,group B,associate's degree,free/reduced,completed,76,94,87
+male,group A,high school,standard,none,59,52,46
+male,group B,high school,free/reduced,none,63,48,47
+female,group A,some high school,free/reduced,none,47,59,50
+male,group C,bachelor's degree,free/reduced,none,61,66,61
+male,group E,associate's degree,standard,none,72,64,63
+male,group A,some high school,free/reduced,none,39,39,34
+male,group E,some college,standard,none,86,76,74
+female,group D,associate's degree,free/reduced,none,47,53,58
+male,group B,associate's degree,standard,completed,81,82,82
+female,group B,high school,standard,none,58,62,59
+female,group C,some college,standard,none,59,71,70
+female,group D,bachelor's degree,standard,none,79,89,89
+female,group C,some high school,free/reduced,none,65,86,80
+female,group B,high school,standard,none,65,81,73
+female,group E,high school,standard,none,50,50,47
+female,group A,some high school,free/reduced,none,44,64,58
+female,group E,bachelor's degree,standard,completed,71,70,70
+female,group C,high school,standard,none,60,68,72
+male,group D,some high school,standard,none,86,80,75
+female,group C,some college,standard,none,53,62,56
+female,group D,bachelor's degree,standard,none,89,100,100
+female,group A,associate's degree,standard,completed,65,70,74
+male,group E,some high school,free/reduced,completed,78,83,80
+female,group D,bachelor's degree,free/reduced,none,63,73,78
+female,group C,high school,standard,none,75,88,85
+female,group B,high school,free/reduced,completed,46,54,58
+female,group C,some high school,free/reduced,completed,50,60,60
+female,group C,associate's degree,standard,completed,65,84,84
+female,group C,associate's degree,standard,none,65,76,76
+male,group E,associate's degree,free/reduced,none,90,90,82
+male,group C,associate's degree,standard,completed,57,54,56
+male,group C,high school,standard,none,52,53,49
+female,group B,high school,standard,none,65,64,62
+male,group D,some high school,standard,none,84,84,80
+female,group C,associate's degree,standard,completed,62,76,80
+male,group D,associate's degree,standard,completed,81,72,77
+male,group E,associate's degree,free/reduced,none,46,43,41
+male,group D,associate's degree,standard,none,71,66,60
+male,group C,some high school,standard,none,49,49,41
+female,group D,some college,standard,none,51,58,54
+female,group D,high school,standard,none,69,77,73
+female,group D,some high school,free/reduced,none,48,54,53
+male,group E,some high school,free/reduced,completed,73,67,59
+male,group C,some college,standard,completed,98,86,90
+female,group E,bachelor's degree,standard,completed,99,100,100
+male,group C,associate's degree,standard,none,74,73,67
+male,group E,some college,standard,none,68,60,59
+male,group D,associate's degree,free/reduced,none,53,54,48
+male,group D,associate's degree,standard,completed,87,84,85
+male,group C,high school,standard,none,71,79,71
+male,group C,some college,free/reduced,completed,67,74,70
+female,group D,some high school,standard,none,73,86,82
+male,group D,some high school,standard,completed,76,70,69
+female,group A,some high school,free/reduced,none,44,45,45
+female,group C,high school,free/reduced,none,35,53,46
+male,group C,bachelor's degree,free/reduced,completed,70,75,74
+male,group C,some high school,standard,none,75,72,62
+female,group E,high school,standard,none,74,76,73
+female,group C,some college,standard,none,58,59,66
+female,group B,some college,standard,none,79,86,92
+male,group D,associate's degree,standard,none,40,52,43
+female,group B,high school,free/reduced,none,50,67,63
+female,group E,associate's degree,standard,completed,79,88,94
+male,group B,some college,free/reduced,completed,59,65,66
+female,group B,associate's degree,standard,none,53,58,65
+female,group B,some high school,standard,none,41,55,51
+female,group B,master's degree,free/reduced,completed,58,76,78
+female,group D,some college,free/reduced,completed,59,78,76
+male,group D,some college,standard,none,81,82,84
+male,group A,some high school,standard,none,53,54,48
+male,group D,some college,standard,none,55,58,52
+male,group B,some college,standard,none,79,67,67
+male,group C,bachelor's degree,standard,none,86,83,86
+female,group B,master's degree,free/reduced,completed,52,70,62
+male,group A,some high school,free/reduced,none,79,82,73
+male,group C,bachelor's degree,standard,completed,71,74,68
+male,group B,high school,standard,none,59,58,47
+female,group B,high school,free/reduced,none,64,73,71
+female,group D,high school,standard,none,67,72,74
+female,group C,associate's degree,standard,completed,71,77,77
+male,group A,high school,free/reduced,none,48,45,41
+female,group A,some college,standard,none,69,84,82
+male,group E,some high school,standard,completed,89,84,77
+female,group A,some college,standard,none,56,58,64
+male,group B,some college,standard,completed,62,66,68
+female,group E,some high school,free/reduced,none,38,49,45
+male,group C,some college,standard,none,84,87,81
+male,group E,some college,standard,none,68,72,65
+male,group C,associate's degree,standard,completed,78,77,77
+male,group E,bachelor's degree,standard,completed,85,66,71
+female,group B,some college,free/reduced,none,61,68,66
+female,group C,some high school,standard,none,69,75,78
+female,group C,high school,free/reduced,none,41,46,43
+female,group D,some college,free/reduced,completed,52,59,65
+female,group C,some high school,free/reduced,none,55,65,62
+female,group D,some high school,standard,completed,97,100,100
+female,group A,some college,standard,completed,78,87,91
+male,group D,some college,standard,none,44,54,53
+male,group A,associate's degree,standard,none,63,61,61
+female,group C,some college,free/reduced,completed,63,73,71
+female,group E,master's degree,free/reduced,none,81,86,87
+male,group C,high school,free/reduced,none,58,61,52
+female,group C,high school,standard,none,61,72,70
+male,group B,bachelor's degree,free/reduced,completed,87,90,88
+female,group B,high school,standard,completed,77,82,89
+female,group B,associate's degree,standard,none,57,69,68
+male,group D,some college,standard,none,67,64,70
+male,group C,associate's degree,free/reduced,completed,43,45,50
+female,group B,associate's degree,free/reduced,none,53,70,70
+male,group B,associate's degree,free/reduced,none,61,58,56
+male,group C,high school,free/reduced,completed,58,51,52
+female,group B,some high school,standard,none,37,46,46
+female,group D,some high school,free/reduced,completed,40,65,64
+male,group C,some high school,standard,none,73,66,66
+male,group D,bachelor's degree,standard,none,54,49,47
+male,group B,associate's degree,free/reduced,none,44,41,38
+female,group B,associate's degree,free/reduced,completed,68,77,80
+male,group D,some college,free/reduced,none,69,66,60
+male,group B,some high school,free/reduced,none,48,52,45
+male,group C,some college,standard,none,58,49,42
+male,group D,bachelor's degree,free/reduced,none,63,66,67
+female,group C,associate's degree,free/reduced,none,60,75,74
+female,group D,bachelor's degree,standard,none,78,82,79
+male,group A,some high school,free/reduced,completed,61,62,61
+male,group D,some high school,free/reduced,none,62,49,52
+male,group C,high school,standard,none,62,67,58
+male,group A,some high school,standard,none,71,62,50
+male,group B,some high school,standard,none,72,68,67
+female,group B,bachelor's degree,free/reduced,none,75,85,82
+female,group D,some high school,standard,none,59,67,61
+female,group D,associate's degree,standard,none,77,77,73
+male,group D,associate's degree,standard,none,52,55,49
+female,group C,some college,standard,completed,71,71,80
+female,group C,bachelor's degree,standard,completed,52,61,66
+female,group D,some high school,standard,none,73,84,85
+female,group D,associate's degree,standard,completed,88,92,95
+female,group A,associate's degree,standard,completed,55,65,62
+male,group E,associate's degree,standard,none,87,74,76
+male,group D,associate's degree,standard,none,61,55,52
+female,group D,some college,free/reduced,none,77,86,86
+male,group B,some college,standard,none,58,50,45
+male,group C,associate's degree,standard,none,92,79,84
+female,group E,high school,standard,none,99,93,90
+female,group B,associate's degree,standard,none,73,83,76
+female,group B,some college,standard,completed,50,64,66
+female,group C,associate's degree,standard,completed,74,75,83
+female,group C,high school,standard,none,61,73,63
+male,group A,some high school,standard,completed,66,68,64
+male,group E,associate's degree,free/reduced,completed,100,100,93
+male,group E,some college,standard,none,83,80,73
+female,group E,some high school,free/reduced,none,72,79,77
+male,group E,some college,standard,none,53,55,48
+female,group C,associate's degree,standard,none,46,58,57
+female,group D,high school,free/reduced,completed,65,61,71
+female,group E,some college,free/reduced,completed,42,55,54
+female,group C,associate's degree,standard,completed,83,85,90
+male,group D,some high school,standard,none,60,59,54
+male,group D,some college,standard,completed,100,97,99
+female,group C,high school,free/reduced,completed,67,79,84
+female,group C,associate's degree,free/reduced,none,54,58,61
+male,group B,bachelor's degree,standard,none,59,54,51
+female,group B,high school,standard,none,48,62,60
+male,group C,high school,standard,none,90,75,69
+female,group B,associate's degree,standard,none,82,80,77
+female,group D,high school,standard,none,51,66,62
+female,group C,high school,free/reduced,none,35,61,54
+female,group D,associate's degree,free/reduced,completed,75,90,88
+female,group C,master's degree,standard,completed,81,91,87
+male,group C,associate's degree,standard,none,85,76,71
+female,group D,some high school,free/reduced,completed,69,86,81
+female,group B,bachelor's degree,free/reduced,none,77,85,87
+male,group C,associate's degree,free/reduced,none,58,55,53
+male,group B,high school,standard,completed,52,49,46
+male,group D,some high school,standard,none,62,67,61
+female,group B,some high school,standard,none,67,89,82
+female,group E,some college,standard,none,76,78,80
+male,group D,bachelor's degree,free/reduced,none,68,68,67
+female,group C,associate's degree,standard,completed,59,73,72
+female,group B,some high school,free/reduced,none,18,32,28
+male,group D,some college,standard,completed,65,77,74
+female,group C,some college,standard,none,71,81,80
+female,group E,some college,standard,none,62,73,70
+male,group D,some high school,standard,none,69,66,61
+male,group D,some college,standard,none,72,57,58
+female,group E,associate's degree,standard,none,66,65,69
+male,group C,high school,standard,none,84,77,74
+female,group E,bachelor's degree,standard,none,37,45,38
+female,group C,associate's degree,standard,none,85,84,82
+male,group C,master's degree,free/reduced,completed,62,68,75
+male,group D,some high school,free/reduced,none,56,54,52
+male,group B,some college,standard,completed,69,77,77
+female,group D,some college,standard,none,98,100,99
+male,group C,high school,standard,none,50,48,42
+female,group E,master's degree,standard,completed,94,99,100
+female,group C,associate's degree,standard,none,91,95,94
+female,group E,some college,standard,completed,66,74,73
+female,group C,some high school,standard,none,74,75,82
+male,group B,associate's degree,standard,none,65,54,57
+male,group E,bachelor's degree,standard,completed,70,64,70
+male,group B,some college,free/reduced,none,60,60,60
+female,group A,high school,standard,none,61,68,63
+male,group E,some high school,standard,none,94,88,78
+male,group C,high school,standard,none,88,89,86
+male,group A,some high school,standard,none,64,50,43
+female,group D,associate's degree,free/reduced,completed,57,74,76
+male,group C,some high school,standard,completed,78,72,69
+male,group C,master's degree,free/reduced,completed,72,66,72
+female,group C,some high school,standard,completed,76,87,85
+female,group E,some high school,free/reduced,none,74,74,72
+male,group B,high school,standard,completed,73,71,68
+female,group D,some college,free/reduced,completed,70,78,78
+female,group C,high school,standard,none,76,76,74
+male,group C,some high school,standard,none,57,61,54
+female,group E,master's degree,free/reduced,none,45,56,54
+male,group B,some college,standard,none,69,54,55
+female,group C,some college,standard,none,62,69,69
+male,group D,associate's degree,free/reduced,none,75,66,73
+female,group D,some college,standard,completed,75,77,83
+male,group C,some college,standard,none,59,60,58
+female,group C,some college,standard,completed,88,95,94
+female,group D,some high school,free/reduced,none,50,64,59
+female,group D,some college,standard,none,62,70,72
+female,group D,bachelor's degree,standard,none,59,70,73
+male,group C,some college,standard,none,91,74,76
+male,group C,some college,standard,none,63,63,60
+male,group C,master's degree,standard,none,71,67,67
+female,group B,some high school,free/reduced,completed,59,63,64
+male,group C,some high school,standard,none,64,58,51
+female,group C,master's degree,standard,completed,69,84,85
+male,group C,some high school,standard,none,62,64,55
+male,group C,associate's degree,standard,none,97,93,91
+female,group E,associate's degree,standard,completed,95,89,92
+female,group B,bachelor's degree,standard,none,75,84,80
+female,group A,some college,free/reduced,none,61,60,57
+female,group D,master's degree,standard,none,53,61,68
+female,group E,associate's degree,standard,none,68,76,67
+male,group B,master's degree,free/reduced,none,49,53,52
+female,group C,bachelor's degree,free/reduced,none,67,75,72
+female,group B,associate's degree,standard,completed,59,70,66
+male,group C,some high school,standard,completed,76,80,73
+female,group D,bachelor's degree,free/reduced,none,62,72,74
+female,group E,associate's degree,standard,none,84,95,92
+male,group C,high school,standard,none,62,55,49
+female,group C,some college,standard,none,72,72,71
+male,group A,high school,free/reduced,none,53,58,44
+male,group B,high school,standard,completed,60,44,47
+female,group D,high school,standard,completed,57,58,64
+male,group E,high school,free/reduced,completed,57,56,54
+male,group D,some high school,standard,completed,71,69,68
+female,group A,high school,standard,none,55,73,73
+female,group D,associate's degree,free/reduced,none,46,56,57
+female,group C,some college,standard,none,69,78,76
+female,group C,some college,standard,none,55,69,65
+male,group D,high school,standard,none,88,78,75
+male,group A,bachelor's degree,standard,none,77,67,68
+female,group D,high school,standard,completed,88,99,100
+female,group C,associate's degree,standard,none,54,61,58
+male,group E,high school,standard,completed,81,80,76
+female,group D,associate's degree,free/reduced,none,43,60,58
+male,group B,some college,free/reduced,completed,74,77,76
+male,group D,some high school,standard,completed,78,81,86
+male,group D,high school,free/reduced,completed,64,64,67
+female,group E,high school,free/reduced,none,41,45,40
+female,group D,associate's degree,standard,none,74,81,83
+female,group C,associate's degree,free/reduced,none,65,77,74
+female,group A,high school,standard,completed,68,80,76
+male,group D,master's degree,standard,none,80,80,72
+male,group B,associate's degree,standard,none,80,76,64
+male,group D,high school,standard,none,69,75,71
+male,group A,bachelor's degree,standard,none,91,96,92
+male,group A,some college,standard,completed,100,96,86
+female,group C,some college,standard,completed,87,89,94
+female,group E,associate's degree,standard,none,85,92,85
+female,group C,some high school,free/reduced,none,44,50,51
+male,group D,some college,free/reduced,completed,69,60,63
+male,group E,associate's degree,standard,completed,71,74,68
+female,group C,bachelor's degree,free/reduced,completed,51,72,79
+male,group A,some high school,standard,completed,62,67,69
+male,group C,associate's degree,free/reduced,none,68,65,61
+male,group D,high school,standard,none,41,52,51
+male,group D,high school,free/reduced,none,44,51,48
+male,group C,some high school,free/reduced,none,79,76,65
+female,group E,associate's degree,standard,completed,93,100,95
+male,group B,some high school,standard,completed,64,53,57
+male,group C,associate's degree,free/reduced,none,73,68,66
+male,group B,some high school,standard,none,88,84,75
+female,group C,some college,free/reduced,none,62,72,70
+male,group D,some college,free/reduced,none,62,57,62
+male,group C,high school,free/reduced,none,61,60,55
+male,group D,associate's degree,standard,none,90,87,85
+male,group D,high school,free/reduced,none,75,74,66
+female,group C,some college,free/reduced,none,77,90,91
+female,group C,some college,standard,none,82,90,94
+male,group E,high school,standard,none,80,76,65
+male,group D,high school,free/reduced,none,63,57,56
+male,group E,some high school,standard,none,82,67,61
+female,group E,some college,standard,none,61,64,62
+male,group A,high school,standard,none,57,43,47
+female,group D,high school,standard,none,45,63,59
+male,group E,high school,free/reduced,none,55,56,51
+female,group B,associate's degree,standard,none,58,63,65
+male,group B,bachelor's degree,free/reduced,none,73,56,57
+female,group E,bachelor's degree,standard,none,65,73,75
+female,group C,some high school,standard,completed,59,54,67
+female,group C,some college,standard,completed,88,93,93
+female,group D,associate's degree,standard,none,65,69,70
+male,group C,associate's degree,standard,none,69,77,69
+male,group C,high school,standard,none,70,56,51
+male,group E,associate's degree,standard,none,89,76,74
+male,group E,high school,standard,none,84,73,69
+male,group D,associate's degree,free/reduced,completed,61,71,73
+female,group B,high school,standard,none,74,72,72
+male,group B,high school,standard,none,57,48,51
+female,group C,high school,standard,completed,60,64,74
+male,group C,high school,free/reduced,none,54,72,59
+female,group A,bachelor's degree,standard,none,51,49,51
+female,group D,some high school,standard,completed,80,92,88
+female,group A,some college,free/reduced,none,49,65,55
+male,group C,bachelor's degree,standard,completed,91,81,79
+male,group B,high school,standard,none,52,48,49
+male,group C,master's degree,standard,none,67,57,59
+female,group C,bachelor's degree,free/reduced,completed,47,62,66
+male,group B,some high school,standard,completed,61,56,56
+female,group D,associate's degree,free/reduced,completed,74,88,90
+female,group E,some college,standard,none,68,70,66
+male,group C,master's degree,free/reduced,completed,79,77,75
+female,group D,some college,free/reduced,none,64,74,75
+male,group B,some college,standard,completed,91,96,91
+female,group E,bachelor's degree,free/reduced,none,61,58,62
+female,group C,bachelor's degree,free/reduced,none,43,62,61
+female,group C,high school,free/reduced,none,53,72,64
+female,group E,bachelor's degree,standard,none,64,73,70
+female,group A,high school,free/reduced,completed,53,50,60
+female,group C,bachelor's degree,standard,none,86,92,87
+female,group D,high school,standard,none,69,72,77
+female,group C,some high school,standard,none,77,91,88
+female,group D,high school,standard,none,78,81,80
+female,group C,some college,standard,none,54,48,52
+male,group A,associate's degree,standard,none,54,53,47
+female,group E,associate's degree,free/reduced,none,73,76,78
+female,group B,bachelor's degree,standard,none,67,86,83
+male,group C,associate's degree,free/reduced,none,49,51,51
+female,group C,master's degree,free/reduced,none,40,58,54
+male,group D,associate's degree,free/reduced,none,52,57,50
+female,group D,some college,standard,completed,82,97,96
+male,group D,some high school,standard,none,81,78,78
+female,group B,high school,free/reduced,completed,23,44,36
+male,group E,some high school,standard,none,92,87,78
+female,group B,some high school,standard,completed,32,51,44
+female,group E,some college,standard,completed,73,78,76
+male,group C,associate's degree,standard,none,83,72,78
+female,group B,high school,standard,none,50,53,55
+female,group D,master's degree,standard,completed,70,71,74
+male,group D,associate's degree,standard,completed,67,54,63
+female,group D,associate's degree,free/reduced,completed,42,61,58
+male,group D,some college,free/reduced,none,59,62,61
+female,group B,some college,standard,none,70,75,78
+male,group B,some college,free/reduced,none,55,55,47
+male,group D,associate's degree,standard,none,61,48,46
+female,group B,bachelor's degree,standard,completed,66,74,81
+female,group D,bachelor's degree,free/reduced,none,73,79,84
+female,group D,some high school,standard,none,80,90,82
+female,group A,some high school,free/reduced,none,38,43,43
+female,group B,associate's degree,standard,completed,52,66,73
+male,group C,high school,standard,completed,58,52,54
+female,group C,high school,standard,none,72,80,83
+female,group C,associate's degree,standard,completed,68,86,84
+female,group C,bachelor's degree,standard,completed,77,94,95
+female,group B,some high school,standard,none,82,82,80
+female,group D,associate's degree,standard,none,76,74,73
+male,group E,some high school,standard,completed,81,75,76
+male,group E,associate's degree,free/reduced,completed,46,43,44
+male,group D,some college,standard,none,88,77,77
+male,group C,associate's degree,free/reduced,completed,65,73,68
+female,group B,bachelor's degree,standard,none,97,97,96
+female,group B,some college,standard,none,82,85,87
+female,group B,bachelor's degree,standard,completed,65,81,81
+male,group C,master's degree,standard,completed,91,85,85
+female,group C,associate's degree,standard,completed,55,72,79
+female,group D,master's degree,standard,none,92,100,100
+female,group B,high school,standard,none,81,91,89
+female,group E,associate's degree,free/reduced,completed,57,68,73
+female,group C,some college,standard,none,73,80,82
+female,group D,high school,standard,none,56,52,55
+female,group D,associate's degree,standard,completed,57,78,79
+male,group D,associate's degree,free/reduced,none,66,62,64
+male,group C,high school,standard,completed,53,52,49
+male,group E,associate's degree,standard,completed,81,81,79
+male,group C,high school,standard,completed,75,69,68
+male,group A,high school,standard,completed,72,73,74
+female,group B,some high school,standard,none,73,79,79
+female,group E,some college,standard,completed,86,85,91
+female,group C,bachelor's degree,standard,none,65,79,81
+male,group D,high school,standard,none,64,54,50
+female,group B,high school,standard,none,58,68,61
+male,group D,some high school,standard,none,55,47,44
+male,group C,associate's degree,free/reduced,completed,78,81,82
+female,group D,some college,free/reduced,completed,63,80,80
+male,group D,high school,free/reduced,completed,73,68,66
+female,group C,high school,standard,none,81,84,82
+female,group E,high school,standard,none,74,81,71
+female,group C,associate's degree,standard,none,49,53,53
+male,group C,bachelor's degree,free/reduced,none,53,58,55
+male,group D,some college,free/reduced,none,77,62,64
+female,group D,some college,free/reduced,none,69,65,74
+male,group E,bachelor's degree,standard,none,82,62,62
+male,group E,some college,standard,none,76,67,67
+female,group B,high school,standard,none,42,52,51
+female,group C,associate's degree,standard,none,85,89,95
+female,group C,high school,standard,completed,58,75,77
+female,group C,high school,standard,none,59,72,68
+female,group C,high school,free/reduced,none,34,42,39
+male,group C,some college,standard,none,76,78,75
+female,group D,some high school,standard,none,68,71,75
+female,group B,some high school,free/reduced,none,72,81,79
+female,group C,some high school,free/reduced,none,48,56,51
+male,group C,bachelor's degree,standard,completed,94,90,91
+male,group D,associate's degree,standard,none,81,71,73
+female,group A,some high school,standard,completed,92,100,97
+male,group E,some college,standard,completed,81,74,71
+female,group C,some high school,free/reduced,completed,29,40,44
+female,group D,some college,free/reduced,none,58,67,62
+female,group C,some college,standard,none,73,76,78
+male,group E,some high school,standard,completed,68,51,57
+female,group C,high school,free/reduced,completed,50,66,64
+male,group B,associate's degree,standard,completed,65,65,63
+male,group C,some college,free/reduced,none,63,61,54
+female,group C,high school,standard,none,66,71,76
+female,group E,master's degree,free/reduced,none,56,72,65
+male,group E,associate's degree,standard,completed,94,85,82
+female,group C,associate's degree,standard,none,66,77,73
+female,group C,associate's degree,standard,completed,67,84,86
+male,group D,bachelor's degree,free/reduced,completed,74,79,75
+female,group C,bachelor's degree,standard,none,67,69,75
+male,group C,bachelor's degree,standard,completed,63,64,66
+male,group D,some college,standard,none,76,64,66
+male,group A,associate's degree,free/reduced,completed,79,82,82
+female,group B,some high school,free/reduced,completed,52,67,72
+female,group A,some high school,standard,none,71,83,77
+male,group B,bachelor's degree,free/reduced,none,88,75,76
+male,group D,some college,standard,none,68,59,62
+female,group D,high school,standard,completed,69,77,78
+female,group D,some college,standard,none,77,68,77
+male,group E,bachelor's degree,standard,none,68,68,64
+female,group B,some high school,standard,none,66,69,68
+female,group C,associate's degree,standard,none,59,66,67
+male,group A,associate's degree,free/reduced,none,62,61,55
+female,group C,high school,standard,none,63,69,74
+female,group E,high school,free/reduced,none,64,62,68
+male,group D,master's degree,standard,none,82,82,74
+male,group B,some college,free/reduced,completed,60,62,60
+male,group D,some college,standard,none,71,49,52
+male,group B,associate's degree,free/reduced,completed,58,57,53
+female,group E,associate's degree,standard,none,100,100,100
+female,group D,some high school,standard,none,59,58,59
+female,group C,master's degree,standard,completed,54,64,67
+female,group A,master's degree,standard,none,50,53,58
+female,group E,high school,free/reduced,completed,66,74,78
+male,group C,associate's degree,free/reduced,none,55,61,54
+female,group C,some college,standard,none,83,83,90
+male,group A,bachelor's degree,standard,none,66,64,62
+male,group D,some high school,standard,completed,62,66,68
+female,group B,high school,standard,none,62,62,63
+female,group E,associate's degree,free/reduced,completed,83,86,88
+female,group D,some college,free/reduced,none,60,66,70
+male,group C,some college,standard,none,53,44,42
+female,group D,some high school,standard,none,59,72,80
+male,group C,associate's degree,standard,none,49,51,43
+female,group C,bachelor's degree,free/reduced,none,50,60,59
+male,group E,associate's degree,free/reduced,completed,91,73,80
+male,group B,some college,standard,none,47,43,41
+male,group B,associate's degree,free/reduced,none,67,62,60
+female,group B,some high school,standard,none,57,67,72
+female,group D,some college,free/reduced,none,71,83,83
+female,group E,associate's degree,standard,completed,65,75,77
+male,group B,some college,free/reduced,none,54,54,45
+male,group C,bachelor's degree,free/reduced,none,37,56,47
+male,group C,high school,free/reduced,none,62,55,55
+male,group B,some high school,standard,completed,94,86,87
+male,group D,bachelor's degree,free/reduced,completed,39,42,38
+female,group E,some college,free/reduced,none,71,76,70
+female,group D,some college,free/reduced,none,65,81,77
+female,group E,some college,free/reduced,completed,75,88,85
+female,group C,some college,free/reduced,none,32,39,33
+male,group C,some college,standard,none,53,39,37
+male,group A,some college,standard,none,53,43,43
+male,group A,bachelor's degree,standard,completed,87,84,87
+male,group E,bachelor's degree,standard,completed,76,62,66
+female,group D,bachelor's degree,free/reduced,none,78,90,93
+male,group D,bachelor's degree,standard,none,75,73,74
+female,group C,some college,standard,none,58,67,72
+male,group B,associate's degree,standard,none,48,43,45
+male,group D,master's degree,standard,none,73,70,75
+female,group C,some college,standard,completed,69,90,88
+female,group E,high school,free/reduced,none,57,58,57
+male,group B,some high school,standard,completed,79,85,86
+female,group C,some college,standard,none,63,74,74
+female,group B,associate's degree,standard,none,47,49,50
+male,group D,some high school,standard,completed,74,71,78
+male,group E,some college,standard,none,97,87,82
+female,group B,some high school,free/reduced,none,49,58,55
+male,group C,master's degree,standard,none,79,78,77
+male,group C,some high school,free/reduced,none,69,71,65
+female,group C,associate's degree,free/reduced,none,53,61,62
+male,group C,high school,standard,completed,69,58,53
+male,group C,high school,free/reduced,none,27,34,36
+female,group D,some high school,free/reduced,completed,35,55,60
+female,group B,some high school,free/reduced,completed,63,78,79
+male,group B,bachelor's degree,free/reduced,none,48,51,46
+female,group C,high school,standard,none,72,80,75
+female,group B,high school,standard,none,66,72,70
+female,group E,bachelor's degree,standard,none,80,83,83
+male,group A,some college,standard,completed,78,72,70
+male,group C,high school,standard,none,71,66,65
+female,group D,master's degree,standard,none,54,60,63
+female,group C,associate's degree,free/reduced,none,57,78,67
+female,group D,some college,standard,none,65,70,71
+male,group C,high school,free/reduced,completed,53,51,51
+female,group D,high school,free/reduced,none,39,52,46
+female,group D,associate's degree,free/reduced,none,55,76,76
+female,group D,associate's degree,standard,none,59,70,65
+female,group B,high school,free/reduced,none,60,72,68
+female,group B,associate's degree,standard,none,49,52,54
+female,group B,high school,free/reduced,none,8,24,23
+female,group D,master's degree,free/reduced,none,40,59,54
+female,group C,bachelor's degree,free/reduced,completed,74,86,89
+male,group E,some college,standard,none,59,51,43
+female,group E,bachelor's degree,free/reduced,completed,92,100,100
+male,group C,some college,free/reduced,none,80,64,66
+male,group C,bachelor's degree,standard,completed,96,90,92
+male,group E,some college,standard,completed,85,75,68
+female,group C,bachelor's degree,standard,none,77,88,87
+female,group B,high school,free/reduced,completed,76,85,82
+male,group C,high school,free/reduced,none,66,66,59
+female,group D,bachelor's degree,standard,completed,71,76,83
+male,group B,high school,standard,none,60,68,60
+male,group D,some college,standard,none,76,71,73
+male,group D,some college,standard,completed,58,59,58
+female,group B,associate's degree,standard,completed,90,90,91
+female,group D,some college,standard,completed,74,75,79
+male,group B,some college,free/reduced,none,75,68,65
+male,group C,some college,standard,none,69,64,68
+female,group B,some high school,standard,completed,60,70,70
+female,group B,some college,free/reduced,completed,65,75,70
+female,group C,associate's degree,free/reduced,completed,68,67,69
+male,group B,high school,standard,completed,72,65,68
+male,group B,associate's degree,free/reduced,completed,82,78,74
+female,group C,some high school,standard,completed,85,92,93
+male,group E,associate's degree,standard,none,72,57,62
+male,group D,some college,standard,completed,76,83,79
+female,group E,some college,standard,none,67,76,75
+male,group A,some college,free/reduced,none,75,81,74
+male,group B,some high school,standard,completed,63,67,67
+female,group C,associate's degree,standard,none,64,64,70
+male,group D,associate's degree,standard,completed,67,72,67
+male,group A,some college,free/reduced,none,58,60,57
+female,group B,associate's degree,free/reduced,none,53,71,67
+male,group C,some high school,standard,none,73,66,63
+male,group D,master's degree,standard,none,89,84,82
+female,group C,high school,standard,none,65,69,67
+female,group C,some college,standard,completed,70,72,76
+female,group D,bachelor's degree,standard,none,65,67,62
+male,group D,some high school,standard,none,74,74,72
+female,group D,associate's degree,standard,none,71,71,74
+female,group E,bachelor's degree,standard,none,100,100,100
+male,group C,high school,standard,none,71,60,61
+male,group E,high school,standard,completed,87,91,81
+female,group D,associate's degree,free/reduced,none,26,31,38
+male,group B,associate's degree,standard,completed,91,89,92
+female,group A,associate's degree,standard,none,82,93,93
+male,group D,high school,standard,none,66,69,63
+female,group E,bachelor's degree,standard,completed,79,81,82
+male,group D,some college,standard,completed,63,55,63
+female,group D,master's degree,standard,none,87,100,100
+male,group C,bachelor's degree,standard,none,69,63,61
+female,group C,associate's degree,standard,none,53,62,53
+male,group C,some college,free/reduced,completed,50,48,53
+female,group D,associate's degree,standard,none,85,91,89
diff --git a/notebook/1 . EDA STUDENT PERFORMANCE .ipynb b/notebook/1 . EDA STUDENT PERFORMANCE .ipynb
new file mode 100644
index 0000000..d2df5aa
--- /dev/null
+++ b/notebook/1 . EDA STUDENT PERFORMANCE .ipynb
@@ -0,0 +1,1841 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "1e233234",
+ "metadata": {},
+ "source": [
+ "## Student Performance Indicator\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "62e05101",
+ "metadata": {},
+ "source": [
+ "#### Life cycle of Machine learning Project\n",
+ "\n",
+ "- Understanding the Problem Statement\n",
+ "- Data Collection\n",
+ "- Data Checks to perform\n",
+ "- Exploratory data analysis\n",
+ "- Data Pre-Processing\n",
+ "- Model Training\n",
+ "- Choose best model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dfcea981",
+ "metadata": {},
+ "source": [
+ "### 1) Problem statement\n",
+ "- This project understands how the student's performance (test scores) is affected by other variables such as Gender, Ethnicity, Parental level of education, Lunch and Test preparation course.\n",
+ "\n",
+ "\n",
+ "### 2) Data Collection\n",
+ "- Dataset Source - https://www.kaggle.com/datasets/spscientist/students-performance-in-exams?datasetId=74977\n",
+ "- The data consists of 8 column and 1000 rows."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15b1355f",
+ "metadata": {},
+ "source": [
+ "### 2.1 Import Data and Required Packages\n",
+ "#### Importing Pandas, Numpy, Matplotlib, Seaborn and Warings Library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "7eaae1d7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3caeb0bb",
+ "metadata": {},
+ "source": [
+ "#### Import the CSV Data as Pandas DataFrame"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "57907087",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('data/stud.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "92c8fd8a",
+ "metadata": {},
+ "source": [
+ "#### Show Top 5 Records"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "7d1a2a0b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 72 \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 69 \n",
+ " 90 \n",
+ " 88 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " female \n",
+ " group B \n",
+ " master's degree \n",
+ " standard \n",
+ " none \n",
+ " 90 \n",
+ " 95 \n",
+ " 93 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " male \n",
+ " group A \n",
+ " associate's degree \n",
+ " free/reduced \n",
+ " none \n",
+ " 47 \n",
+ " 57 \n",
+ " 44 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " male \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " none \n",
+ " 76 \n",
+ " 78 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test_preparation_course math_score reading_score writing_score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "56a49220",
+ "metadata": {},
+ "source": [
+ "#### Shape of the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "417e5820",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1000, 8)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "041aa39d",
+ "metadata": {},
+ "source": [
+ "### 2.2 Dataset information"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7e3cff9d",
+ "metadata": {},
+ "source": [
+ "- gender : sex of students -> (Male/female)\n",
+ "- race/ethnicity : ethnicity of students -> (Group A, B,C, D,E)\n",
+ "- parental level of education : parents' final education ->(bachelor's degree,some college,master's degree,associate's degree,high school)\n",
+ "- lunch : having lunch before test (standard or free/reduced) \n",
+ "- test preparation course : complete or not complete before test\n",
+ "- math score\n",
+ "- reading score\n",
+ "- writing score"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "27c4b61b",
+ "metadata": {},
+ "source": [
+ "### 3. Data Checks to perform\n",
+ "\n",
+ "- Check Missing values\n",
+ "- Check Duplicates\n",
+ "- Check data type\n",
+ "- Check the number of unique values of each column\n",
+ "- Check statistics of data set\n",
+ "- Check various categories present in the different categorical column"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c31d4123",
+ "metadata": {},
+ "source": [
+ "### 3.1 Check Missing values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "707d6a7b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "gender 0\n",
+ "race_ethnicity 0\n",
+ "parental_level_of_education 0\n",
+ "lunch 0\n",
+ "test_preparation_course 0\n",
+ "math_score 0\n",
+ "reading_score 0\n",
+ "writing_score 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce8f7b83",
+ "metadata": {},
+ "source": [
+ "#### There are no missing values in the data set"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5840ff7f",
+ "metadata": {},
+ "source": [
+ "### 3.2 Check Duplicates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ae16686e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.duplicated().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e5d7ae8e",
+ "metadata": {},
+ "source": [
+ "#### There are no duplicates values in the data set"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "30dfacc8",
+ "metadata": {},
+ "source": [
+ "### 3.3 Check data types"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "25f95bc8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 1000 entries, 0 to 999\n",
+ "Data columns (total 8 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 gender 1000 non-null object\n",
+ " 1 race_ethnicity 1000 non-null object\n",
+ " 2 parental_level_of_education 1000 non-null object\n",
+ " 3 lunch 1000 non-null object\n",
+ " 4 test_preparation_course 1000 non-null object\n",
+ " 5 math_score 1000 non-null int64 \n",
+ " 6 reading_score 1000 non-null int64 \n",
+ " 7 writing_score 1000 non-null int64 \n",
+ "dtypes: int64(3), object(5)\n",
+ "memory usage: 62.6+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check Null and Dtypes\n",
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0dbbf5b4",
+ "metadata": {},
+ "source": [
+ "### 3.4 Checking the number of unique values of each column"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "2c2b61b6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "gender 2\n",
+ "race_ethnicity 5\n",
+ "parental_level_of_education 6\n",
+ "lunch 2\n",
+ "test_preparation_course 2\n",
+ "math_score 81\n",
+ "reading_score 72\n",
+ "writing_score 77\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.nunique()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a4f6b022",
+ "metadata": {},
+ "source": [
+ "### 3.5 Check statistics of data set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "76c608dc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 1000.00000 \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 66.08900 \n",
+ " 69.169000 \n",
+ " 68.054000 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 15.16308 \n",
+ " 14.600192 \n",
+ " 15.195657 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 0.00000 \n",
+ " 17.000000 \n",
+ " 10.000000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 57.00000 \n",
+ " 59.000000 \n",
+ " 57.750000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 66.00000 \n",
+ " 70.000000 \n",
+ " 69.000000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 77.00000 \n",
+ " 79.000000 \n",
+ " 79.000000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 100.00000 \n",
+ " 100.000000 \n",
+ " 100.000000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " math_score reading_score writing_score\n",
+ "count 1000.00000 1000.000000 1000.000000\n",
+ "mean 66.08900 69.169000 68.054000\n",
+ "std 15.16308 14.600192 15.195657\n",
+ "min 0.00000 17.000000 10.000000\n",
+ "25% 57.00000 59.000000 57.750000\n",
+ "50% 66.00000 70.000000 69.000000\n",
+ "75% 77.00000 79.000000 79.000000\n",
+ "max 100.00000 100.000000 100.000000"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9dc41207",
+ "metadata": {},
+ "source": [
+ "#### Insight\n",
+ "- From above description of numerical data, all means are very close to each other - between 66 and 68.05;\n",
+ "- All standard deviations are also close - between 14.6 and 15.19;\n",
+ "- While there is a minimum score 0 for math, for writing minimum is much higher = 10 and for reading myet higher = 17"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ac52d9cb",
+ "metadata": {},
+ "source": [
+ "### 3.7 Exploring Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "1afd3c09",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 72 \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 69 \n",
+ " 90 \n",
+ " 88 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " female \n",
+ " group B \n",
+ " master's degree \n",
+ " standard \n",
+ " none \n",
+ " 90 \n",
+ " 95 \n",
+ " 93 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " male \n",
+ " group A \n",
+ " associate's degree \n",
+ " free/reduced \n",
+ " none \n",
+ " 47 \n",
+ " 57 \n",
+ " 44 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " male \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " none \n",
+ " 76 \n",
+ " 78 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test_preparation_course math_score reading_score writing_score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "b9081742",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Categories in 'gender' variable: ['female' 'male']\n",
+ "Categories in 'race_ethnicity' variable: ['group B' 'group C' 'group A' 'group D' 'group E']\n",
+ "Categories in'parental level of education' variable: [\"bachelor's degree\" 'some college' \"master's degree\" \"associate's degree\"\n",
+ " 'high school' 'some high school']\n",
+ "Categories in 'lunch' variable: ['standard' 'free/reduced']\n",
+ "Categories in 'test preparation course' variable: ['none' 'completed']\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Categories in 'gender' variable: \",end=\" \" )\n",
+ "print(df['gender'].unique())\n",
+ "\n",
+ "print(\"Categories in 'race_ethnicity' variable: \",end=\" \")\n",
+ "print(df['race_ethnicity'].unique())\n",
+ "\n",
+ "print(\"Categories in'parental level of education' variable:\",end=\" \" )\n",
+ "print(df['parental_level_of_education'].unique())\n",
+ "\n",
+ "print(\"Categories in 'lunch' variable: \",end=\" \" )\n",
+ "print(df['lunch'].unique())\n",
+ "\n",
+ "print(\"Categories in 'test preparation course' variable: \",end=\" \" )\n",
+ "print(df['test_preparation_course'].unique())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "2dd97e26",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "We have 3 numerical features : ['math_score', 'reading_score', 'writing_score']\n",
+ "\n",
+ "We have 5 categorical features : ['gender', 'race_ethnicity', 'parental_level_of_education', 'lunch', 'test_preparation_course']\n"
+ ]
+ }
+ ],
+ "source": [
+ "# define numerical & categorical columns\n",
+ "numeric_features = [feature for feature in df.columns if df[feature].dtype != 'O']\n",
+ "categorical_features = [feature for feature in df.columns if df[feature].dtype == 'O']\n",
+ "\n",
+ "# print columns\n",
+ "print('We have {} numerical features : {}'.format(len(numeric_features), numeric_features))\n",
+ "print('\\nWe have {} categorical features : {}'.format(len(categorical_features), categorical_features))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "ae2822d1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 72 \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 69 \n",
+ " 90 \n",
+ " 88 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "\n",
+ " test_preparation_course math_score reading_score writing_score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 "
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "204aa708",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bd42eda6",
+ "metadata": {},
+ "source": [
+ "### 3.8 Adding columns for \"Total Score\" and \"Average\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "3ffbfdf7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " total score \n",
+ " average \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 72 \n",
+ " 74 \n",
+ " 218 \n",
+ " 72.666667 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 69 \n",
+ " 90 \n",
+ " 88 \n",
+ " 247 \n",
+ " 82.333333 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " female \n",
+ " group B \n",
+ " master's degree \n",
+ " standard \n",
+ " none \n",
+ " 90 \n",
+ " 95 \n",
+ " 93 \n",
+ " 278 \n",
+ " 92.666667 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " male \n",
+ " group A \n",
+ " associate's degree \n",
+ " free/reduced \n",
+ " none \n",
+ " 47 \n",
+ " 57 \n",
+ " 44 \n",
+ " 148 \n",
+ " 49.333333 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " male \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " none \n",
+ " 76 \n",
+ " 78 \n",
+ " 75 \n",
+ " 229 \n",
+ " 76.333333 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test_preparation_course math_score reading_score writing_score \\\n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 \n",
+ "\n",
+ " total score average \n",
+ "0 218 72.666667 \n",
+ "1 247 82.333333 \n",
+ "2 278 92.666667 \n",
+ "3 148 49.333333 \n",
+ "4 229 76.333333 "
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['total score'] = df['math_score'] + df['reading_score'] + df['writing_score']\n",
+ "df['average'] = df['total score']/3\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "26dc3844",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of students with full marks in Maths: 7\n",
+ "Number of students with full marks in Writing: 14\n",
+ "Number of students with full marks in Reading: 17\n"
+ ]
+ }
+ ],
+ "source": [
+ "reading_full = df[df['reading_score'] == 100]['average'].count()\n",
+ "writing_full = df[df['writing_score'] == 100]['average'].count()\n",
+ "math_full = df[df['math_score'] == 100]['average'].count()\n",
+ "\n",
+ "print(f'Number of students with full marks in Maths: {math_full}')\n",
+ "print(f'Number of students with full marks in Writing: {writing_full}')\n",
+ "print(f'Number of students with full marks in Reading: {reading_full}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "572c8a75",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of students with less than 20 marks in Maths: 4\n",
+ "Number of students with less than 20 marks in Writing: 3\n",
+ "Number of students with less than 20 marks in Reading: 1\n"
+ ]
+ }
+ ],
+ "source": [
+ "reading_less_20 = df[df['reading_score'] <= 20]['average'].count()\n",
+ "writing_less_20 = df[df['writing_score'] <= 20]['average'].count()\n",
+ "math_less_20 = df[df['math_score'] <= 20]['average'].count()\n",
+ "\n",
+ "print(f'Number of students with less than 20 marks in Maths: {math_less_20}')\n",
+ "print(f'Number of students with less than 20 marks in Writing: {writing_less_20}')\n",
+ "print(f'Number of students with less than 20 marks in Reading: {reading_less_20}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "190e078c",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ " - From above values we get students have performed the worst in Maths \n",
+ " - Best performance is in reading section"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e598bc93",
+ "metadata": {},
+ "source": [
+ "### 4. Exploring Data ( Visualization )\n",
+ "#### 4.1 Visualize average score distribution to make some conclusion. \n",
+ "- Histogram\n",
+ "- Kernel Distribution Function (KDE)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f4726058",
+ "metadata": {},
+ "source": [
+ "#### 4.1.1 Histogram & KDE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "c2510266",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAAJaCAYAAAA8mbA5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+o0lEQVR4nOzdd3ib5b3/8bckS/LeeyWO4yTOnoQkrECYhUMpLR1AaU9PoYsyDqWFU3paSknpaYHTlkLpoHBaSqGF/qCMQCbZZECmk9iOEznxjrcty7Kk3x+KDQkZHpIey/68rstXZEnPfX+cpuHJV/d9f00+n8+HiIiIiIiIiIiI9DEbHUBERERERERERGS4UdFMRERERERERETkJCqaiYiIiIiIiIiInERFMxERERERERERkZOoaCYiIiIiIiIiInISFc1EREREREREREROoqKZiIiIiIiIiIjISVQ0ExEREREREREROUmE0QGCzev1UlVVRVxcHCaTyeg4IiIiEgZ8Ph9tbW1kZ2djNuszxuFK93kiIiIyUAO5zxvxRbOqqiry8vKMjiEiIiJhqLKyktzcXKNjyGnoPk9EREQGqz/3eSO+aBYXFwf4fzPi4+MNTiMiIiLhoLW1lby8vL77CBmedJ8nIiIiAzWQ+7wRXzTrXaofHx+vmykREREZEG35G950nyciIiKD1Z/7PB3SISIiIiIiIiIichIVzURERERERERERE6iopmIiIiIiIiIiMhJRvyZZiIiIiIiIiIioeTz+ejp6cHj8RgdZVSyWq1YLJYhj6OimYiIiIiIiIhIgHR3d1NdXU1nZ6fRUUYtk8lEbm4usbGxQxpHRTMRERERERERkQDwer1UVFRgsVjIzs7GZrOpG3eI+Xw+6uvrOXLkCEVFRUNacaaimYiIiIiIiIhIAHR3d+P1esnLyyM6OtroOKNWWloahw4dwu12D6lopkYAIiIiIiIiIiIBZDar3GKkQK3u0/+KIiIiIiIiIiIiJ1HRTERERESC4ujRo9x0002kpKQQFRXFtGnT2Lp1a9/rPp+PH/zgB2RlZREVFcWSJUsoLS01MLGIiIjIh1Q0ExEREZGAa2pqYtGiRVitVt5880327t3LL37xC5KSkvre87Of/Yxf/vKXPPXUU2zevJmYmBguv/xyurq6DEwuIiIiZ/OlL32JT37yk0bHCDo1AhARERGRgHvkkUfIy8vjmWee6XuuoKCg77HP5+Pxxx/n+9//Ptdeey0Azz33HBkZGfzzn//kc5/7XMgzi4iIiHyUVpqJiIiISMC9+uqrzJ07l8985jOkp6cza9Ysfve73/W9XlFRQU1NDUuWLOl7LiEhgfnz57Nx40YjIouIiEiI+Hw+enp6jI5xViqaiYiIiEjAHTx4kCeffJKioiKWLVvG17/+db797W/z7LPPAlBTUwNARkbGCddlZGT0vXYyl8tFa2vrCV8iIiKjWVtbGzfeeCMxMTFkZWXx2GOPcdFFF3HnnXcC/v923nPPPeTk5BATE8P8+fNZvXp13/V/+tOfSExMZNmyZRQXFxMbG8sVV1xBdXV133s8Hg933303iYmJpKSkcO+99+Lz+U7I4fV6Wbp0KQUFBURFRTFjxgz+/ve/972+evVqTCYTb775JnPmzMFut7Nu3bqg/t4EgopmIiIiIhJwXq+X2bNn8/DDDzNr1ixuvfVWvvrVr/LUU08NesylS5eSkJDQ95WXlxfAxCIiIuHn7rvvZv369bz66qu88847rF27lu3bt/e9/q1vfYuNGzfywgsvsHPnTj7zmc9wxRVXnNB4p7Ozk5///Of83//9H++++y4Oh4N77rmn7/Vf/OIX/OlPf+KPf/wj69ato7GxkVdeeeWEHEuXLuW5557jqaeeYs+ePdx1113cdNNNrFmz5oT3fe973+OnP/0pJSUlTJ8+PUi/K4GjM81EREREJOCysrKYPHnyCc8VFxfzj3/8A4DMzEwAamtrycrK6ntPbW0tM2fOPOWY9913H3fffXff962trSqciYjIqNXW1sazzz7L888/zyWXXALAM888Q3Z2NgAOh4NnnnkGh8PR99w999zDW2+9xTPPPMPDDz8MgNvt5qmnnqKwsBDwF9oefPDBvnkef/xx7rvvPj71qU8B8NRTT7Fs2bK+110uFw8//DDLly9nwYIFAIwbN45169bx29/+lgsvvLDvvQ8++CCXXnppsH5LAk5FMxEREREJuEWLFrF///4Tnjtw4ABjxowB/E0BMjMzWbFiRV+RrLW1lc2bN/P1r3/9lGPa7XbsdntQc4uIiISLgwcP4na7Oeecc/qeS0hIYOLEiQDs2rULj8fDhAkTTrjO5XKRkpLS9310dHRfwQz8H3zV1dUB0NLSQnV1NfPnz+97PSIigrlz5/Zt0SwrK6Ozs/NjxbDu7m5mzZp1wnNz584dyo8cciqaiYiIiEjA3XXXXSxcuJCHH36YG264gffee4+nn36ap59+GgCTycSdd97JQw89RFFREQUFBTzwwANkZ2ePihb2IiIiwdbe3o7FYmHbtm1YLJYTXouNje17bLVaT3jNZDJ97Myys80D8Prrr5OTk3PCayd/2BUTE9PvcYcDFc1EREREJODmzZvHK6+8wn333ceDDz5IQUEBjz/+ODfeeGPfe+699146Ojq49dZbaW5u5rzzzuOtt94iMjLSwOQiIiLhYdy4cVitVrZs2UJ+fj7gXxl24MABLrjgAmbNmoXH46Guro7zzz9/UHMkJCSQlZXF5s2bueCCCwDo6elh27ZtzJ49G4DJkydjt9txOBwnbMUcCVQ0ExEREZGguPrqq7n66qtP+7rJZOLBBx884dwUERER6Z+4uDhuueUWvvOd75CcnEx6ejr//d//jdlsxmQyMWHCBG688Ua++MUv8otf/IJZs2ZRX1/PihUrmD59Op/4xCf6Nc8dd9zBT3/6U4qKipg0aRKPPvoozc3NJ+S45557uOuuu/B6vZx33nm0tLSwfv164uPjueWWW4L0OxB8KpqJiIiIiIiIiIShRx99lK997WtcffXVxMfHc++991JZWdm3avuZZ57hoYce4j//8z85evQoqampnHvuuWf8UOtk//mf/0l1dTW33HILZrOZf//3f+e6666jpaWl7z0//vGPSUtLY+nSpRw8eJDExERmz57N/fffH/CfOZRMvoFsVA1Dra2tJCQk0NLSQnx8vNFxRESGFYfDQUNDw6CvT01N7VsKLjKS6P4hPOh/JxGR4BnqfeLJRst9Y1dXFxUVFRQUFBhy3EBHRwc5OTn84he/4Ctf+UrI5x8uzvS/w0DuH7TSTERklHI4HEwqnoSz0znoMaKio9hXsm9U3ACJiIiIjBb++8RinJ2dARszKjqafSUlum8MsPfff599+/Zxzjnn0NLS0nfkwbXXXmtwspFBRTMRkVGqoaEBZ6eT6+6/jrQxaQO+vv5wPa88/AoNDQ26+REREREZQfz3iZ3c+N3/ISO/cMjj1TrK+csj39F9Y5D8/Oc/Z//+/dhsNubMmcPatWtJTU01OtaIoKKZiMgolzYmjawJWUbHEBEREZFhJiO/kNyiKUbHkDOYNWsW27ZtMzrGiGU2OoCIiIiIiIiIiMhwo6KZiIiIiIiIiIjISVQ0ExEREREREREROYmKZiIiIiIiIiIiIidR0UxEREREREREROQk6p4pIiIiIiIiIhJkDoeDhoaGkM2XmppKfn5+v9/v8/m47bbb+Pvf/05TUxPvv/8+M2fODF7A0zh06BAFBQWGzf9RKpqJiIiIiIiIiASRw+FgUnExzs7OkM0ZFR3NvpKSfhfO3nrrLf70pz+xevVqxo0bR2pqapATDn8qmomIiIiIiIiIBFFDQwPOzk5u/O7/kJFfGPT5ah3l/OWR79DQ0NDvoll5eTlZWVksXLgwyOnCh840ExEREREREREJgYz8QnKLpgT9a6CFuS996UvcfvvtOBwOTCYTY8eOxev1snTpUgoKCoiKimLGjBn8/e9/77tm9erVmEwmli1bxqxZs4iKiuLiiy+mrq6ON998k+LiYuLj4/nCF75A50dW2L311lucd955JCYmkpKSwtVXX015efkZ8+3evZsrr7yS2NhYMjIyuPnmm0Oy1VVFMxERERERERGRUex///d/efDBB8nNzaW6upotW7awdOlSnnvuOZ566in27NnDXXfdxU033cSaNWtOuPaHP/whv/71r9mwYQOVlZXccMMNPP744zz//PO8/vrrvP322/zqV7/qe39HRwd33303W7duZcWKFZjNZq677jq8Xu8pszU3N3PxxRcza9Ystm7dyltvvUVtbS033HBDUH9PQNszRURERERERERGtYSEBOLi4rBYLGRmZuJyuXj44YdZvnw5CxYsAGDcuHGsW7eO3/72t1x44YV91z700EMsWrQIgK985Svcd999lJeXM27cOAA+/elPs2rVKr773e8CcP31158w9x//+EfS0tLYu3cvU6dO/Vi2X//618yaNYuHH374hGvy8vI4cOAAEyZMCOxvxkeoaCYiIiIiIiIiIn3Kysro7Ozk0ksvPeH57u5uZs2adcJz06dP73uckZFBdHR0X8Gs97n33nuv7/vS0lJ+8IMfsHnzZhoaGvpWmDkcjlMWzXbs2MGqVauIjY392Gvl5eUqmomIiIiIiIiISGi0t7cD8Prrr5OTk3PCa3a7/YTvrVZr32OTyXTC973PfXTr5TXXXMOYMWP43e9+R3Z2Nl6vl6lTp9Ld3X3aLNdccw2PPPLIx17Lysoa2A82QCqaiYiIiIiIiIhIn8mTJ2O323E4HCdsxRyqY8eOsX//fn73u99x/vnnA7Bu3bozXjN79mz+8Y9/MHbsWCIiQlvGUtFMREREREREJMw5HI6AdRMsKSkJyDgSvuLi4rjnnnu466678Hq9nHfeebS0tLB+/Xri4+O55ZZbBjVuUlISKSkpPP3002RlZeFwOPje9753xmu++c1v8rvf/Y7Pf/7z3HvvvSQnJ1NWVsYLL7zA73//eywWy6Cy9IeKZiIiIiIiIiJhzOFwMKm4GGdnZ0DH7d2iJ4FT6ygPm3l+/OMfk5aWxtKlSzl48CCJiYnMnj2b+++/f9Bjms1mXnjhBb797W8zdepUJk6cyC9/+Usuuuii016TnZ3N+vXr+e53v8tll12Gy+VizJgxXHHFFZjN5kFn6Q8VzURERERERETCWENDA87OTm787v+QkV845PFK3lvDm8/+L11dXQFIJwCpqalERUfzl0e+E7I5o6KjSU1N7ff777zzTu68886+700mE3fccQd33HHHKd9/0UUX4fP5TnjuS1/6El/60pdOeO6HP/whP/zhD/u+X7JkCXv37j3hPR8dZ+zYsR8bt6ioiJdffrnfP0ugqGgmIiIiIiIiMgJk5BeSWzRlyOOEajXUaJKfn8++kpKAbaHtj9TUVPLz80M230ikopmIiIiIiIiISJDl5+eriBVmgrv5U0REREREREREJAypaCYiIiIiIiIiInISFc1EREREREREREROoqKZiIiIiIiIiIjISdQIQERERERERET6zev1Ud3aRXWzk5rWLkwmE5ERZhKirUzMiCMu0mp0RJGAUNFMRERERERERM7K6/Oxv6aNzRWNtDjdp3zP+rJjjEmJZsG4FDLiI0OcUCSwVDQTERERERERkTM61u7izd01HOvoBiAywkxOUhRZCVFEmE043R6ONDk52uzk8LFOKhs7WViYyuz8RGODiwyBimYiIiIiIiIicloHattYXlKL2+MjMsLMnDFJzMhLxGr5+DHpzZ3drCtroLy+g3VlDVQ2dTIryoDQw5DD4aChoSFk86WmppKfnx+y+U7lS1/6Es3Nzfzzn/80NMdgqWgmIiIiIiIiIqe05VAjG8qPAZCbFMWVUzOJtp2+lJAYbeMT07LYU9XKmgP1HD7WSXdUBJgtoYo8LDkcDoqLJ9HZ6QzZnNHRUZSU7DO8cBbOVDQTERERERERkY+pdMdw8HjBbM6YJBaOS8FsNp31OpPJxNScBBKjrfzzgyqqnWZSr7oLr88X7MjDVkNDA52dTv58/w0U56cFfb4SRz03PfwiDQ0NKpoNgYpmIiIiIiIiInKC2FlXcdCdAMCCcSmcU5A84DFyk6L5xLQsXttxlJgpF/H3ve3MnRPopOGlOD+N2RNyjI5xShdddBHTpk3DYrHw7LPPYrPZeOihh/jCF77At771Lf7+97+TkZHBr371K6688ko8Hg+33norK1eupKamhvz8fL7xjW9wxx13nHYOr9fLI488wtNPP01NTQ0TJkzggQce4NOf/nQIf9L+U9FMRESGpKSkZNDXDodzFkRERETkRE3EkLzkNgDmjU0aVMGsV0FqDLOTPWxrjODFve18rrKZmXmJAUoqgfbss89y77338t577/G3v/2Nr3/967zyyitcd9113H///Tz22GPcfPPNOBwOrFYrubm5vPTSS6SkpLBhwwZuvfVWsrKyuOGGG045/tKlS/nzn//MU089RVFREe+++y433XQTaWlpXHjhhSH+ac9ORTMRERmU9sZ2AG666aZBjxEVHcU+nbMgIiIiMmy0Ot3sJxuT2UKmpYMF48YPecwxMV7eXf8uMcUX8PVnN/GLy1KJjPh4E4GB0IevwTFjxgy+//3vA3Dffffx05/+lNTUVL761a8C8IMf/IAnn3ySnTt3cu655/KjH/2o79qCggI2btzIiy++eMqimcvl4uGHH2b58uUsWLAAgHHjxrFu3Tp++9vfqmgmIiIjR1d7FwCLv7GYohlFA76+/nA9rzz8is5ZEBERERkmejxeXt9VTQ8RuKoPUDQuFpPp7GeYnU1bUz2Ny57AnlNMNWlc8/0/0PjOU0MaMyo6mn0lJbqPDLDp06f3PbZYLKSkpDBt2rS+5zIyMgCoq6sD4IknnuCPf/wjDocDp9NJd3c3M2fOPOXYZWVldHZ2cumll57wfHd3N7NmzQrwTxIYKpqJiMiQJOUkkTUhy+gYIiIiIjJEGw8eo67NRQQ9HPnnUsz/+ZOAjOtsb8Xr6mC8uY5DpBE3+xN88qrLSbQNrjFAraOcvzzyHX34GgRWq/WE700m0wnP9RZRvV4vL7zwAvfccw+/+MUvWLBgAXFxcfzP//wPmzdvPuXY7e3+nSqvv/46OTknnutmt9sD+WMEjIpmIiIiIiIiIqNcdYuT9x3NAEygmvLW+oDPMSY9CWtsLKV17Rzojue6yTkBWckmxli/fj0LFy7kG9/4Rt9z5eXlp33/5MmTsdvtOByOYbkV81RUNBMREREREREZxXo8Xt7ZW4sPKM6MI7mmPWhzLRqfysH6DiobnRw61klBakzQ5pLgKioq4rnnnmPZsmUUFBTwf//3f2zZsoWCgoJTvj8uLo577rmHu+66C6/Xy3nnnUdLSwvr168nPj6eW265JcQ/wdmpaCYiIiIiIiIyim2qaKSp002MzcIFE9LYUxO8uRKirMzMS2Sbo4l1pQ2MSY7GbB49q81KHIFfwWfUPLfddhvvv/8+n/3sZzGZTHz+85/nG9/4Bm+++eZpr/nxj39MWloaS5cu5eDBgyQmJjJ79mzuv//+oOcdDBXNREREREREREappo5u3nc0AXDxpHQirZagzzlvbBJ7q1tp7Oxmf20bxVnxQZ/TaKmpqURHR3HTwy+GbM7o6ChSU1P7/f7Vq1d/7LlDhw597Dmf78Oz6J555hmeeeaZE15funRp3+M//elPJ7xmMpm44447uOOOO/qdy0gqmomIiIiIiIiMUu+W1uP1QUFqDOPSYkMyp91qYVZ+IhvKj7HtcBOTMuNG/Nlm+fn5lJTso6GhIWRzpqamqlHCEKloJiIiIiIiIjIKHWro4NCxTswmOL+o/yuSAmF6TgJbDzVxrKN71Jxtlp+fryJWmFHRTERERERERGQEaGhowBJb3a/3en0+VpZ3AlCUbKWr5RjVLf7Xmpubg5TwQ3arhak58Wx3NLP1UOOoKJpJ+FHRTEQkjDkcjkEv8S4pKQlwGhERERExQnW1v1D28ssvY4lN7tc1toxCoovm4+3uYvO/XmKzx933WnddBQCdnZ2BD/sRs/KT2FHZQlVLF1XNTrITo4I6n8hAqWgmIhKmHA4Hk4on4ex0Dmmc9vbgtRQXERERkeDrXRm2eNY4Jk0sOuv7PT4Tb7SOwemDOQmtFF0584TXN21ws7YUXN3dQUj7oVh7BJOy4thT1cp2R5OKZjLsqGgmIhKmGhoacHY6ue7+60gbkzbg60s3l7Lqj6vo6uoa0HU+n4+mriZaaYUUcPvcZ79IRERERIIuKTaSrJSzd6L8oDkKp89KrMXDwkwfEeYTr4mPsgUr4sfMzEtkT1UrFQ0ddLh6iLGPjDLFRztMSugF6vd/ZPxpFBEZxdLGpJE1IWvA1zU4Brat81DzIXbU7KCsqYz27nawArfDv3r+xY4PdlCUXMTsrNlEW6MHnEVEREREQsPthS3N/vPDzknuIMJsbJ7UWDtZCZFUt3Sxp7qVc8b2b3vpcGW1WgH/1taoKK2cM0r38VWSFotlSOOoaCYiImfU0tXCsvJllDR8eAZahDkCs8dMt6sbX6QPR4sDR4uDdY51nJd/HvNz5mO1WA1MLSIiIiKnsrMlmk6PhYSIHibHDe2Yj0CZmpPgL5odbWHemCRMJpPRkQbNYrGQmJhIXV0dANHR0WH984Qjr9dLfX090dHRREQMreylopmIiJzW/ob9/KPkH7i9bkyYmJU1iylpU8hPyKdkZQkv//RlLn/ociwFFrZVbaO2o5YVFSv4oOYDbphyA+kx6Ub/CCIiIiJyXI8Xtrf4dwWck9SBZZjUcorSY1lzoJ7Wrh4cjZ2MSQnvTpqZmZkAfYUzCT2z2Ux+fv6QC5YqmomIyCltr97Ovw78Cx8+8uPzuaroKjJiMz72vhhTDNOypzE3ay676nax/OByjjmP8fvtv+fqCVczPWO6AelFRERE5GT72qPo9FiIjfAwMW5g59oGk9Vipjgzjh1HWth1tCXsi2Ymk4msrCzS09Nxu3X+rxFsNhtm89D3HqtoJiIiH7PpyCaWlS8DYGbmTK6ZcA1m05n/o2MymZieMZ3xyeN5ueRlypvKeWXfK7R1t7Eob1EoYouIiIjIaXh9sK3Zv8psdkLnsFll1mtqTgI7jrRwsKGDzu4eom3hX66wWCxDPlNLjGXwkX8iIjLc7G/Y31cwW5S3iH+b8G9nLZh9VLQ1mi9M+0JfoWz5weWsc6wLSlYRERER6Z/yDjvN7gjsZi9T4ofHWWYflRprJyPejs8HpbXtRscRAVQ0ExGRj6jvqOflfS8DMCdrDkvGLRnUOQBmk5kl45Zw0diLAFhRsYL1lesDGVVERERE+snng23HO2bOSOjEZvYZnOjUJmbEAbC/ts3gJCJ+KpqJiAgArh4Xf939V7o93YxJGMOV468c8pgXjrmQiwsuBvwrzvbW7x3ymCIiIiIyMNUuK7UuKxaTjxkJnUbHOa0Jx4tm1S1dtDh1FpgYL/w3CYuISEAsr1hOU1cTCfYEPjP5M1jMgTl/4fz882nvbue9o+/xyr5XSLAnkBOf0/d6SUnJoMdOTU0lPz8/EDFFRERERqwdxztmToztItoyPFeZAcTYI8hLiqKyycmB2jbmjU02OpKMciqaiYgIh5oPsbVqKwDXTryWGFtgOxZdXng5Tc4mShtLeWHPC9w25zbaG/1nVdx0002DHjcqOop9JftUOBMRERE5jfYeM2XtdgBmDuNVZr0mZsZR2eRkf42KZmI8Fc1EREa5Hl8Pr+5/FfCfY1aQVBDwOcwmM9cXX88f3v8D9Z31vFLyCjPaZwCw+BuLKZpRNOAx6w/X88rDr9DQ0KCimYiIiMhp7G6NwouJ7Mhu0uw9Rsc5q/FpsazaV8+xjm4a2l2kxtqNjiSjmIpmIiKj3D7vPpq6moi3x3PpuEuDNo89ws5nJn+Gp7c/zcHmg0SaIwFIykkia0JW0OYVERERGa08PtjVGgUwrM8y+yi71cLY1GjK6zvYX9NG6ngVzcQ4agQgIjKaJUCZtwyAq8ZfhT0iuDclaTFpXFV0FQAl5hLIC+p0IiIiIqNaWXsknR4LMRYPhTEuo+P02/j0WADK69sNTiKjnYpmIiKj2cXgxcvYhLFMSJkQkilnZsxkWvo0fCYfXAsenyck84qIiIiMNruPrzKbGu/EYjI4zAAUpMZgNkFTp5vGjm6j48gopqKZiMgo1UQT+I8V49LCSzGZQnMnZTKZuKroKiJ9kZAKe717QzKviIiIyGjS1G3hSJcN8DEl3ml0nAGxR1jIS/J3/NRqMzGSimYiIqPUbstuAPJMeWTHZYd07siISGZ5ZgFQ6i3lSOuRkM4vIiIiMtLtafOvMhsT3U1chNfgNANXqC2aMgwYWjTzeDw88MADFBQUEBUVRWFhIT/+8Y/x+Xx97/H5fPzgBz8gKyuLqKgolixZQmlpqYGpRUTC3+Hmw9Sb68EDky2TDcmQ5cuCnf7Hr+5/FY9X2zRFREREAsHjg5I2f9OlqXHhtcqs17jUGABqW120dbkNTiOjlaFFs0ceeYQnn3ySX//615SUlPDII4/ws5/9jF/96ld97/nZz37GL3/5S5566ik2b95MTEwMl19+OV1dXQYmFxEJb2sda/0P3ocYU4xxQd4EGzbqO+t57+h7xuUQERERGUEqOux0eixEWzwUhFEDgI+KsUeQleAv/B2s7zA4jYxWhhbNNmzYwLXXXssnPvEJxo4dy6c//Wkuu+wy3nvP/w8nn8/H448/zve//32uvfZapk+fznPPPUdVVRX//Oc/jYwuIhK2qtqqKG8qx+QzwXqDwzhhqmUqAKsPr6bN1WZwIBEREZHw17s1sziuK6waAJxsfJp/i2aZtmiKQQwtmi1cuJAVK1Zw4MABAHbs2MG6deu48sorAaioqKCmpoYlS5b0XZOQkMD8+fPZuHHjKcd0uVy0trae8CUiIh/qXWWW58uDJoPDAGNMY8iJy6Hb083yg8uNjiMiIiIS1jp6zBzutAEwJUy3ZvYal+bfEVHV7MTVo6M8JPQMLZp973vf43Of+xyTJk3CarUya9Ys7rzzTm688UYAampqAMjIyDjhuoyMjL7XTrZ06VISEhL6vvLy8oL7Q4iIhJG6jjr2NewDYIJngsFp/Hq7aQLsrNuJo8VhcCIRERGR8LW/PRIfJrLs3STZwrvQlBhtIynaitcHjmOdRseRUcjQotmLL77IX/7yF55//nm2b9/Os88+y89//nOeffbZQY9533330dLS0vdVWVkZwMQiIuFt05FNABSnFhNPvMFpPpQdl82sTH83zXfK3zmhIYyIiIiI9F9vA4BJcSPjHPCxxxsCVBzTuWYSeoYWzb7zne/0rTabNm0aN998M3fddRdLly4FIDMzE4Da2toTrqutre177WR2u534+PgTvkREBDq6O9hZ629XeW7uuQan+bjFYxdjNVs50naEkoYSo+OIiIiIhJ12cywN3VYs+JgQO0KKZin+otnhY536YFVCztCiWWdnJ2bziREsFgterxeAgoICMjMzWbFiRd/rra2tbN68mQULFoQ0q4hIuNtWvQ2Pz0NWbBZ58cNv63qcPY4Fuf6/21dUrMDjDe/tBCIiIiKhVhvhX1xSEOMi0jIyCkw5iVFYLSY6uz3UtYVnJ1AJX4YWza655hp+8pOf8Prrr3Po0CFeeeUVHn30Ua677jrAf87NnXfeyUMPPcSrr77Krl27+OIXv0h2djaf/OQnjYwuIhJWPF4PW6u2AjA/dz4m0/Bso7QwbyHR1mganY1sq95mdBwRERGR8GEyU2fxnwdePEK2ZgJYzCbyk6MBONSgLZoSWoYWzX71q1/x6U9/mm984xsUFxdzzz33cNttt/HjH/+47z333nsvt99+O7feeivz5s2jvb2dt956i8jISAOTi4iEl70Ne2nrbiPGGsOUtClGxzkte4Sdi8ZcBPi7fLo9bmMDiYiIiISJyDEz6DbbiTR7GRM9slZk9W7RPKRmABJiEUZOHhcXx+OPP87jjz9+2veYTCYefPBBHnzwwdAFExEZYd47+h4Ac7PnEmE29K/+s5qdNZv1letpcbWwtXpr35ZNERERETm9mMkXAFAU24VleG4qGLTeZgA1rV10dvcYnEZGE0NXmomISPDVttdypPUIZpOZudlzjY5zVhazhQvG+G/61jvWa7WZSJj64Q9/iMlkOuFr0qRJfa93dXXxzW9+k5SUFGJjY7n++us/1vxJRET6p8cL0RMWAjBxhDQA+KhYewRpsXYAHFptJiGkopmIyAjXezbYxJSJxNpiDU7TPzMyZpAYmUiHu4MtVVuMjiMigzRlyhSqq6v7vtatW9f32l133cVrr73GSy+9xJo1a6iqquJTn/qUgWlFRMLXgfYIzPYYbN4usiNH5geO+Sn+c80cjSqaSeioaCYiMoK5PW521u4EYE7WHIPT9J/FbOH8/PMBWF+5nm5Pt8GJRGQwIiIiyMzM7PtKTU0FoKWlhT/84Q88+uijXHzxxcyZM4dnnnmGDRs2sGnTJoNTi4iEn53NNgDSPXUM035PQ9bbDMDR2IlvZDQGlTCgopmIyAi2p34PLo+LxMhExiWNMzrOgPSuNut0d/J+zftGxxGRQSgtLSU7O5tx48Zx44034nA4ANi2bRtut5slS5b0vXfSpEnk5+ezceNGo+KKiISlzu4e9rVaAUjrGbnb3LMTIrGYTXR0e2h1j9DKoAw7w/s0aBERGZLerZmzs2ZjCrOPHS1mCwvzFvJG6RtsrNzI3Ky5WMwWo2OJSD/Nnz+fP/3pT0ycOJHq6mp+9KMfcf7557N7925qamqw2WwkJiaecE1GRgY1NTWnHdPlcuFyfdgRrrW1NVjxRUTCxvKSOtw+E+6mKuJsbQEdu621lerq6iGP09zcPOQxIixmchKjcDR2UtcVXve1Er5UNBMRGaHqOur6GgDMypxldJxBmZkxkzWH1tDiamFP/R6mZ0w3OpKI9NOVV17Z93j69OnMnz+fMWPG8OKLLxIVFTWoMZcuXcqPfvSjQEUUERkRXttRBUBnybuYZqQHZMwutweArVu38v6+g0Mer7uuAoDOzqGdRzYmORpHYye1Xdo0J6GhopmIyAj1Qc0HAExInhA2DQBOZrVYmZ8zn5WHVrK+cj3T0qeF3Yo5EfFLTExkwoQJlJWVcemll9Ld3U1zc/MJq81qa2vJzMw87Rj33Xcfd999d9/3ra2t5OXlBTO2iMiw1u7qYc2BegA69q2HGdcFZNzuHn/RbEZhOgvnDf3D100b3KwtBVf30M6pzTt+rlmDywQWlTMk+PSnTERkBPJ4PX0NAGZmzjQ2zBDNzZ7Lusp11HXUUdpYyoSUCUZHEpFBaG9vp7y8nJtvvpk5c+ZgtVpZsWIF119/PQD79+/H4XCwYMGC045ht9ux2+2hiiwiMuyt3FdHd4+XFJuHw/UVAR8/JtJKVkr8kMeJj7IFIA2kxtqItlno7PZgzykOyJgiZ6I1jSIiI1BZYxkd7g5irDGMTx5vdJwhibJG9XX+3HREXfVEwsU999zDmjVrOHToEBs2bOC6667DYrHw+c9/noSEBL7yla9w9913s2rVKrZt28aXv/xlFixYwLnnnmt0dBGRsPHWbv95Y1MT3AYnCQ2TydTXRTNqbHgePyLhRSvNRERGoB21OwCYljFtRByePz9nPpuObKKiuYLa9loyYjOMjiQiZ3HkyBE+//nPc+zYMdLS0jjvvPPYtGkTaWlpADz22GOYzWauv/56XC4Xl19+Ob/5zW8MTi0iEj46u3tYtc+/NXPKKCmaAeQnR7Ovpo3IMTONjiKjgIpmIiIjTKe7k/3H9gP+g/RHgoTIBIpTi9nbsJfNRzfzbxP/zehIInIWL7zwwhlfj4yM5IknnuCJJ54IUSIRkZFlzf56nG4PeclRZEc2Gx0nZHKT/M1kbJmFdLq9BqeRkU7bM0VERphdtbvw+rxkxWaNqBVZ83PnA7Crbhed7qF1XhIREREJd2/srgHgqqlZjKY+SXGRVmIifJjMFkoahtZYQORsVDQTERlhdtb5GwDMyJxhcJLAyovPIzM2kx5vD9urtxsdR0RERMQwXW4PK0tqAbhi6um7Do9UaXb/CrM9dSqaSXCpaCYiMoIc6zxGVVsVJkxMTZtqdJyAMplMzM/xrzbbUrUFr0/L8UVERGR02lDeQEe3h6yESGbmJRodJ+TSIn0A7K5X0UyCS0UzEZERZFfdLgAKkwqJscUYnCbwpqZPJdoaTaurFYfLYXQcEREREUO8s9e/ymxJcQam0bQ387jU4yvNDja5ae0aPU0QJPTUCEBEZITw+XzsrtsNwNSMkbXKrFeEOYKZGTPZcGQDJZ0lRscRERERCTmv18fykjoALp3cv/NrI7zdjOvaQ0pPDVHeDiJ8buqsOVTZCqi35uAzhdd6mugIcDdWYU3OZuuhRi6eNHLO8ZXhRUUzEZERorq9mmPOY0SYI5iUMsnoOEEzJ3sOG45soNJVCYlGpxEREREJrQ+ONFPf5iLOHsG541LO+N64nkbmt73DBOf72H2uE16bcvzXJksa6xOuojRyBuHUUaCrchfW5Gw2HVTRTIJHRTMRkRGid2vmxJSJ2CPsBqcJnuSoZAoSC6horoDZRqcRERERCa3lx7dmXjgxDVvEaVaI+bzM7FjHotbXsfn85361WJI5bJ9IpyUOHyYyux1kd1eQ5Knn6sZnqbKN5c2km2mNSA7VjzIkLscu4mZczsbyY0ZHkRFMRTMRkRHA6/Oyp24PANPSpxmcJvjmZM/xF81mgdurcyxERERk9Og9z+x0WzNtXifXND5DvqsUgKO2AjbEX8UR2zg4aRum1dvFnPbVzGlfRXb3IT5X/xivpvxHcH+AAOly+D8w3lPVQovTTUKU1eBEMhKF18ZlERE5pcPNh2nrbiMyIpLxyeONjhN0k1ImEWWOgjhYW7vW6DgiIiIiIXGooYPSunYizCYumpj+sdeTzB3cUP8r8l2ldJtsrEi4nhdTv8UR+/iPFcwA3OZINsVfwbPp36POmkOMt53P1D/BooS6UPw4Q+JpP0ZWrAWvD7YeajQ6joxQWmkmIjIC9G7NnJw2GYvZYnCa4LOYLUyImsCOjh08v/d5Ls66eFDjpKamkp+fH+B0IiIiIsHRu8ps/rjkj62sGpdk4oH4V0np6aDDHMcrKbdRb8vp17jtEUm8mHo7VzU9x7iuvfywYAerc4f/PeXUdBvV7U42lh/jkmKdayaBp6KZiEiY8/g87K3fC4yOrZm9crtz2cEO3m9/nzkXzoH2gY8RFR3FvpJ9KpyJiIjIWTkcDhoaGgI23mA+vOvbmnlSgSiyp4W3b4ohxdLBsYh0Xkm5jbYBnk3mNtt5NfnfuabxGQq79vDa56P4Tl3bgMYItanpdt456GRThc41k+BQ0UxEJMxVuipxeVzE2eIYkzDG6DghY++0Qw2QB/N/NJ8ZsTMGdH394XpeefgVGhoaVDQTERGRM3I4HBQXT6Kz0xmwMaOjoygZwId3jR3dbD3s34a45KPnmXW1sLjqCZKTzdR54ngl85t0WuIHlclnsvBG0s0sKXuY4phWHspexz+9F9JtjhzUeME2Jc0GwJ6qVp1rJkGhopmISJgrdfoPeZ2aPhVTGLUJD4gPgDw46DnI5UWXj76fX0REREKioaGBzk4nf77/Borz04Y8XomjnpsefnFAH96tKKnF64PirHhyk6L9T3o98NKXSHYdoabdyy/cV5KdP7iCWa8es537ymfzv/krGZPYzuLmf7As+cYhjRksyVEWxqXGcLChgy0VjScWE0UCQEUzEZFwZgdHlwMYXVsz++wG8zVm6jvrqWqrIie+f+d2iIiIiAxGcX4asycYc79xyq6Zq34C5SvpMdm48i+NTP90PNkBmKuxx84XXnby7pdjmOzcSkXnZA5EzwrAyIF3bmEKBxs62HjwmIpmEnDqnikiEs4mgQcPqdGpZMZmGp0m9FyQY/LfuH5Q+4GxWURERESCpMvtYW2p/zy1y3oLQyWvwdpfALAp40Y+qPEGdM4NlR5eaCwG4JLml4jtaQro+IFy7rgUADYd1LlmEngqmomIhLPji8umpU8btVsT883+LQ176vbg8XoMTiMiIiISeOvLGnC6PWQlRDIlOx4aK+CVr/tfPPebHI6bF5R5/9I4mWprPpE+Jxe3/CMocwzVuQX+hgd7q1tp6XQbnEZGGhXNRETCVENXA4zzP56aPtXYMAZKN6UTa4vF2eOkrLHM6DgiIiIiAde7NXNJcQYmbw+8/FXoboP8BXDpj4I2rwczbyd9AQ9mCrv2MM65O2hzDVZ6fCTj0mLw+WCzumhKgKloJiISpt6pegfMkG5NJzlqYC3FRxKTycSUtCkA7K4bfjdyIiIiIkPh9fpYXlIHHD/PbM3P4MgWiEyAT/0OLMHtGNlozWB77EUAXNTyChHe7qDONxgL+rZoNhqcREYaFc1ERMLUW0ffAmB81HiDkxhvesZ0APYd24erx2VwGhEREZHA2VPVSkO7ixibhfnWMlj7c/8LVz8OiXkhybAp7jJaLYkkeBo5p315SOYciHOOb9HcelhFMwksdc8UEQlD5Y3l7G7eDV4YFznO6DiGy4rNIjkqmUZnI/uO7WNGxgyjI4mIiIgExKr9/lVmiwqTsL96G/i8MOMLMPVTIcvQY7azOuE6/q3xGea0rWJX9ALaIpJCNv/plJSUABDV6T/XdvfRFtZv3kqUdeDrg1JTU8nPzw9oPgl/KpqJiIShv+7+q//BQYjOiTY2zDBgMpmYlj6NNYfXsLt2t4pmIiIiMmL0Fs0WezZAUwXE58KVj4Q8R3nkNBy28eR3l7Gw9Q2WJd8Y8gy9WhvrAbjpppv6nsv52h+ISMhgyWf/g67DOwY8ZlR0NPtKSlQ4kxOoaCYiEmZ8Ph9/2fUX/ze7gPMNjTNs9BbNypvK6ejuIMYWY3QkERERkSFp7Ojmg8pmAC46/EswAf/2vxAZH/owJhPrEq7hC/WPUezcxjb3RTRYc0KfA3C2twLwidv+i4nT5wDwXoOFyk646NYHmZw4sI7qtY5y/vLId2hoaFDRTE6gopmISJj5oOYD9jXsw2a20b1v+B3EapSU6BSy47KpaquipKGEudlzjY4kIiIiMiTvHqjH54NJETVkmRph9hdh/BLD8tTa8tkfNZOJzg84r+Vf/DP1NsOyAKRkjyG3yN8Qqimqhcr9dbRZYsktyjU0l4wcagQgIhJmnt/1PADnZ5wPOvP+BJPTJgOwp36PwUlEREREhm718a2ZF/neg7hsuOwnBieC9fFX4cFMgWsfua5So+P0yU6MBKCmpQuP12dwGhkpVDQTEQkjXp+37zyzK3OuNDjN8DM51V80O9x8mI7uDoPTiIiIiAyex+tjzb4aABZbPoBP/NyYbZknaYlIY1fMAgAWtC4D3/AoUCXH2IiMMNPj9VHfpk+WJTBUNBMRCSPvHn6Xo21HSbAnsCh9kdFxhp2kqCSy47Lx4aOkocToOCIiIiKDtsPRSFOXlzg6mF1cBJM+YXSkPu/FLaEHC7nd5eR2lxkdB/A3hspOjAKgqtlpcBoZKVQ0ExEJI71bMz89+dPYLDaD0wxPvavN9tbvNTiJiIiIyOCtXv0OABdElGC9KvTdMs+kw5I4LFeb9RbNjqpoJgGiRgAiImHC1ePi73v/DsAXpn0BmgwONExNTpvM8orlHGo+pC6aIiIiMqyVlJx6Zby1q4FVB44BcUzLTWR7eS1Qe9pxKioqghPwDLbEXcK0jo19q82O2ItCnuFkveeaVbU48fl8mEwmgxNJuFPRTEQkTCwrX0ZTVxPZcdlcOOZCdjTtMDrSsNS7RVNdNEVERGS4qm5sA+Cmm2465et/+Gwmu8b+HoDbv/Mjetr792lpp6snMAH7oXe12ayOdZzbuoy/pxlfNEuPiyTCbKLL7aWp001yjHZmyNCoaCYiEib+susvAHxuyuewmC0GpxneJqdO9hfN6lU0ExERkeGnub0LgE/c9l9MnD7nhNeKXR8Q37gN3JAW0cX1j/zhrOO9t+JfrHv5j7jcoSuaAWyNu4TpHRvJ6y4ny3WIavvYkM5/MovZRGZ8JEeanRxtdqpoJkOmopmISBhoc7Xx6v5XgeNbM+WMJqVO8m/RbDmE0+0kyhpldCQRERGRj0nJHkNu0ZS+762eTm54/3vc5/kMAAW52eQWppx1nP07twUt45m0WxIpiZ7L1M7NzG1fwWv2rxiS46OyE6M40uykqtnJtJwEo+NImFMjABGRMPDPff+kq6eLCSkTmJ012+g4w15KdApp0Wl4fV5KG0uNjiMiIiLSLwscvyW6q453vTMAGJsabXCis9sauxgfJsZ37SbZXWN0nA/PNVMzAAkAFc1ERMLA87v9XTNvnHajDjTtp0mpkwDY17DP4CQiIiIiZ5feXsKsqhd431dEG9FERpjJiI80OtZZNVkzKIucBsDc9lUGp4GshChMQGtXD21dbqPjSJhT0UxEZJir66jjnXJ/y/HPT/28wWnCR3FqMQBljWW4PbphEhERkeHL5OthSdnDmPHyd/t1AOSnRGMOkw9Lt8RdDMCkzq3E9hjb4t0WYSYtzg5AVXOXoVkk/KloJiIyzL2450U8Pg/zsudRlGJ8V6JwkRmbSYI9AbfXzcGmg0bHERERETmtmdUvktGxjy5LHKu8swAoSIkxOFX/1drG4LAXYcHLnPbVRschO9F/nq22aMpQqWgmIjLM9XbNVAOAgTGZTExMnQhoi6aIiIgMX3GuGhYefgqA13LupK7DA/hXmoWTLbGXADCtcxORng5Ds/Sda9aiopkMjYpmIiLD2IFjB9h0ZBNmk5nPTf2c0XHCTu8Wzf3H9uP1eQ1OIyIiInISn4/F5T/D5nVyNG4Gb5kvACAzPpJoW4TB4QbGYZ9ArTUXq6+bmR1rDc2SneBfadbQ3o3L7TE0i4Q3Fc1ERIaxP+/8MwCXF15OZmymwWnCT35CPlERUTh7nBxpPWJ0HBEREZETzGUXhU1r8ZgiWD7+fg4d6wRgTJitMgPAZGJLnH+12cz2tUR4XYZFibFHkBhlBaCqReeayeCpaCYiMkx5fV7+b+f/AXDz9JsNThOezCYz45PHA/5VeyIiIiLDRYIdbva9AsCWnC9SH1lAZaN/O+HY1PA5z+yjyiKn02RJJcrXybTOTYZm0blmEggqmomIDFPrHes51HyIOFsc10661ug4Yau3eUJpY6nBSUREREQ+9MilkSTSRmNkPu/l/TtVzU66PV6irBYyjnd/DDc+k5ltcYsBmN2+BrPPuK2RveeaHVXRTIZARTMRkWHquR3PAfDpyZ8m2hqGS/SHifFJ4zFhoq6jjuauZqPjiIiIiJBuauS2OTYAlo//LzxmO4eO+Q/PH5sSjclkMjLekOyNnkeHOZZ4TxNFzg8My5FzfKVZXauLHo/OtpXBUdFMRGQYcrqdvLT3JUBbM4cqyhpFXnweAKXHtNpMREREDObtYb5lNwCrOJejCbMBOHz8PLNw3ZrZy2Oy8n6sv6HB3PaV4PMZkiMhykq0zYLH56O21bjz1SS8qWgmIjIMvXbgNVpcLeTF53Hh2AuNjhP2tEVTREREho3DG4g3dVLV5uVF0ycAaHW6OdbRjQnITw7/HQY7YxbRbbKR7q4i37XfkAwmk+nDc81atEVTBkdFMxGRYai3AcBN02/CbNJf1UM1IWUCABXNFbg9boPTiIiIyKjVXgeV/gPyv/VGF50mf1Gnd2tmZkIkkVaLYfECxWWOZnf0uQDMa19pWI7sBJ1rJkOjf4mJiAwzdR11vFX2FqCtmYGSFp1Ggj2BHm8PFc0VRscRERGR0cjnhQNvgc9LpTedV/b19L10aIRszfyo7bEX4cVMvquUwshmQzL0nmtW3dyF16BtohLeIowOICIiJ3ph9wv0eHuYmz2X4rRio+OMCCaTiaKUIrZWbeXAsQN9K89EREREQubodmirAoudLe7JQBkAPV4vlY3+ollBysgpmrVFJLE/ahbFzm18KrmcXwZhjqbmZqqrq0/7utfnI8IM3R4v+w8dJTHy1Kv4GhoagpBORgIVzUREhpnerZlaZRZYE5InsLVqK6WNpfj0SaOIiIiEUlcLVKzxPx53Ec69H3bHPNrkpMfrI8ZmITXWZlDA4Ngat5hi5zbOi69ibGLgOoI6nf7tlqtWruTd9z4443tjpizGmpTFP99ZS3f1gVO+x9PeCHDGApyMTiqaiYgMIyX1JWyt2kqEOYLPTf2c0XFGlLGJY4kwR9DqaqWuo87oOCIiIjJa+HxQ+jZ43RCfC1kzYe+Ovpd7t2aOSYnBZApcYWk4aLDmcMg+ibGufdy9wM47ARrX5fJ3w5w7MYd5s6ae8b17u6zs7oKJkyayYE7CKd+zb38pr+2A5ubmACWUkUJFMxGRYeTZHc8CcMX4K0iPSTc4zchitVgpSCygtLGUA40HGM94oyOJiIjIaFBfAo3lYLLAxCvhpMJYbxOAsanh3zXzVLbGXcxY1z6+MsvKpq7OgI4dF20nKyX+jO/xOM3sroJGbzSZyfEn//YDUBsbGdBcMnKoEYCIyDDR4+3pK5p9acaXjA0zQvWeZVZ6rNTgJCIiIjIquJ1Qttz/eMxCiE454WWn10JzpxuzCfKTR2bRrNI2nlJnAtFWE1dZt4Z8/ky7GzM+OjwWWnvCvzOphJaKZiIiw8QbpW9Q015DWnQa10y8xug4I1JRchEAR1qP0OXtMjiNiIiIjHjlK8HdCdGpkHfux15u9NgByE6Iwh4xQgs6JhMvHysE4GrbViI8ob0HizBDht0NwFGnNaRzS/hT0UxEZJj4/fbfA/DFGV/EZhlZh8AOFwmRCaTHpOPDR6Wr0ug4IiIiMpI1HYLaXf7HE64E88eLYo0e/7bAsakjp2vmqaxvy+Jgk5cEcyeT614L+fzZUf6iWVWX7rFlYFQ0ExEZBqrbqnmj9A0AvjLrKwanGdkmJPu3aDq6HAYnERERkRHL44YDb/kfZ8+GhJyPvcUUYafZ619pNiZlZG7N7OXFzC82+g/vn1P1F0w+T0jnz47sBuBol1aaycCoaCYiMgw8u+NZPD4PC/MWUpxWbHScEa0o5fgWTdcRGFkNqkRERGS4OLQOuprBHgcFF57yLfb8aXgxEWuPICVm5K+AeuZ9N63eKBK7jjL+2KqQzp0d6QZ8NLsj6OhRGUT6T90zRUQM5vP5+MP7fwDgP2b9h8FpRr7c+FzsFjsujwuyjU4jIiIiI05bDRx5z/+46HKIsJ/ybVHj5gCQHg01NTVDmrK1rW1I14eCswded8/l8/a1zDvyLKUpl3ysk2iwRFp8pNh6ONZtparLSlGsKyTzSvhT0UxExGDvHn6XssYyYm2xfGbKZ4yOM+KZTWbGJY2jpKEECo1OIyIiIiOKzwsH3gR8kDYJUsaf8m31LR1EjbsUgJ3rV7C98eiQpu2uqwCgp6dnSOME27+65/HpqC1kdOxjTPNGDictDNncOZHu40Uzm4pm0m8qmomIGKx3ldnnp36eWFuswWlGBxXNREREJCiObIH2WoiIhPGXnv5t3dFYk7Mw+TzcvCAHq2loy99XruxgWyl4vKE9K2yg2nzR7Mi8nrlVf+Hcyj9wOHFByFabZUd2s7M1Wh00ZUBUNBMRMVBzVzMv7X0JUAOAUCpMOl4ty4N2d7uxYURERGRkcDbDobX+x+MWg+30HTErbQUAxLkbyU+NG/LU0ZHhcyba9pybmFn9EtltO8lt2caRxLkhmTfneAfNhu4IXF4TdrMvJPNKeNMJeCIiBvrrrr/S1dPF1PSpnJNzjtFxRo2kqCQSLAlghi0NW4yOIyIiIuHO54PSt8HbAwn5kDn9jG8/YhsDQKK7PhTphpUOWyq7M64FYP6RP4Rs3tgILwkRPfgwUa0umtJPKpqJiBiod2vmV2Z9BVOIlqaLX649F4BN9ZsMTiIiIiJhr74Emg6CyQITrjjjlsOOHjPV1hwAErtHX9EMYGvuF/GYIshv2UpW646QzZt9fLVZlbZoSj+paCYiYpAPaj5gW/U2bBYbN02/yeg4o05v0Wxj/UaDk4iIiEhYczuhbLn/8ZiFEJ18xrevOxaL1xSBu6maSG9HCAIOP232TPamfwKA+Uf+GLJ5syO7ATjaFT7bWcVYKpqJiBjkyS1PAnDdpOtIjU41OM3ok23LBg8c7TxKeWO50XFEREQkXB1cBe5OiE6FvHPP+vZV9f4zzJzlWxjN+wy25HwJL2YKmjaQ3l4SkjlzIv0rzWpdVnp0pJn0g4pmIiIGaOlq4c+7/gzAN+Z9w+A0o5PVbIVK/+Nl5cuMDSMiIiLhqfkw1Oz0P55wBZgtZ3y7zwerGuIBcB7cGux0w1pLVC770y4HYH5laFabJVo9RFk8eHwmanWumfSDimYiIgZ4dsezdLo7mZI2hfPzzzc6zuh1fIHZ2+VvG5tDREREwo+3Bw4c/+AtaxYk5J71kj1tkdS6rET43HQ5dgU54PD3Xu6X8WFifONqUjrKgj6fyfTharMqFc2kH1Q0ExEJMZ/Px2+2/AaAb877phoAGOn4vdnKipW4PW5js4iIiEh4cWwEZyPYYmHchf26ZHW9f5VZdrcDdO9BY3QBpSmXAHBuZWg6aepcMxkIFc1EREJsZcVK9h/bT5wtTg0AjFYDibZE2rrb2HREXTRFRESknzoa/EUzgPFLICKyX5etbPCfZ5bffShIwcLPpryv4MPEhGPLSe04EPT5co530KzusuLVuWZyFiqaiYiE2G+2+leZfXHGF4mzxxmcZpTzwfy0+YC2aIqIiEg/+Xxw4C3weSFlPKRO7Ndljd0W3m+OBiBPRbM+x2LGcyB1CQALHb8N+nypth5sJi/dXjPHuiOCPp+ENxXNRERC6EjrEf7fvv8HwNfnft3gNAJwbpq/y5WaAYiIiEi/VO+A1iNgscH4y/wHZfXDmoY4fJgojnMS420PcsjwsjHvVryYKWx8l4y2PUGdy2yCrOPnmh3VuWZyFiqaiYiE0NPbnsbj83DhmAuZkj7F6DgCLEhbAMDWqq0c6zxmcBoREREZziI8TqhY5f9m7AUQGd/va1ceP8/s4rTWYEQLa03RYylJvxKAhY6ngj5f9vEtmkedOtdMzkxFMxGREOn2dPP0tqcBfwMAGR7SItOYmj4VHz5WVKwwOo6IiIgMYzlt70OPC2IzIGd2v6/r8cKahlgALk5tC1a8sLY57z/wmCyMbd5ETsv7QZ0rt7cZgNOGT+eayRmoaCYiEiKvlLxCbUctWbFZfHLSJ42OIx9x2bjLAFhWpi2aIiIicmoL8yykOMv93xRdDqb+/3N6e0s0rT0RJFp7mJnYGaSE4a0lMpc96dcCsNDxJMGsZmVEuokw+XB6zTS6LUGbR8KfTr0TERkCh8NBQ0NDv977yPpHALgm+xp27dgFQGpqKvn5+UHLJ/1zWeFlPLrpUd45+A4+nw9TP88mERERkVHC6+E3V/k7ZDZEjcdR44Oao/2+/K+NEwCYZqtjR+lRqhq0RfNUNuf9O5Pr/kVu6/vkt7yHI3F+UOaxmCArsptKp50j2qIpZ6CimYjIIDkcDiYVT8LZ6Tz7mzOArwNeePq2p3m6zb9NMyo6in0l+1Q4M9h5+edhs9iobK2krLGMopQioyOJiIjIMGLf8SxTMi0c6/Qy6Wfvc8y5fUDXZ/37r7Glwct//Qt/LlnT97yzuyfQUcNauz2DnZmfYnb1Cyw8/BSOhHP63WhhoHKj3FQ67Rx12sgOygwyEqhoJiIySA0NDTg7nVx3/3WkjUk743tXN6/mgPMA46LHseTn/pba9YfreeXhV2hoaFDRzGAxthgW5C5gzeE1rKhYoaKZiIiIfKithglHXwLg+ZZZ3HL34gFd3umz8aZnLODj36+7GNunLmTVuxt4f+1yXD2ewOcNc1tyb2Fa7T/Jat9NQdM6KpLPD8o8OcfPNTvitJEVlBlkJFDRTERkiNLGpJE14fT/qW3vbqd8k//8i8XFi8mK13+Wh6Ml45b0Fc2+NvdrRscRERGR4eLtB7B6u9h8xMO2qLnMGDNmQJfvbImCBsiKdDMuJxeA2MSSYCQdETptqXyQdQPzjj7HQseTVCQtGtD5cf310XPNOk3RAR9fRgY1AhARCbItVVvw+DzkxueSG59rdBw5jUsKLgFgZcVKvD6vwWlERERkWKhYC7texIeJb7zhxMfAtwpWdNoBKIh2BTrdiLUl54t0WWJJ7yhlYsM7QZkj4vi5ZgDNlqSgzCHhT0UzEZEgcnvcbK3aCsC5uecanEbOZF7OPOJscTQ6G/mg5gOj44iMKD/96U8xmUzceeedfc91dXXxzW9+k5SUFGJjY7n++uupra01LqSIyMk8PfDmvQCUJpzH9uqBf6jm9kLl8YPmx0Z3BzTeSOayJrAt52YAFjqewuwNztlvuVFuAFosiUEZX8KfimYiIkG0q24Xne5OEuwJFKcWGx1HziDCHMFFYy8CYPnB5caGERlBtmzZwm9/+1umT59+wvN33XUXr732Gi+99BJr1qyhqqqKT33qUwalFBE5hW3PQN1eiEpmR8q/DWoIh9OOx2ciPsJDqk2H/g/E+9mfo8OaTGLXEabUvRqUOXK00kzOQkUzEZEg8fl8bDqyCYBzcs7BHISzGCSwlozzN2lYUbHC4CQiI0N7ezs33ngjv/vd70hK+vAfJC0tLfzhD3/g0Ucf5eKLL2bOnDk888wzbNiwgU2bNhmYWETkuM5GWPmQ//HF/0W3JWZQw5R3+LdmjovpClYTyBHLbYnmvdwvA3Bu5e+xeLoCPkfvuWZukw1rSl7Ax5fwp3/BiYgEycGmg9R31mOz2JidNdvoONIPveearT28FlePzh0RGapvfvObfOITn2DJkiUnPL9t2zbcbvcJz0+aNIn8/Hw2btwY6pgiIh+36mHoaoaMqTDny4MawuuDQ31FM91XDMauzE/RYs8itruemdUvBXz8j55rZs+fFvDxJfypaCYiEiQbj/j/4TcrcxaREZEGp5H+mJw2mczYTJw9zr7//URkcF544QW2b9/O0qVLP/ZaTU0NNpuNxMTEE57PyMigpqbmtGO6XC5aW1tP+BIRCbjaPbD1D/7HVywFs2VQw1R3WXF6zdjNXrIj3QEMOHp4zDY25X0VgHlHn8XW0x7wOXrPNYvMmxrwsSX8qWgmIhIE9R31lDeVAzA/Z77BaaS/TCZT32oznWsmMniVlZXccccd/OUvfyEyMnAfGixdupSEhIS+r7w8baURkQDz+eDN74LPC8X/BgUXDHqog8dXmY2NdmHR1sxBK0m/imNRBUT1tDDn6J8DPn7vuWaR+dPw+QI+vIQ5Fc1ERIJg01H/mTyTUieRFKWDRcOJzjUTGbpt27ZRV1fH7NmziYiIICIigjVr1vDLX/6SiIgIMjIy6O7uprm5+YTramtryczMPO249913Hy0tLX1flZWVQf5JRGTUKXkNDq0Fix0ue2jQw/h8cLDTXzQr1NbMIfGZLGzI/xoAs6ueJ6q7MaDjZ0S6Mfs8WGKSqHepRCIn0p8IEZEA6+juYGftTgDOzTnX4DQyUL0rzd47+h4tXS0GpxEJT5dccgm7du3igw8+6PuaO3cuN954Y99jq9XKihUfFqf379+Pw+FgwYIFpx3XbrcTHx9/wpeISMC4u+Dt//I/XvRtSBoz6KGa3Baa3RFY8DEmujtAAUevspTF1MQWY/M6OefIMwEdO8IE8V7/PV9FR0RAx5bwpz8RIiIBtvnoZnq8PeTE5ZCfkG90HBmgvIQ8JqRM4MCxA6w5vIZ/mzi4FvMio1lcXBxTp554NkxMTAwpKSl9z3/lK1/h7rvvJjk5mfj4eG6//XYWLFjAuefqwwYRMcjGX0OzA+Ky4by7hjRU79bM3KhubGbt+Rsyk4n1Y77J9Xu+xfSaf5Bm/kJAh0/0NNNsSVbRTD5GK81ERALI1eNiS9UWABblLcKk3uJhSeeaiQTfY489xtVXX83111/PBRdcQGZmJi+//LLRsURktGqrhXWP+R9f+iOwxQxpuIPqmhlwjoRzcCTMJcLn5gux7wV07ERPEwAHOyLw6WAz+QgVzUREAmh79Xa6erpIiUphYupEo+PIIOlcM5HAW716NY8//njf95GRkTzxxBM0NjbS0dHByy+/fMbzzEREgmrVT6C7HXLmwNRPD2mojh4z1S4roKJZQJlMrB/zDQAujtrHpNTAlTPivK143V109Jgprw98h04JXyqaiYgEiMfr6WsAsDBvIWaT/ooNVxeNvQgTJvbW76WqrcroOCIiIhJMtXvg/f/zP778YTAP7R6uotMGmEi3u4mN8A49n/SpiZtGWfKFWEw+frzYHrBxzfhwHd0HwMbyYwEbV8KfNuyKiATIrrpdtLpaibXFMj1jutFxZAiSo5KZkz2HrVVbWVmxkpum32R0JBERERkgh8NBQ0PDWd83fuN3iPd5acq6kIoGGzRs/9h7Kioq+j3vwY5IAMZFa5VZMGzI/xrjjq3h05OtbKgOXIGry7GTqLEzWVfWwM0LxgZsXAlvKpqJiASAz+djQ+UGAObnzCfCrL9ew90lBZewtWoryw8uV9FMREQkzDgcDoqLJ9HZ6Tzj+y4vtPDWTTG4enzMve9fHGx67Yzvd7t7zvy6FxxOG6CtmcFyLGY8q7smcnHUfm5K/IA1XBaQcbsOfQAXfJEN5cfweH1YzDqbWIZB0ezo0aN897vf5c0336Szs5Px48fzzDPPMHfuXMD/D9H//u//5ne/+x3Nzc0sWrSIJ598kqKiIoOTi4h86MCxA9R31mO32JmbPdfoOBIAS8Yt4ZH1j7CiYgU+n09NHURERMJIQ0MDnZ1O/nz/DRTnp536TT4vxQ3/gp4WmhOm8NLSOacd7/dvbOXJVzfj8Zy5aOZw2vH4TMRHeEi1nfm9Mnh/aZ/P+bZ9zI6qptxVxhH7+CGP2V1TRqTZS1tXDzuPNDMrPykASSXcGVo0a2pqYtGiRSxevJg333yTtLQ0SktLSUr68A/nz372M375y1/y7LPPUlBQwAMPPMDll1/O3r17iYyMNDC9iMiH1leuB2BO9hwiI/R300iwKG8RdoudI61HOHDsgBo7iIiIhKHi/DRmT8g59YtV70NNC0REkTHzMjLOcA+X/d6Bfs1X3tc1swt93hY8tZ4Ent7u5pvzbCxq+Rd/S7uDIf+G+7wUxvawp9XGutIGFc0EMLgRwCOPPEJeXh7PPPMM55xzDgUFBVx22WUUFhYC/lVmjz/+ON///ve59tprmT59Os899xxVVVX885//NDK6iEifmu4aKlsrsZgsnJtzrtFxJECirFEsyl8EqIumiIjIiNPjgkNr/Y/HLoIAfOjp8cHB40WzQm3NDLqH3nXh8lrIdh9mrGtfQMYsjPWvDlxXdvaz8GR0MLRo9uqrrzJ37lw+85nPkJ6ezqxZs/jd737X93pFRQU1NTUsWbKk77mEhATmz5/Pxo0bTzmmy+WitbX1hC8RkWDa0b4DgOkZ04mzxxmcRgLpkoJLAFh+cLnBSURERCSgHBvB3QlRyZA1KyBDHnHacHnNRFk8ZEe6AzKmnF5Nu4832iYAcG7rMvD5hjzm+ONFs+2OJjpc2l4rBhfNDh482Hc+2bJly/j617/Ot7/9bZ599lkAampqAMjIyDjhuoyMjL7XTrZ06VISEhL6vvLy8oL7Q4jI6JYOh12HAViYt9DgMBJoS8b5P7RZdWgVHq/H4DQiIiISEF0tcGSL//G4xWC2BGTY0nb/KrPxMS50hnxovNI6mR6sZLkPk+/q3xbaM0m2eclNisLt8fFeRWMAEkq4M7Ro5vV6mT17Ng8//DCzZs3i1ltv5atf/SpPPfXUoMe87777aGlp6fuqrKwMYGIRkZOc7/9lStoUUqNTjc0iATcnaw4J9gSau5rZXv3x9vMiIiIShirWgM8DifmQMvQD5AG8Pijv8G/xHK+tmSHT7I1iZ8wCAM5tG/pqM5MJzhvvv6fXFk0Bg4tmWVlZTJ48+YTniouLcTgcAGRmZgJQW1t7wntqa2v7XjuZ3W4nPj7+hC8RkWA43H4Ypvgfn5d/nrFhJCgsZguLCxYDOtdMRERkRGitgrq9/sfjLh764fHHHXHa6PKaiTJ7yY3qDsiY0j9b4y6mhwhyuivI6y4b8njnFR0vmpWqaCYGF80WLVrE/v37T3juwIEDjBkzBoCCggIyMzNZseLDf6i0trayefNmFixYENKsIiIn+1PZn8AM+fZ8MmNPXciX8KdzzUREREYInw/KV/ofZ06DuMDdv5X1NQDo0tbMEOuwJLArxt+M65y2d4Y83sLCVEwm2F/bRl1r15DHk/BmaNHsrrvuYtOmTTz88MOUlZXx/PPP8/TTT/PNb34TAJPJxJ133slDDz3Eq6++yq5du/jiF79IdnY2n/zkJ42MLiKj3OHmw7x+5HUAZsUG5vBYGZ56zzVb51iH0+00OI2IiIgMWsMBaD0CZiuMvSBgw3p9HxbNxsdqa6YRtsUuxoOZfFcpGd2OIY2VHGNjSrZ/x9r6cq02G+0ijJx83rx5vPLKK9x33308+OCDFBQU8Pjjj3PjjTf2vefee++lo6ODW2+9lebmZs477zzeeustIiOH3hJYRGSw/mfD/+DxeeAgZGRlnP2CMygpKQnpdTIwE1Mmkh2XTVVbFRsqN3DJuEuMjiQiIiID5fVAxWr/49x5EMCO51VdVpweC3ZtzTRMW0Qy+6NmM9m5lbltK3k95UtDGu+88WnsPtrK2tIGrpuVG5iQEpYMLZoBXH311Vx99dWnfd1kMvHggw/y4IMPhjCViMjp1bTX8Pvtv/d/8y6waHDjtDe2A3DTTTcNKU97e/uQrpczM5lMLBm3hOd2PMeKihUqmomIiISj6vfB2QTWGMibH9ChS9v9CzoKY1xYtDXTMFvjLmaycytFXTtJ7KmnOSJt0GOdNz6Vp9aUs76sAZ/PhylAZ99J+DG8aCYiEm4e3fgoLo+L6UnT2Xlo56DH6Wr3n5Gw+BuLKZpRNODrSzeXsuqPq+jq0lkLwXZJwSU8t+M5lh9czsOXPGx0HBERERmIni44tN7/eOx5EGEP2NC+j27NjNE9mZGOWbM4GDmZcV17mdu2kuVJnx30WHPHJmGPMFPb6qKsrp2ijMCtTJTwoqKZiMgAHOs8xpNbnwTg34v+nTu5c8hjJuUkkTUha8DXNTh0xkKo9DYD2Fa9jSZnE0lRSQYnEhERkX5zbIIeJ0SnQNaMgA5d1WWl02PBZvaSH62tmUbbEnsJ47r2Uty5hQ3xV9FpGVyxK9Jq4ZyCZNaWNrC2tEFFs1HM0EYAIiLh5pebf0l7dzszM2dyXvp5RseREMmJz2FS6iS8Pi+rD602Oo6IiIj0k62nHY5s8X8zbjGYAvtP4L6umdHamjkcVNnHUW0dQwQepnVsGNJYi8anArC+TB9Uj2YqmomI9FOrq5VfvvdLAO4/736dbTDKLCnwd9FcUbHC4CQiIiLSX1ntH4DPAwn5kFwY0LF9Pig7fp7Z+FhtzRwutsf6O6PO6FiPxdcz6HHOO14023TwGG6PNyDZJPyoaCYi0k9PbnmS5q5mJqVO4lPFnzI6joRYbwOA5QeXG5xERERE+mN2lpkUZ4X/m8KLIcAfeNa4rLR7LNhMXvLVNXPYKIuaQZs5gRhvGxM7tw96nMlZ8STH2Ojo9rD9cFMAE0o4UdFMRKQfnG4nj256FID7zrsPi9licCIJtYvGXoTZZGb/sf0caT1idBwRERE5E5+P/7nUvwqM9CkQlxnwKQ60+7dmjo1xEaF/WQ8bXpOFHbH+Y1RmdbzrXxI4CGazifOL/KvNVh+oD1g+CS/6v7aISD/8fvvvqeuoY2ziWD4/9fNGxxEDJEYmMi97HqDVZiIiIsNdfN0mLi6IwIsZCi4I+PheHxw4vjVzorZmDju7ohfgNllJdx8lp7t80OMsnpgOwKp9dYGKJmFGRTMRkbPo9nTzsw0/A+C7i76L1WI1OJEYZck4nWsmIiIy7Hl6yNnzWwDqYoohMiHgU1Q6bXR6LESavYxR18xhp8sSQ0nUXMB/ttlgXTAhDZMJ9tW0Ud3iDFQ8CSMqmomInMVzO57jSOsRsmKz+NLMLxkdRwzUWzRbfnA5vkEu9RcREZEge///iGo/TEOnl9rYqUGZYv/xVWZFsV3qmjlM7YxZBMB4506iPW2DGiM5xsasvEQAVu3TFs3RSEUzEZEz6PH2sHTdUgDuXXQvkRGRBicSIy3IXUC0NZqa9hr21O8xOo6IiIiczNUGqx4G4ME13XjMtoBP0eOF8uPnmWlr5vBVb8uhyjoGC16mdG4a9Dh9WzT3a4vmaKSimYjIGbyw+wUONh0kLTqNr87+qtFxxGD2CDsXjPGfi/JO+TsGpxEREZGP2fAr6KijKyaHp7YGZ9vkwU473T4zcREesiPdQZlDAmNXzEIApnVsxOTzDmqMxZP8RbP1ZQ24ejwByybhQUUzEZHT8Pq8/GTtTwC4e8HdxNhiDE4kw8GSguNbNCvUDEBERGRYaa32F82AquKv4h5cjeSs9rd92ADApK2Zw9r+6Jl0maJJ8DQx1lUyqDGmZMeTHmens9vDexWNAU4ow52KZiIip/Fyycvsa9hHYmQi35j3DaPjyDDRe67ZmkNr6Pbo4F8REZFhY9VPwN0JefNpzgp8x0yAHpOVQ529WzN1MPxw5zHZ2BNzDgDTOzYMagyTycRFE9MAnWs2GqloJiJyCj6fj4fefQiAO+bfQbw93uBEMlxMy5hGekw6He4ONh0Z/PkYIiIiEkC1e+D9P/sfX/YQwVoC1mjLxIuJVJubVLu26oWDXdELABjbVUKMp2VQY+hcs9FLRTMRkVN4vfR1dtTuINYWy7fnf9voODKMmE1mLim4BPB30RQREZFh4J0fAD6YfC3knRO0aRrs2YAaAISTJms6R20FmPFR3Ll1UGOcV5RKhNlERUMHFQ0dAU4ow5mKZiIiJ/H5fPz43R8D8M153yQ5KtngRDLc9G7RfOegmgGIiIgYrnwllC0HsxUu+e+gTWOJS6PNmgL4mBinolk42RPtL6RO6XwPfL4BXx8XaWXeWP+/CVZrtdmooqKZiMhJlh9czntH3yMqIoq7F9xtdBwZhnqLZu8dfY+WrsEt8xcREZEA8Hrg7R/4H8/7D0gpDNpUMZP956TlRLqJiwhSlwEJigNRM3GbbCT31JHVfWhQY1x8vIvmyn0qmo0mKpqJiJzkobX+s8xunXMr6THpBqeR4Sg/IZ8JKRPw+rysPrTa6DgiIiKj186/Qe0usCfAhfcGdaqYyRcBMEmrzMKO2xzJgaiZwPHVZoOweJK/GcDmg410dvcEKpoMcyqaiYh8xLuH3+Xdw+9iNVu5Z+E9RseRYezScZcC2qIpIiJiGLcTVvo/7OSC/4To4B2p0WhJwZZegMnnZXyMimbhqHeL5kTn+0R4XQO+vjAtltykKLo9XjaUHQt0PBmmVDQTEfmIn6z9CQBfnvllcuNzDU4jw1nvFk01AxARETHIe7+D1qMQnwvn3BbUqUojiwFIdNcRaRn4mVhivKO2cTRbUrH5XIzv2j3g600m04dbNHWu2agRYXQAEREjORwOGhoaANjdtJu3y9/GYrLwicRPsH379jNeW1JSEoqIMkxdNPYizCYz+4/tp7KlkryEPKMjiYiIjB7OZlj7C//jxfeBNTJoU7m9HxbN0rqOAPpvflgymdgXPZtz295mUuc29kXPGfAQiyem89zGw6zeV4fP58NkMgUhqAwnKpqJyKjlcDiYVDwJZ6fT/8TngEnged/Dtf99bb/HaW9vD05AGdYSIxM5J+ccNh3ZxPKDy/nyrC8bHUlERGT02PAr6GqGtEkw4/NBnWpVQzxd5mg8HU0kuOtR0Sx8lUTN4dy2txnj2k+Upx2nJXZA1587LgV7hJmqli5KqtuYnB0fpKQyXKhoJiKjVkNDA85OJ9fdfx3mbDP/aPgHADdcegOJVyae9frSzaWs+uMqurp0rsVotaRgib9oVqGimYiISMi01cKm3/gfX/wAmC1Bne6lo0kAtO9eiXl8VFDnkuBqtqZTY80j013JBOcH7Ig9b0DXR9ksnF+UxvKSWt7eW6Oi2SigM81EZNRLG5PGPtM+AKakTaF4cjFZE7LO+pWUlWRwcjHaR8818/rUel5ERCQk3v0ZuDshdx5M+kRQp6p3RbCy3l8Y6dilc0xHgt5tmZOc2wZ1/eVTMgB4e09twDLJ8KWimYiMes09zeyp3wPA+fnnG5xGwsmCvAVEW6Op66hjd93AD5QVERGRAWo8CNv+5H+85IcQ5DOl/lmdiMdnIs1dg/tYZVDnktDYHzULLyayuw+R0NMw4OsvKc7AbIK91a1UNnYGIaEMJyqaicio9377+wBMTJlIRmyGwWkknNgsNi4ccyEA75S/Y3AaERGRUWDVw+DtgfFLYOzAttYNlM8HLx5JBmBC156gziWh02mJp9JeBMDEzjM3/jqV5Bgb88b6/1y8s1erzUY6Fc1EZHRLgjJnGaBVZjI4fVs0K7RlQ0REJKiqd8Kul/yPL/lB0Kfb0RJFaUckdrOXQteBoM8nobMvyr9Fc6Lzg0Fdf9mUTACW7akJVCQZplQ0E5HRbRH48FGYVEhOfI7RaSQMXTruUgDePfwurh6XwWlERERGsJUP+X+d+mnImhH06V6q8q8mujKjBZuvO+jzSeiUR03Fg4XUnmqS3ANfLXbZZP/ulC2HGmns0J+NkUxFMxEZtRq6GmCm/7FWmclgTU2fSkZMBp3uTjYe2Wh0HBERkZHp6HYoXQYmMyy+P+jTdXlMvFqdCMBncpqCPp+ElssczWH7BAAmOHcM+Pq85GgmZ8Xj9cGKEm3RHMlUNBORUeuFihcgAtKt6eQn5BsdR8KUyWQ6oYumiIiIBMGaR/y/Tv8spBQGfbpltQm09VjIiexmQXJ70OeT0CuNmgnAhEFv0TzeRVPnmo1oKpqJyKjU5mrjpUP+MzFmxs7EFOTOSzKy9RbN3jmoZgAiIiIBV/U+HHjLv8rsgu+EZMqXqpIA+HROE2bdJo5IH92imWVuHvD1l032n2u2trQeZ7cnwOlkuIgwOoCIiBGe3vY07T3t0ABjMscYHUcMVFJSMuhrU1NTyc/P7yuaba3aSpOziaSopEDFExERkTU/8/867TMhWWVW6bSy/lgsAJ/Obgz6fGIMlzkah30CBa4S5tkrAKioqGD79v511PT5fGTEWKjt8PCnZZuZnxN5wuu994kS3lQ0E5FRp9vTzWObHvN/swFM0/Tx4WjU3ujfanHTTTcNeoyo6Cj2lewjPz+fSamT2Newj9WHVnNd8XWBiikiIjK6VX0A+98I6Sqzvx1JxoeJRclt5EW7QzKnGONA1AwKXCXMjSgD4IEHHuCBBx7o9/VJF/8H8fM+yQNP/Z1jbzx2wmtR0dHsKylR4SzMqWgmIqPOX3f9laNtR0mxp3BsxzGj44hButq7AFj8jcUUzSga8PX1h+t55eFXaGho8K82K1jCvoZ9vF3+topmIiIigdK7ymzq9ZA68P9eD5Tb6y+aAXwhT6vMRrryqGl4ml9kjK2FomQzWVd8i7mLLur39fVdJt6tg6QZF3PzVef3beWtdZTzl0e+03efKOFLRTMRGVW8Pi//s+F/APjCuC/wK8+vDE4kRkvKSSJrQtaQx7m08FJ+veXXvH3w7QCkEhEREap3wv7XAVPIVpmtqI+nvttKqs3NpemtIZlTjOMyR3PEPp4xrgNcOymC/Rm55BZN6ff12V4fW5oqcLo9mFILyE2ODmJaMYIaAYjIqPJm6Zvsqd9DnC2O68dcb3QcGUEWj12M1WzlYNNByhrLjI4jIiIS/no7Zk69HtImhmTK5ytTAH8DAJvZF5I5xVhlkdMA+OTEga8pMptNFKTGAHCwviOguWR4UNFMREaVR9b7b76+NvdrxFnjDE4jI0mcPY5F+YsAWFa2zOA0IiIiYa5mF+z7F2CCC+8NyZSVnVbWHm8A8Plcbc0cLQ5GTQVgQZ6FRFP7gK8vTPMXzcrq2/H5VGgdabQ9U0RGjY2VG1nrWIvVbOWO+XdQW1ZrdCQZAT7afXNq5FRWs5q/bf8bCyIWnPVadVUSERE5jbWP+n+dcl3IVpn99UgKPkycn9LGmOjukMwpxmu3JHLAmciEqGbmRxxgoP/L5ydHY7WYaHf1UNvqIjMh8uwXSdhQ0UxERo3ejpk3Tb+JnPgcalHRTAbvlN03M4GvwdrKtcz51hzwnHmMj3bfFBERkeMaK2DvP/2Pz787JFO6vfDi0SQAvpCrRlGjzca2zONFs/2sHeC1ERYzBakxHKhtp7SuTUWzEUZFMxEZFSpbKnm55GUA7jr3LoPTyEhwqu6bPp+PP9f9GafNydWPXU22Pfu015/cfVNERESO2/gE+LxQeDFkTgvJlMvr4mk43gBgiRoAjDqb2jK5JX0fMyIOsbmnne6I2AFdX5Qed7xo1s5541ODlFKMMKii2bhx49iyZQspKSknPN/c3Mzs2bM5ePBgQMKJiATKk1ufxOPzsHjsYqZlhObmS0aHk7tvFnmL2Fm3k6aYJuaMm2NgMpHB0X2eiPSXw+GgoaEhYOOlpqaSnxID7//Z/8SiOwI29tk8f8T/d94NOU1YdfL3qFPZHcuBYx4mpMDYpg0cSLtsQNePSYkmwmyirauHujZXkFKKEQZVNDt06BAez8f3nLhcLo4ePTrkUCIigeR0O3l629MAfHv+tw1OIyNdYXIhO+t2Ut5UzhKWGB1HZMB0nyci/eFwOCgunkRnpzNgY0ZHR3H0+TtI7HFC1gwouDBgY5/J4U4ba4/FYcLH57U1c5Qy8f/29/CdhRYKmtYPuGhmPb5Fs7TOv9psbHBCigEGVDR79dVX+x4vW7aMhISEvu89Hg8rVqxg7NixAQsnInI2/fmE8/85/h/HnMfIisoipyOH7du3Ayce4C4SKIVJhQDUtNfQ3t1OrG1gy/tFjKL7PBEZiIaGBjo7nfz5/hsozk8b8ngljnq+8siLxOz5i/+Jhd8Gk2nI4/bHC0eSATg/pZ28aHdI5pTh5/UDPXxnoZ2xTRv824NNA1tyWJQe6y+a1bYxZuj/l5BhYkBFs09+8pMAmEwmbrnllhNes1qtjB07ll/84hcBCyciciYOh4NJxZNwnu0Tzq8BmVD9/6o557vnfOzl9vaBt5YWOZ0YWwxZsVlUt1dT3lTOjIwZRkcS6Rfd54nIYBTnpzF7Qk5Axvr8NCvW7hZIyIPJnwzImGfT7TXxUm8DgDytMhvN1ld66PDZielpJrN9LzVxUwd0/djUGCLMJlq7emh2h6bgK8E3oKKZ1+sFoKCggC1btpCaqgPuRMQ4DQ0NODudXHf/daSd5uOcalc1rzW+RoQpghtvvhH7Lfa+10o3l7Lqj6vo6uoKVWQZJQqTCv1Fs0YVzSR86D5PRAzl83HHfJv/8bz/AEtoeta9c7wBQJrNzSVpagAwmvV44YOecSyyllDQtH7ARTOrxczY1BjK6to52qmD8UaKQf1NVFFREegcIiKDljYm7YSD2D9q7R5/0+gZmTMYO2HsCa81OAJ3cK3IRxUmF7Kuch3lTeX4fD5MIdpeIhIIus8TESPEdtcxIdOC12LHPPuLIZv3r8e3Zn42t1ENAIStPYUsspYwtmk9G/NvG/D1RemxlNW1c0RFsxFj0OX7FStWsGLFCurq6vo+mez1xz/+ccjBRESGqqWrhX0N+wA4J+fj2zJFgiUvPg+bxUanu5Pq9mqy47KNjiQyILrPE5FQS+v037Mdy72UtOjkkMx5qMPGuuMNAD6b2xiSOWV429YzHoDM9hKiu4/RaUs5yxUnGpvi36LZ0QPW9IJgRJQQG1T580c/+hGXXXYZK1asoKGhgaamphO+RESGgy1VW/DhoyCxgPSYdKPjyChiMVsoSPTfKJU3lhucRmRgdJ8nIiHX1UJiVyUA9QWfCtm0vavMLkhtIy9KDQAEmn2x1MYUA/gbAgyQLcLMmJRoAGImnhfQbGKMQa00e+qpp/jTn/7EzTffHOg8IiIB4fa42V7t75KpVWZihMKkQvYf2095Uznnjznf6Dgi/ab7PBEJueoPMOFj+cEekv8tNKtzur0m/l7lL5p9QavMQqattZXq6uohj9Pa1haANKdWkbSQjI4SCpo2sDfjmgFfX5QeR3l9B9GTzsPn8wUhoYTSoIpm3d3dLFy4MNBZREQCZlfdLpw9ThIjE5mQMsHoODIKFSYXAlDZWomrx4U9wn6WK0SGB93niUhIeT1QvROAJ7d2818hmvbtuniOdUeQblcDgFDocnsA2Lp1K+/vOzjk8brr/Odv9vT0DHmsk1UkL+LcI38gv3kTZm8PXvPAyiYFqTGYTT6syTkcaulhTsATSigNqmj2H//xHzz//PM88MADgc4jIhIQvavM5mTNwWzSQZwSeslRySRHJdPobKSiuYJJqZOMjiTSL7rPE5GQOlYK7g7c5ihe3d8asqLZ85XHGwDkNBKhW8Wg6+7xF81mFKazcN6sIY+3cmUH20rB4/UMeayT1cZOpjMikeieZrLadnA0YWBlL1uEmcxIH1VOExsru7g+4AkllAZVNOvq6uLpp59m+fLlTJ8+HavVesLrjz76aEDCiYgMRk17DUfbjmI2mZmVOfT/KIsMVmFSIY3ORsqbylU0k7Ch+zwRCamqDwA4FlVIj7c2JFNWdNjY0KgGAEaIibSSlRI/5HGiI20BSHNqPpOFw0kLKK5/k4KmDQMumgHkRHupcprZcMSpTuphblBFs507dzJz5kwAdu/efcJr+sMgIkbbVr0NgOLUYmJsMQankdGsMKmQLVVb1AxAworu80QkZJxN0HwIgIboImDgB68Pxl+P+DsiXpTaRq4aAMgpVCQtOl40W8+6sbcP+PqsKC++nm6q2mzsq2mjOGvohUIxxqCKZqtWrQp0DhGRgOj2dLOrdhcAs7NmG5xGRruCpALMJjNNXU00OhtJjko2OpLIWek+T0RCpvoD/69J4+iOiA3JlC6vib8fTQLgC3laZSandijxXLyYSe0sJ85VQ5s9c0DXW83gLN9K9MSFvL6zWkWzMKbd2yIyouyp24PL4yIpMomCxNB0XxI5HZvFRn58PgBljWUGpxERERlGvB6oOb6aNXtGyKZdVhtPozuCTHs3i1PVAEBOzWVNoDpuGgAFjesHNUbH/nUAvL6rWl00w9igVpotXrz4jMvzV65cOehAIiJD0dsAYHbWbG0jkmGhMLmQQy2HKG8s55ycc4yOI3JWus8TkZBoqgB3B1ijIXk8NNaEZNrerZk35DapAYCcUUXSInLadjC2aT07swZ+nL+z7D1sFqho6GBPVStTcxKCkFKCbVB/TcycOZMZM2b0fU2ePJnu7m62b9/OtGnTAp1RRKRf6jvqOdJ2BBMmZmbONDqOCOA/1wygorkiKB2eRAJN93kiEhI1/uM0SJ8MZktIpqzosLGxMdbfACBHWzPlzCqSFwGQ37IFi9c14Ot97i7mZEUC/tVmEp4GtdLsscceO+XzP/zhD2lvbx9SIBGRwfqg9gMAilKKiLWF5lwMkbPJjM0kxhpDh7sDR4uDgiRtG5bhTfd5IhJ0biccO35sQeaJxfg33niDkpKSIU9RUVHxsedePOo/W/TC1DZy1ABAzqIhuog2Wzpx3XXktmzncNKCAY+xKC+SjUe6eH1nNfdePlE7YcLQoIpmp3PTTTdxzjnn8POf/zyQw4qInJXX52Vn7U4ArTKTYcVkMlGYXMjO2p2UN5WraCZhS/d5IhIwdXvB54HYdIjNAGDHQf9KnAceeCCgU5VV1jB7Qg5uL7x0vAHA53K1ykz6wWTicOJ8pta9Rn7ze4Mqms3OshNlteBo7GT30Vam5WqLZrgJaNFs48aNREZGBnJIEZF+KW8sp727nWhrNBOSJxgdR+QEhUkfFs2WsMToOCKDovs8EQmY453OyfhwldnRhjYAFlzxSYrGjxvyFHv2l7Ptnf9HXZP/sP+V9fE0dFtJtbm5JE0NAKR/HL1Fs5bNg7o+MsLMxcXpvL6zmn/tqlLRLAwNqmj2qU996oTvfT4f1dXVbN26NeCfDIiI9McHNR8AMC19GpYQnYsh0l+955rVtNfQ5mojzh5ncCKR09N9nogEVUcDtNWAyQzpUz72cl5uNjOnf/z5gWpq72LbR77/2/GtmddnN2FVAwDpJ0fCPADSO0qJ7j5Gpy1lwGNcPS2L13dW8/rOar53xSRt0QwzgyqaJSScWB01m81MnDiRBx98kMsuuywgwURE+qvL28X+Y/sBbc2U4SnGFkNOXA5H245S1ljGrKxZRkcSOS3d54lIUNXt9f+aVAC26JBMWd1lZXW9/wOrz2prpgyA05ZMXUwR6R2l5LVsYX/aFQMe46KJ6UTbLBxpcrLzSAsz8hIDH1SCZlBFs2eeeSbQOUREBu2g8yAen4eMmAwyYzONjiNySuOTx6toJmEhUPd5Tz75JE8++SSHDh0CYMqUKfzgBz/gyiuvBKCrq4v//M//5IUXXsDlcnH55Zfzm9/8hoyMjIDMLyLDkM/3YdEsY+iryfrrpaNJeDExP6mdcTHdIZtXRgZHwnzSO0oZ07x5UEWzKJuFS4ozeG1HFa/vqlbRLMwMaWHqtm3b+POf/8yf//xn3n///UBlEhEZkFJnKQDTM6YbnETk9IqSiwAobyrH4/UYnEbk7IZ6n5ebm8tPf/pTtm3bxtatW7n44ou59tpr2bNnDwB33XUXr732Gi+99BJr1qyhqqrqY1tDRWSEaauGrmYwWyFlfEim9AF/O+LfmqkGADIYhxPnA5Df/J6/8DsIn5iWBcDrO6vxDXIMMcagVprV1dXxuc99jtWrV5OYmAhAc3Mzixcv5oUXXiAtLS2QGUVETi8Rat21AExNn2psFpEzyI7LJtoaTae7kyOtR7BhMzqSyCkF6j7vmmuuOeH7n/zkJzz55JNs2rSJ3Nxc/vCHP/D8889z8cUXA/4VbsXFxWzatIlzzz03oD+TiAwTvavMUsaDJTT/HTxsyedol434iB6uzGgJyZwyshyNn0mPyUZcdx1JzsM0RY8d8BgXTUwjxmbhaLOTDyqbmZWfFPigEhSDWml2++2309bWxp49e2hsbKSxsZHdu3fT2trKt7/97UBnFBE5veNNlwoSC4i3xxubReQMTCYT45P8n6qXNpYanEbk9IJxn+fxeHjhhRfo6OhgwYIFbNu2DbfbzZIlH3aTnTRpEvn5+WzcuDFQP4qIDCc+L9Tv8z9OnxyyaXda/dtAr8tuJtKiFT4ycB5LJFXxMwAY0zzILppWC0sm+48feH1ndcCySfANqmj21ltv8Zvf/Ibi4uK+5yZPnswTTzzBm2++GbBwIiJn4vP5+opm09KnnfnNIsPA+BQVzWT4C+R93q5du4iNjcVut/O1r32NV155hcmTJ1NTU4PNZutbydYrIyODmpqa047ncrlobW094UtEwkRzJXS3Q4QdkgtCMqU5Kp6yCH8H68/maGumDJ4j8RwA8gdZNIMPt2i+sasar1cF3HAxqKKZ1+vFarV+7Hmr1YrX6x1yKBGR/jjQegDSwYKF4rTis18gYrDCpEJMmKjrqKPd0250HJFTCuR93sSJE/nggw/YvHkzX//617nlllvYu3fvoLMtXbqUhISEvq+8vLxBjyUiIVZf4v81dSKYB3VK0IDFTL0Er8nC9PhOJsd3hWROGZl6zzXLbd2O2dszqDEumJBGrD2CqpYu3q9sCmQ8CaJBFc0uvvhi7rjjDqqqqvqeO3r0KHfddReXXHJJwMKJiJzJm0f9Kx7yI/OJjIg0OI3I2UVbo8mJzwGg0lVpcBqRUwvkfZ7NZmP8+PHMmTOHpUuXMmPGDP73f/+XzMxMuru7aW5uPuH9tbW1ZGaevgvyfffdR0tLS99XZaX+fyQSFnxeaDjgfxyiDzp9QOw0/xbwz6oBgAxRXcxEnBEJ2D0dZLbvGdQYkVYLlx7fovkvbdEMG4Mqmv3617+mtbWVsWPHUlhYSGFhIQUFBbS2tvKrX/0q0BlFRD7G5/Px9tG3ARgfGZruSyKBMD7Z/+e1skv/2JfhKZj3eV6vF5fLxZw5c7BaraxYsaLvtf379+NwOFiwYMFpr7fb7cTHx5/wJSJhoOUIuDshIhIS80MyZVdEPLa0MVh8PVydqQYAMkQmM46EeYC2aI42g1oXm5eXx/bt21m+fDn79vkPcywuLj7hMFcRkWDafHQztV214IK8SG3PkfBRlFzE6kOrOdp9FCxGpxH5uEDd5913331ceeWV5Ofn09bWxvPPP8/q1atZtmwZCQkJfOUrX+Huu+8mOTmZ+Ph4br/9dhYsWKDOmSIjUcN+/68p48Ecmv/4NUX6V3YX9hwkweoJyZwysjkSz2HiseWMad7MpvxbBzXG+RNSibNHUNvqYpujiXljkwOcUgJtQCvNVq5cyeTJk2ltbcVkMnHppZdy++23c/vttzNv3jymTJnC2rVrg5VVRKTPi3te9D/YDxGm0JyLIRIIWbFZxFhjcPvcoHqvDCOBvs+rq6vji1/8IhMnTuSSSy5hy5YtLFu2jEsvvRSAxx57jKuvvprrr7+eCy64gMzMTF5++eVg/XgiYhSfD+qPb81MnRiSKb0+aI7MBmCKe19I5pSRz3H8XLPMtj3YegZ3Nq09wsKlU9RFM5wMqGj2+OOP89WvfvWUS+ETEhK47bbbePTRRwMWTkTkVLw+Ly/tfcn/zeCOFBAxjMlk6tuiSZGxWUQ+KtD3eX/4wx84dOgQLpeLuro6li9f3lcwA4iMjOSJJ56gsbGRjo4OXn755TOeZyYiYaqtCrrbwGILWdfMw502eix2PB3NjPUcDsmcMvK1RmbTFJmHGQ+5LdsGPc410/0F3Td2VePRFs1hb0BFsx07dnDFFVec9vXLLruMbdsG/4dHRKQ/Nh3ZxJHWI8RExEC50WlEBk5FMxmOdJ8nIkFRf3xrZnJhyLpm7muPAqCjZA0WBtb1V+RMHInnAJDf8t6gx1g0PpX4yAjq2lxsPaQmFcPdgIpmtbW1p2xB3isiIoL6+vohhxIROZPerZkXZlwIg+v4LGKowqRCTJggHao7tTRfhgfd54lIwPl8H+maGZqtmS6PifIOOwAdu1eGZE4ZPQ4f36I5ZgjNAGwRZi6f4l9Z/fou3QcOdwMqmuXk5LB79+7Tvr5z506ysrKGHEpE5HQ+ujXz0uxLz/JukeEpyhpFhtV/nsWGug0GpxHx032eiARcRz10NftXmCWPC8mUpR2ReHwm7D1tdNdqS4IE1pGEuXgxk+w8TKyrdtDjfGJ6bxfNGm3RHOYGtD72qquu4oEHHuCKK64gMjLyhNecTif//d//zdVXXx3QgCIysjkcDhoaGvr9/p2NO6lqqyImIobExsTgBRMJsrzIPGrcNayvW290FBFA93kiEgTHyvy/Jo7xn2kWAiVt/r+/kpxHQzKfjC6uiDjqYieR2b6XvJZtlKRfNahxFo1PJSHKSkO7i/cqGllQmBLgpBIoAyqaff/73+fll19mwoQJfOtb32LiRP8S23379vHEE0/g8Xj4r//6r6AEFZGRx+FwMKl4Es5OZ/8vuhRYBB3vd/Dl738ZgPb2wXWvETFSnj2PLW1beK/hPVw9LuwRdqMjySin+zwRCbhjpf5fU0NziGeL20JVlw3wkdSlopkER2XCXDLb95LbsnXQRTOrxcwVUzL529ZKXt9VpaLZMDagollGRgYbNmzg61//Ovfddx8+n38Zoclk4vLLL+eJJ54gIyMjKEFFZORpaGjA2enkuvuvI21M2lnf7/P5+Fv932j1tLLk/CV4Ejys+uMqurq6QpBWJLBSIlKgDZxxTtY61rJk3BKjI8kop/s8EQmo7nZoO35eU28DnCDbd3yVWX5UN1avKyRzyuhTmTCHeUefI28IHTTBv0Xzb1sreWt3DT+8ZgoRlgGdniUhMuD2JWPGjOGNN96gqamJsrIyfD4fRUVFJCUlBSOfiIwCaWPSyJpw9nNyattraa1pxWKyMG/qPPb3dmMSCUMmkwlKgdnwRukbKprJsKD7PBEJmGPHzxOLywJ7bNCn8/mgpN1fNCuO60LHq0uwVMXPxGOykOCqIr7rKK2ROYMaZ0FhCknRVhrau9lc0cii8akBTiqBMOhSZlJSEvPmzeOcc87RjZSIhMS+hn0AFCYXYgvRuRgiQXX8qJc3y940NofISXSfJyJD1rs1MyU0q8xqXFZa3BFYTV4KY7QLQYLHbYmmNnYKwJBWm1ktZq6Y6u+i+a+dKvMOV1r/JyJho6ShBIBJqZMMTiISIOVgMVnY17CPiqYKo9OIiIgEhscNTYf8j1NCc57Z/uNbM8fHuLDqX7kSZJUJcwHIa9k6pHE+MS0bgLd2V9Pj8Q45lwSe/joRkbDQ5GyitqMWEyYmpkw0Oo5IYLhgRtIMQKvNRERkBGk6BN4esMdDzNnPrR0qrw9KO/wNdSbEapWZBF9lwhwAclu2+fcGD9K545JJjrHR1Olm48FjgYonAaSimYiEhX3H/FszxySMIdoabXAakcBZlLEI8J9rJiIiMiI0Hj/PLGU8mExBn66qy0qnx4Ld7CUvujvo84lUxU2nx2QlrruOxK7KQY8T8ZEtmq9ri+awpKKZiISFAw0HAJiYqlVmMrIsSvcXzVZWrKSrR5+Oi4hImPP5oPGg/3FyYUimPHC8AUBhjAtL8Gt0IngskdTETQWGvkXz6mn+hmhv7anBrS2aw46KZiIy7DndTg63HAbQ1kwZccbHjScnLgdnj5M1h9YYHUdERGRoOhvA1QomCyTmB306rw/KtDVTDNB7rlnuEJoBAJxTkExqrI3mTjcbyrVFc7hR0UxEhr2ypjJ8+EiLTiMpSl3cZGQxmUxcVXQVoHPNRERkBOhdZZaYDxZr0Kc76rTi9FiINHvJjdLWTAmd3nPN8lq2DulcsxO3aFYFJJsEjopmIjLsHTjm35o5IWWCwUlEguPK8VcCOtdMRERGgL6tmeNCMt2Bjt6tmV3amikhVRM3jR6znRh3I8nOoXVB7+2iuWxPLd092qI5nKhoJiLDmsfroayxDFDRTEauS8ZdgtVspbSxtO/Pu4iISNjpcUHL8UPRQ3CemdcH5cfPMyuKdQV9PpGP8pht/H/27ju+rfre//hLy/LeO7Gd5QyyB4SQsDeUfWlLQ4GWtve2oS2lE3rpbun43c5LS0tbelugUFpCGQkrJCEJ2Xs4jrNsx1vxtrUsnd8fig2BDCeWdGT7/exDD8nSOd/vJ6hxjj76fj7f2pRpwMD7mp03OpOcFCdtbj9rDrjCEZ6EiZJmIhLTqtur8fR4SHQkMjJ1pNnhiEREqjOVBcULAFhaoRJNEREZpForwQhCfDpEoaXGEXcc7qCVeGuQIpVmigl6+5oVDbCvmc1q4TrtohmTlDQTkZhWfrQcgNLMUqwW/cqSoau3r9mS/SrRFBGRQeq9pZmWyNdKVnSGNgAYl+zBqtJMMUFvX7ORbZtDCeMBuH5ab4lmvUo0Y4g+gYpITFM/MxkuepNmKw6voNvfbXI0IiIiZ8gwoOVYX6co9DMLGLD/WD+z0iSVZoo5GpIn47MmkNDTRnb3gQGNNackg9wUJx2eHlZVNIUpQhkou9kBiIicTLO7mWZ3M1aLlbEZke+LIWKmSdmTKE4rpqqtihWHV/Ql0URERAYFTyt42sBiDe2cGWFH3HF4glYStGumhFFHezt1dWdWHnnIOZEJ7q2kVr/FzrRkAFyuUF+ysrKyMxrr3Hwbr3TAX1fsJsNdc9xr2dnZFBdH/u+WHE9JMxGJWQeaQ9/WFKUW4bQ7TY5GJLIsFgvXjbuOxzY/xpKKJUqaiYjI4NJyOHSfOgJscRGfruLYBgAqzZRw8PgDAGzatImtew+e0bkJJW6+Wwr2spf4w456APzNoYTXnXfeeUZjOUdMIv/On7F8n4u/fv4aCPjfnScxkb1lZUqcRZmSZiISs/a3hHYRHJc5zuRIRKLj2tJreWzzYyzdvxTDMLBEoR+MiIhIWPQmzTJGRXyqUGlm6AvV0mRPxOeToc/XE0qaTR+bywXnzjyjc7ODBeDby2W5bfzn9bMxLFbWveNnVRlc9LEvMGf+Jf0eyzBgaa2B25nER3/8DwoTDQAaqg7w1E++isvlUtIsypQ0E5GY1BPs4dCxvhhKmslwcdnoy4izxXGw5SAVzRXq5SciIoODYYR2zgRIL4n4dEfccXiDVhJsAUbE+09/gkg/JcU7KMhKPaNzAsYEvHXxJBgepqV20BhXRGpCaLVlWt5IRpZOPqPxxhuNbD/SRpsji/NK887oXAk/bQQgIjGpuq0af9BPclwyeUn6x0KGh+S4ZC4quQiAJRXaRVNERAaJzgbo8YTKMlMKIj7dgWOrzMYmeVWaKaYzLDZqnKHNL4q8+wc83rjcUF+0g02dBIPGgMeTgVHSTERi0v7m0D84YzPGqkRNhpXrxoV6mS3dv9TkSERERPqptzQzvRistohOZRhw8FjSbEyids2U2FAdVwrASG/FgMcqTEsgwWHD0xOkptU94PFkYFSeKSIxSf3MZLh4/65Kxb5Qn4rlh5azZsMaEuwJJz1XuyiJiEhM6CvNHBXxqRq9droCNhyWIEXaNVNiRLUz9JllhO8gFiMwoLGsVgtjcpLYXdvO/qZOijITwxGinCUlzUQk5rR722nsagRgTMYYk6MRiYzO5k7gJLsqfRH8GX4WfHwB7Dv5GAmJCewt26vEmYiImMZiBKCtOvRDRuT7mR3sDq0yK0n0YVfdlMSIJkchHksi8UY3ef4jAx5vbE4yu2vbOdDUySXjc8IQoZytmEma/fjHP+bBBx/ki1/8Ir/85S8B8Hg8fPnLX+aZZ57B6/Vy9dVX89vf/pa8PPU3EhnKekszR6SMINGhb1ZkaPJ0hnb7uvRzl1I6vfS411a3rWZP9x7O+dQ5LEhbcMLzmyqbWPyjxdpFSURETJXka4JgD8QlQWJ2xOfr7Wc2JkmlmRJDLFaOOMcyzrOTIm8FA+2EVZSZQJzNSpc3QH27dog1U0wkzTZu3Mjvf/97pk2bdtzzX/rSl3jllVd47rnnSEtL47777uPWW29lzZo1JkUqItFwoPkAoNJMGR4yRmRQMP74psnTj05nz6491ARqyC/NV18/ERGJWaneutCD9FEQ4X+v2vxWjvocWDAY1c9+ZtVN7WzZVzPguWtd7QMeQ4a2aue49yTNJgxoLLvVyqjsRPY1dHKgsYtRYYlQzobpSbPOzk4WLlzI448/zg9+8IO+59va2vjTn/7E008/zWWXXQbAE088waRJk1i3bh3nn3++WSGLSAQFjSAHWpQ0k+FtdPpobBYbbd42XN0ucpK0LF9ERGJTiq8+9CAapZnHVpkVxvtJsJ16V8Huzg4Afvrcen763PqwxeD29YRtLBlaevuaFfoOY6f0NEef3ricZPY1dLK/qZOSyC/ilJMwPWm2aNEirr/+eq644orjkmabN2/G7/dzxRVX9D03ceJEiouLWbt2rZJmIkPUkfYjeANeEuwJFKYUmh2OiCkcNgej0kdxoOUAFc0VSpqJiEhMSnNCov9o6IcobAJwsCse6F9pps8bKmk7/5qbuGD29AHPvfztd9i66k28PQNr8i5D11F7Pt3WZBKDnYxPaBnweCVZSdisFtrcftr9qjowi6lJs2eeeYYtW7awcePGD7xWX19PXFwc6enpxz2fl5dHfX39Scf0er14ve/+Em1v1zJakcGkt5/Z2IyxWC3q7irD17jMcRxoOcD+5v1cUHSB2eGIiIh8wCWj7FgwICET4lMjOpcnYKHG4wDOrJ9ZamY2I0sGvgouOb3s9AfJ8Hasr9l493amJh4d8HBxdislmYkcdHVR41bSzCymfSKtrq7mi1/8Ik899RTx8fFhG/eRRx4hLS2t71ZUVBS2sUUk8npLM8dmjjU5EhFzlWaGlvVXtlXi7VGzYxERiT2Xjzm2BiNjVMTnOtztxMBClqOHdIdWe0lsqo4LlWhOSxp40gxgbG4yALXdWkxgFtP+y2/evJnGxkZmzZqF3W7HbrezcuVKfv3rX2O328nLy8Pn89Ha2nrceQ0NDeTn55903AcffJC2tra+W3V1dYT/JCISLl2+Lmo7aoHQSjOR4SwrMYuM+AyCRpBDrYfMDkdEROQDrhhtCz2IYj+zMUnaSVBi1xFn6EvPiQnNxNkGPt6Y7CQsltAmGPb0gtOfIGFnWtLs8ssvZ+fOnWzbtq3vNmfOHBYuXNj32OFwsGzZsr5zysvLqaqqYt68eScd1+l0kpqaetxNRAaH3lVm+cn5pDhTTI5GxHylWaELr4rmCpMjEREROZ7D3cSkHBsGFkiLbNKsx4DD3XHAmZVmikRbsz2XLmsKTmuQuSMGnjWLd9gYmZEAQOL4k+dBJHJM62mWkpLClClTjnsuKSmJrKysvufvvfdeHnjgATIzM0lNTeXzn/888+bN0yYAIkPUgeZjpZlaZSYCwLiMcWyo2cD+5v0YhoHFon4WIiISG1KaNgPQ7cgkyRG+djsnUuOOw29YSbIFyHNq90qJYRYLR5zjmODeyiWjbGwLw5DjcpKpbnaTOF49bs0Q04Wxv/jFL/jQhz7EbbfdxkUXXUR+fj7PP/+82WGJSAQYhsHB1oOAkmYivUalj8JutdPubaepu8nscERERPqkuLYA0BEX+ZKxA8dKM0cnedH3RxLrjjhDn2UuHRWeNUpjc5IBA+eIiRztVj+/aDN198z3W7FixXE/x8fH8+ijj/Loo4+aE5CIRI2r20WnrxO71U5RmjbwEAFw2ByMTh9NRXMFFc0V5Cblmh2SiIgIAMlHdwDQ4czj5B2nB84w4FBvP7NElWZK7KuOC7XXmFdk43+7B74yMslpJyvO4KjPwoYaD1cOeEQ5EzG90kxEho/eRudFqUXYrTGVzxcx1bjM0C5M+4/uNzkSERGRY1qrcbob6AkadDlyIjpVk89OZ8CG3WJQlOCL6Fwi4dBiz6G5x0m83cIE25GwjFmYGARgXY02wog2Jc1EJCYcbj0MwOj00eYGIhJjSjND31ZWtVfh7dE37CIiEgOq1gKwpS5I0OqI6FS9GwAUJfiw69OrDAYWCzu6sgGYaq8My5C9SbPdTT6au5Q8jib92hER0wWNYN9Ks9EZSpqJvFdGQgZZCVkEjSAHWw6aHY6IiAhUrgHg7crIN+Wv7A6VZo5SaaYMIju7swCYagtP0izZDr6GAwQNeLOsISxjSv8oaSYipmvuacbT4yHOFkdhSqHZ4YjEnN4SzYrmCpMjERERASpDK81WVUW2Kbk3YKHOE1rJpqSZDCY7u0JJswm2GmyB8JRUdu8L/b17bVd9WMaT/lHSTERMV+OtAWBU2iisFv1aEnm/3hLN/c37MQzD5GhERGRY63KBqxyA1RFOmlW54zCwkOHoIdURjOhcIuFU60+ipj2IwxKgsGNnWMbsTZqt2u+i0xv5VZ4Sok+nImK6Wl8tAKMyRpkbiEiMKkkvwWF10OHroLGr0exwRERkODvWz8ydMopmd2S/yDms0kwZtCwsPxxKbI1s2xyWEf2uSgqSbfh6gizfq+vBaFHSTETMZYM6Xx0AY9LHmByMSGyyW+19m2SoRFNERExV+Q4AnVnTIjqNYUDlsU0AShLV+FwGnxWHQysxi9rDkzQDOH9kPACv7VaJZrTYzQ5ARIa5EdBj9JDoSCQ3KdfsaERi1riscexr3kdFcwULiheYHY6IiAxXvUmzzMgmzVw+O10BG3aLwYgEJc1k8OldaZbfsQt7wEOPLX7AY+b564EUlu2pZ/3GzThslrMeKzs7m+Li4gHHNNQpaSYi5jq2Webo9NFYLGf/S19kqOvta1bdVo2nJzwNZUVERM6Ipx3qdwCRX2l2+Ngqs6IEH3ZdIsogdLDFoCmYQo61g8KO7VSlzz3rsdqbmwB48DMfY8Tn/oI7JYtLPvpfeA5uOusxExIT2VtWpsTZaShpJiLmOpY0G5U+ytQwRGJdenw62YnZuLpdHGg5QCaZZockIiLDTfUGMIKQXoI/ISeiU/X2MytRPzMZxHb2jOKyuJ2MbNsyoKSZu7MdgOv/8yG6C9I52Alz73mY2VlntxlHQ9UBnvrJV3G5XEqanYaSZiJiGnePG0aGHvf2axKRkxuXOQ5Xt4v9zfs5z3Ke2eGIiMhwUxUqzaRkfkSn8QYs1HkcgDYBkMFtV6CEy9hJUdvZrwh7r6zCEsaNK+LgtloafHEUjhuNVdU6EaWNAETENNtbtoMdkqxJZCZo1YzI6fSWaO5v3o9hRHbHMhERkQ+o7E2aXRDRaarccRhYyHD0kOYIRnQukUja2VMCQF7nbuwBd1jGHJmRiNNuxe0PUNemlh2RpqSZiJhmo2sjACOcI9TPTKQfitOKcVgddPo6Odpz1OxwRERkOPF7oObYLoARTppVqjRThogGI512Zz42I0Bh+/awjGmzWhidnQTAgabOsIwpJ6ekmYiYpjdpVhhXaHIkIoOD3WpnTMYYAKo8VSZHIyIiw0rNZgj4IDkPMsdEbBoDqDy2CcCoRO2aKYOdhSOpswEoat8ctlHH5iQDcKCxU9UHEaakmYiYotXTSllrGQCFTiXNRPprXOY4AKq91SZHIiIiw0pvP7PieRDBCgG3LYXOgA27xWBEvJJmMvhVp4WSZiPbwpc0K8lKxGa10O7pwdWpvyeRpKSZiJhi5eGVBAmCC5JtyWaHIzJo9PY1a/Q3QoLJwYiIyPBRGZ1NAFodoV05Ryb4sOvTqgwBR44lzfI79uAIdIdlTIfNSklmIqASzUjTryERMcVbh94KPThkbhwig01afBo5iTkYGBC56hgREZF3BXqgekPoccm8iE7VGhdKmmnXTBkq2uMLaXMWYiVAYfu2sI07NvdYiaaSZhGlpJmImOKtw0qaiZyt3tVmlJobh4iIDBP1O8DXCfFpkHtOxKaxxCXQac8AoET9zGQIOZI2C4CiMJZojslOwmIBV6ePNrc/bOPK8ZQ0E5Goa+hsYFfjrtAPh00NRWRQ6u1rxjgIGkFzgxERkaGvtzSz6Hyw2iI2TXzRFAyLlTR7D+mOQMTmEYm26rQ5QHj7msU7bIxID/XqONCo1WaRoqSZiETd8sPLAZiQOgHCU9YvMqwUpxXjsDggGfa27TU7HBERGeqq1obuSy6I6DTxo2YAUKRVZjLE9PY1y+vcS1xP+BJcvbto7leJZsQoaSYiUdfbz2xO9hyTIxEZnGxWGyPiRgCwpnGNydGIiMiQFgy+ZxOA6CTNihOUNJOhpcOZT2v8iGN9zbaHbdyxOUkA1LV56PL2hG1ceZeSZiISdcsOLQPg3OxzTY5EZPAqji8GlDQTEZEIc+0DdzPYE6BgRsSm6bImEZddAoZBkZJmMgQdSQ2tNitqD1+JZkq8g9wUJwAHXV1hG1fepaSZiETV4dbDHGw5iM1iY1bWLLPDERm0ipxFAOxq2YWr22VyNCIiMmRVHvtyZuQcsMdFbJoaR+jLoKRAG/E2I2LziJil+liJ5si2TWEdV7toRpaSZiISVb2lmeeNOI8ke5LJ0YgMXkm2JKgHA4PXD7xudjgiIjJU9fUzmx/RaWrjQl8Gpfn0RZAMTb19zXI7y8Pa12zcsb5mR5rdeHu0gUa42c0OQESGl96k2WWjLzM5EpEhoALIhyUVS/jY1I+ZHY2IiMS4qqoqXK4zSEoZBlMqVhAHVPiy6diype+lsrKysMVlGO+uNEv1u4CUsI0tEis6nXm0xBeR4almRPs2DmUuCMu4mUlxZCQ6aOn2c9jVzYR8/f0JJyXNRCRqDMPoS5pdPvpyaDE5IJHBbj9wIbx24DUCwQA2q83siEREJEZVVVUxadJEurvd/T6nJM3C4ftT8AcMZtzwGbr9Hzymo3PgK2bKO+Nx25II+j2k9LQOeDyRWHUkbRYZnmpGtm0KW9IMQrtobqps4UBTp5JmYaakmYhEzV7XXuo663DanMwrmseelj1mhyQyuFVDsj0ZV7eLTbWbmDtyrtkRiYhIjHK5XHR3u3nyoQ8zqTinX+dkdh+Atnfwxeew6jd3Hffakg37ePjPb+DxeAYc2+qjofIyb/VurGnBAY8nEquq0+YwteHfFLVtOf3BZ6A3aXb4aBc9gSB2mzpxhYuSZiISNb2rzOYXzyfeHm9yNCJDQBDm5sxlWd0ylu5fqqSZiIic1qTiHGaNH9G/g8t3QBsk5Y1l1tjjzymragpbTL1JM/fhbTC9IGzjisSa3h00c7rKcfZ04LWHZ1VYXqqTZKedTm8P1S1uRmerd3S4KP0oIlHz1uH3lGaKSFgsyA0t7V9SscTkSEREZMhpqw7dpxdFbApv0ML6llDSzHN4a8TmEYkFXc4cmuOLsRJkRHv4/v9usVgYcyxRpl00w0tJMxGJikAwwPJDywFtAiASTvNy5wGwqXYTjV2NJkcjIiJDhq8T3M2hx6kjIzbN1tZE3AEr8cFu/E2HIzaPSKzo3UVzZNvmsI47NjeUfD7Y1EXQMMI69nCmpJmIRMX2hu20eFpIiUthTuEcs8MRGTJy4nOYmT8TA4PX9r9mdjgiIjJUtB0J3SflgCNybTV6SzNH+KoiNodILKlOC30WCnfSbER6Ak67Fbc/QF3rwHsNSoiSZiISFb39zC4edTF2q9opioTTteOuBWDp/qUmRyIiIkNGb2lmWuRKMwFWHQ31dFLSTIaLI2mzAMjt2ke8vzVs49qslr5eZvtVohk2SpqJSFQsO7QMgMtGqTRTJNyuK70OgNcOvEYgGDA5GhERGRKikDRr89vY2ZYAwAh/dcTmEYkl3XHZHE0YjQWDkRHYRRNCfc0MlWiGhZZ7iEjE+QI+VlWuAuDyMdoEQCTc5o6cS0Z8Bs3uZjbUbGBe0TyzQxIRkcGsxwOdx/pkRjBptrY5iSAWxiZ5SNLKGBmCOtrbqaur+8Dzex3nMN99iKy6lazyTzrtOK2trf2aryQrEbvVQoenB1enj5wU55mGLO+jpJmIRNyGmg10+bvITsxmSu4Us8MRGXLsVjtXj7uaZ3Y9w5KKJUqaiYjIwLTVhO4TMsCZHLFpekszL8zqhMMRm0Yk6jz+0Mr/TZs2sXXvwQ+8XpPTwPzpkF23kj88f/oCQF/jIQC6u7tPeZzDZqUkK5EDTV3sb+pU0iwMlDQTkYjr7Wd26ahLsVpUFS4SCdeOuzaUNNu/hO9f9n2zwxERkcGsrzQzcrtmAqw5tgnAgqwO1kV0JpHo8vWEkmbTx+ZywbkzP/B6vOEm6N3M+KQuvnL9BNotqaccb907flZVgNfnO+3cY3OSOdDUxYGmTuaNyTq7P4D0UdJMRCKuN2l2+WiVZopEyjXjrgFgS90W6jrqKEgpMDkiEREZtKLQz6za7eBwtxObxWBuZpeSZjIkJcU7KMg6UUIslcbGkeT7q5mTWEdZ4qkT1KkJcf2ec3R2EhYLHO300drtIz2x/+fKB2nJh4hEVLe/m7VH1gJw2WhtAiASKblJuZxbeC4Ar+5/1eRoRERk0Ar4oeNYD6YIJs1Wu0KlmTPTukmxByM2j0isqnaWAlDkrQjruPEOGyPSQxtsHGjqCuvYw5GSZiISUWuq1uAL+BiZOpJxmePMDkdkSOvdRXPJ/iUmRyICjzzyCOeeey4pKSnk5uZy8803U15eftwxHo+HRYsWkZWVRXJyMrfddhsNDQ0mRSwiAHTUghGEuGSIT4/YNKvfU5opMhxVOccDUOytgDDvdDnuPbtoysAoaSYiEfXe0kyLxWJyNCJDW2/S7PUDr+MP+E2ORoa7lStXsmjRItatW8cbb7yB3+/nqquuoqvr3W+9v/SlL/HSSy/x3HPPsXLlSmpra7n11ltNjFpEaH1PaWaErt2CBqxp7k2a6UO9DE+1caPpwUZKoJX0nqawjj0mJwmAujYPXd6esI493KinmYhE1LJDywCVZopEw5zCOeQk5tDU3cQ71e9w8aiLzQ5JhrFXXz2+TPgvf/kLubm5bN68mYsuuoi2tjb+9Kc/8fTTT3PZZaF/I5544gkmTZrEunXrOP/8880IW0Si0M9sd3sCrX47ybYA09NOvRugyFDVY42jLm40Rb79FHsraHXkhm3slHgHealOGtq9HGzqYurItLCNPdxopZmIREyrp5XNdZsBJc1EosFqsfZtCLCkQiWaElva2toAyMzMBGDz5s34/X6uuOKKvmMmTpxIcXExa9euNSVGkWEvGID22tDjCO6cuepYaeb5mZ049IlUhrFI9TWD0C6aoBLNgdKvKBGJmLcr3yZoBBmfNZ6RqZHdslxEQtTXTGJRMBjk/vvvZ/78+UyZMgWA+vp64uLiSE9PP+7YvLw86uvrTziO1+ulvb39uJuIhFFnAwT9YI+HpJyITbPmqEozRQCqepNmvv2hXoJh1Js0q27pxtsTCOvYw4mSZiISMcsOHivNHKVVZiLRctXYq7BarOxq3EVVW5XZ4YgAsGjRInbt2sUzzzwzoHEeeeQR0tLS+m5FRZErHxMZlvpKM0dGrJ+ZJ2BhY2uo35KSZjLcNcQV47M4SQh2keOvDevYmUlxZCQ6CBpwyKVdNM+WkmYiEjFvHT62CcCYy02ORGT4yEzIZN7IeQAsrVhqcjQicN999/Hyyy+zfPlyRo58d9Vxfn4+Pp+P1tbW445vaGggPz//hGM9+OCDtLW19d2qq6sjGbrI8BOFfmYbWpLwBa0UxPsYm+SN2Dwig0HQYuNI3Fjg2C6aYda72mx/oxLUZ0tJMxGJiIbOBnY17gLgklGXmBuMyDBz7bhrAZVoirkMw+C+++5j8eLFvPXWW4wePfq412fPno3D4WDZsmV9z5WXl1NVVcW8efNOOKbT6SQ1NfW4m4iEiWFA25HQ4wgmzXpLM+dndkZqMZvIoFIVH7m+ZqW5ob9vlUe78QfCW/45XChpJiIRsfzwcgCm500nOzHb5GhEhpfevmbLDi7D26Nv8cUcixYt4sknn+Tpp58mJSWF+vp66uvrcbvdAKSlpXHvvffywAMPsHz5cjZv3swnPvEJ5s2bp50zRczQ1QQ9HrA6IDkvYtOsOpoCwIUqzRQB3t0MYITvAFajJ6xj56Q4SUtw0BM0VKJ5lpQ0E5GIeOvQsdLM0SrNFIm2GfkzKEguoMvfxaqqVWaHI8PU7373O9ra2rjkkksoKCjouz377LN9x/ziF7/gQx/6ELfddhsXXXQR+fn5PP/88yZGLTKM9a4ySx0BVltEpnB5bezpSADgAiXNRABw2QvotiYRZ/jI94W3H63FYmHcsdVmFSrRPCtKmolIRCw7dGwTgNHaBEAk2iwWy7slmhUq0RRzGIZxwts999zTd0x8fDyPPvoozc3NdHV18fzzz5+0n5mIRNh7NwGIkHeaQx/eJya7yXGGd0WNyKBlsfatNiv27gv78L0lmoddXSrRPAtKmolI2B1uPczBloPYLDYuLLnQ7HBEhqXeEk0lzURE5LQM492kWXrk+pmt7i3NzNaKF5H36k2aRaKvWW6Kk9R4Oz1Bg8Mq0TxjSpqJSNgtPxTqZ3beiPNIdapJs4gZrhhzBXarnfKj5RxoPmB2OCIiEss8reDrBIsVUgojMoVhwOpjmwAsyOqIyBwig1WVczwABb5KHEFPWMe2WCyU5oUS1irRPHNKmolI2Kk0U8R8afFpLCheAMDS/UtNjkZERGJa7yqzlAKwOSIyxcFuJ7WeOOIsQc7L0GoXkfdqs2fTasvCRoCR3vB/2dlbonlIJZpnTEkzEQkrwzC0CYBIjLhunEo0RUSkH/r6mUWuNHPNsVVmszO6SbAZEZtHZLCqjJ8AQIm3POxjq0Tz7ClpJiJhtde1l7rOOpw2J/OK5pkdjsiw1tvXbPnh5XT7u02ORkREYlZr5JNmq1SaKXJKVc5Q0qw4AkkzlWiePbvZAYjI0PLGwTcAWFC8gHh7vMnRiAx9ZWVlJ33NMAzyE/Kpd9fzxzf/yIK8Bce9np2dTXFxcaRDFBGRWObtCPU0A0gbEZEp/EFYeyxpdmGWPrCLnEi1s5QgFrJ6GknpaaHDnhHW8Utzk9lc2cIhVxfnRKZ14ZCkpJmIhFVv0uzKMVeaHInI0NbZHPrQceedd576wOuBc+GL//tFeF+VZkJiAnvL9ipxJiIynLUdCd0n50KEvvDc3pZIZ8BGhqOHyanuiMwhMth5rQnUx5VQ6DtMsbec3fbzwzp+b4lmu6eHBo8lrGMPZUqaiUjY+AN+VhxeAcCVY5U0E4kkT2doZ6VLP3cppdNLT3rcYc9hXm95nZR5KXz0xo9isYQukpoqm1j8o8W4XC4lzUREhrMo9DN7+2ioLGx+Vic2fVYXOakq53gKfYcp8e5jd1J4k2YWi4XS3BQ2V7VwpFuduvpLSTMRCZt1R9bR6eskOzGbGfkzzA5HZFjIGJFBwfiCk76eFchi2ZpldAQ6cIx0kJOUE8XoREQk5kUhaba6rzRT/cxETqXSOYHzO16n2LsPjCBYwpvcGpeXzOaqFurcViz2uLCOPVQpvSgiYfPmwTeB0K6Z1jD/gheRsxNni2NU+igA9jXvMzcYERGJLX4PdDWFHkcoadbmt7KtNRGABepnJnJK9XEleC1OEoJd5Pprwj5+3rESzYBhIWHMnLCPPxRppZmIDEhVVRUulwuAF3a+AMB4+3i2bNly2nNP1cBcRMJnfNZ4DrQcoOJoBfOL5psdjoiIxIreVWYJmRCXFJEp1jYnE8TCmCQPIxL8EZlDZKgIWmxUO0sZ59lFibecxrjwJrN7d9HcXNlC4jkXh3XsoUpJMxE5a1VVVUycNBF3txucwNcBK3z/nu/z/bbv93uczk596ygSSeOzxrN0/1Kq2qpw+90kOBLMDklERGJBa1XoPj1yvS1XHetndpFWmYn0S6VzQihp5ilnY8oVYR9/Qm/SbOy5dPmCYR9/qFHSTETOmsvlwt3t5paHbqErr4vXW14nzZbGR376kX6dX7G+guV/Xo7H44lwpCLDW3p8OrlJuTR2NVLRXMG0vGlmhyQiIrGg7VjSLIL9zFa5Qv3MFqifmUi/VMVPgDYo9B3CHvTSY3WGdfzs5DhSHEE6iGN9jYcLwzr60KOkmYgMWE5JDtWWamiB8XnjKSg9eVPy93JVuSIcmYj0Gp85nsauRvYd3aekmYiIQI8HOhtDjyO00qyyO44qtxO7xeD8zK6IzCEy1LTasmmzZZIWaGak7wCH488J6/gWi4XixCC726ysqnLzlbCOPvSoU7eIhMXBloMAjMkYY3IkInIi47PGA7C/eT+BYMDkaERExHRtRwAD4tPBmRKRKVYd2zVzVnoXyXaVgYn0i8VClTN03VbiKY/IFCOTQn8fdzb6aOxQ1c+pKGkmIgPW0dNBs7sZC5a+XfpEJLaMSB1BoiMRb8BLVW85joiIDF9R6Ge22hVKxl2ofmYiZ6QyfgIAJd7IJM2S7eCt2UvQgJe310VkjqFCSTMRGbAaX2g75BGpI4i3x5scjYiciNVipTSzFIB9R/eZHI2IiJiud+fMCCXNeoKwpln9zETORpWzlCAWsnoaSA60RmSOrj0rAPj39tqIjD9UKGkmIgN2xHsEUGmmSKzrLdHc17wPwzBMjkZEREzT44WO+tDjCG0CsKM9kY4eG6n2HqaluSMyh8hQ5bUm0eAI/d0sjlCJZtfe1VgtsL26lcMu9Rw8GSXNRGRgLFDjDa00G5sx1uRgRORUxmaMxWqx0uxupi3QZnY4IiJilvYaQv3M0kK3COjdNXN+Vic2S0SmEBnSIl2iGexuZVpeaGfOF7Xa7KSUNBORgckHr+ElzhbHiJQRZkcjIqfgtDv7+g5WeirNDUZERMzT288sLXL9zFYdVT8zkYGodE4EYJSnHCuRqRC4sDjUWueFbTWqQjgJJc1EZGCOVWSOSh+FzWozNxYROa3eEs0qrzYDEBEZtvo2AYhMaWZHj5WtbYkAXKh+ZiJnpS6uBI8lgXijm/EJLRGZY+6IeJx2Kwebuthd2x6ROQY7Jc1EZGCOVWSqn5nI4DAhK7TUv95XDwkmByMiIlFnDfqhs7efWWRWmq1tTiZgWBiV6KUo0R+ROUSGOsNiozI+tNpsTnJjROZIdFi5YlIeAP/eVhOROQY7Jc1E5Ky5e9xw7FpL/cxEBof0+HRyk3IxMGCc2dGIiEi0JfmbwAiCMzVi/cxWunpLM7XKTGQgDh8r0ZyTFJmkGcCNMwqBUF+zQFAlmu+npJmInLWNRzeCHZJtyWQlZJkdjoj0U2lmaejBeHPjEBGR6EvxNoQepBeBJfwd+g0DVjSFkmaX5ihpJjIQh+MnATAuoY28pMjsqHHJhBxS4+00tHtZd/BoROYYzJQ0E5GztqZhDQDFzmIsEbjoEpHI6C3RpBT8QZXNiIgMJ8m+Y0mzCJVmVnQ5qfHEEWcNMi9TmwCIDES3LYUGx0gArhlnj8gcTruND00PrTb75+YjEZljMFPSTETOimEYrGkMJc2KnJFpIisikTEidQTx1niIhy1Ht5gdjoiIREmCHRL9x1aSpEcmada7ymxeZicJNpV6iQzUofhzALg2QkkzgNtnhxJzS3fV0e7RF6rvpaSZiJyVPU17qHPXQQ+McI4wOxwROQNWi5VRzlEAvFX3lrnBiIhI1Jw/0oaVIMSlQHx6ROZY7koF4NJslWaKhMNhZ6hE86qx9tDf3wiYUZTO2JwkPP4gS3bURWSOwUpJMxE5K0sqloQeHAK7JXLfeohIZIyKHwXAivoVBI3IXICJiEhsuWTUsWu2CPUz6+ixsrElKTSXkmYiYVEfV0x7j4OMBAsTbJEpn7RYLNw+J1Q99JxKNI+jT7oiclaW7D+WNKsALjI1FBE5CyOcI8ALLlxsqNnA+SPPNzskERGJsItLbKEHYexnVlHbTM6+GgDWdeXRY1gosHfRXHOI5jMYp9bVHraYRIYSw2JlS1cul6TVMMe+n0iltG6dOYKfvrqXzZUtHGjqZGxO8hmdX1VVhcvlCls82dnZFBdHpoz8TChpJiJnrM3Txuqq1aEfKsyNRUTOjs1ig33AVFhctlhJMxGRIc4S8DJ35LGkWfrA+9G62roA+Pxv3wDeACDzms+TMh3K173J7B8+flbjun09A45NZKjZ3JnDJWk1zLYfiFjSLDc1novH57C8vIl/bT7C166Z2O9zq6qqmDhpEu7u7rDFk5CYyN6yMtMTZ0qaicgZe/Pgm/QEeyhJKqGypdLscETkbO0FpsLze5/nx1f8WLvgiogMYcnNu4i3W/BZE4lLyBzweB1uHwBX3Hw70yZPwjBgSWAGHuC68yaQd/63zmi85W+/w9ZVb+LtCQw4NpGhZktXLkHDYIytgSRvE13OnIjMc/ucIpaXN/H8lhq+fNUEbNb+XRu6XC7c3d0s/PrPyCseO+A4GqoO8NRPvorL5VLSTEQGn1cqXgFgQd4CKlHSTGTQqoA4axz7m/ezu2k3U3KnmB2RiIhESErTZgA6nPlkhfFLkszsHEaWlNDkteM5EofdYjC9JAO7NeOMxklOLwtbTCJDTVvAyabaIOeNsDGqdS27826MyDyXT8olPdFBfbuHVRVNXDIh94zOzysey8jSyRGJzSzaCEBEzkjQCLJ0/1IA5ufONzkaERkQH8zNmQuESjRFRGTo6kuaxRVEZPzD3XEAFCX4sOtTpkjYLakIlS6PblkTsTmcdhs3zxgBaEOAXvp1JiJnZFv9Nuo760lyJDEzc6bZ4YjIAF2afykAi/cqaSYiMmR1N5PYFmpE2+7Mj8gUh7udAIxK9EZkfJHhbun+UNKsuHU91mDkev/9x+yRALyxu4G2bn/E5hkslDQTkTOypCK0a+aVY68kzhZncjQiMlAX5V2E1WJla/1WDrUcMjscERGJhENvY8Fgd2OAHlti2If3BCzUeRyAkmYikbKpNkBbMBFnoIuCju0Rm2dyYSoT81PwBYK8uL0mYvMMFkqaicgZ6e1ndt2460yORETCIcOZwUUlFwHwwt4XzA1GREQi49BKAN48FJnVKVXuOAwsZDl6SHUEIzKHyHAXNGBLzxgAxjSvjtg8FouF2+eEdthViaaSZiJyBlzdLtYfWQ/AtaXXmhyNiITLLRNvAVSiKSIyZB1cAcCbByOzM+XhrlBpZolWmYlE1MaeUgDGtKyK6Dw3zyjEYbOw40gbu2vbIjpXrFPSTET67bX9r2FgMC1vGiNTR5odjoiESW/SbHXVaho6G0yORkREwqqlEpoPYlisrDwc/pVmBu/pZ5akpJlIJG3pGUvAYifTXUlG9+GIzZOV7OSqyaH+h0+vr4rYPIOBkmYi0m9L9of6mV1fer3JkYhIOBWlFTGncA4GBi+Wv2h2OCIiEk7HSjO70ifR4Qv/8F22NNxBK3GWIIXxahouEkndxHMkbTYAY5oju9ps4dxiAF7YWkOnN3IbD8Q6Jc1EpF/8AT9LK5YCcF2p+pmJDDUq0RQRGaKOlWZ25MyKyPAtcXkAFCf6sFkiMoWIvMeBzFAv2rEtb0d0nnljshiTnUSXL8CL22ojOlcsU9JMRPplVdUqWjwtZCdmM2/kPLPDEZEwu3XSrQC8efBNmt3NJkcjIiJhEQzCwdBKs46c2RGZojdpNlalmSJRcfBY0qygfQcJ/paIzWOxWPjYsdVmT62vxDCMiM0Vy5Q0E5F+6d1V78bxN2Kz2swNRkTCbmL2RKbnTccf9PN82fNmhyMiIuHQuAe6XeBIpCvjnLAPb0/Px21PwYLBKG0CIBIVHc58GpPGYyXI6Ajuoglw26yRxNmt7K5tZ8eR4bkhgJJmInJahmH0Jc1unnizqbGISOR8dMpHAXhm1zMmRyIiImFxrDSTkvkYVkfYh08oPR+AEQk+4m3DcxWKiBkOZF4MwJjmyJZoZiTF8aGpBUBotdlwpKSZiJzW1vqtVLdXk+hI5IoxV5gdjohESG/SbPnh5dR31pscjYiIDFhv0mzMxREZPnHcXADGapWZSFT1lmiOal2HLRjZv3+9JZovbq+lzT38NvtQ0kxETqt3ldk1464hwZFgbjAiEjGj0kdx/sjzCRpBntv9nNnhiIjIQPT4oHJN6PGYS8I+vMcSj3NkqORzjPqZiURVY9IEOuJycQQ9FLVuiuhcs0symJCXgscfZPGWIxGdKxYpaSYip9VXmjnhZlPjEJHI++jkYyWau1WiKSIyqB3ZCP5uSMyG3MlhH74qbjQWq43EnjZSHcGwjy8ip2CxvLuLZvPKCE9lYeH5odVmT2+oGnYbAihpJiKndKD5ADsbd2Kz2Lh+/PVmhyMiEfbhyR/GgoV3qt+hsnV49q4QERkSDh37ID3mYrCG/2NfpXMsABm+xrCPLSKn11uiOaZ5FRiRTVzfPHMECQ4b+xo62VQZuR07Y5GSZiJySv8q+xcAF4+6mMyETJOjEZFIK0gp4JJRlwDw7O5nzQ1GRETO3oHlofsIlGZ29lg5ElcCQKZPPTBFzHAkbTZeWxLJfhd5nWURnSs13sGN0wsBeGrd8PpSVUkzETml5/aE+hrdfs7tJkciItGiXTRFRAa57maoOdbnaMylYR/+raYUAhY7/qNHSAh0hH18ETm9gDWOyvR5QOR30QT6SjSX7KynqWP49DFU0kxETupw62E21W7CarFyy8RbzA5HRKLktkm3Ybfa2Vq/lXJXudnhiIjImTq4IlSulTMR0ovCPvyS+nQAusvXYAn76CLSXwcyLwRgbBSSZtNGpjOzOB1fIMjfN1RFfL5YoaSZiJzUv/aESjMvKrmIvOQ8k6MRkWjJSsziqrFXAVptJiIyKO1/M3Q/7oqwD93VY2W5KyX0uHxN2McXkf47lDGfIDZyuveT6qmJ+Hz3XDAKgCfXVeLrGR4bgChpJiInpdJMkeGrdxfNv+/6+7DbJUlEZFAzjIgmzVa4UvAGraQEWvE3Hgz7+CLSf15HGjWpMwAYezSyu2gCXDulgJwUJ40dXpbuqov4fLHA1KTZI488wrnnnktKSgq5ubncfPPNlJcfXwbi8XhYtGgRWVlZJCcnc9ttt9HQ0GBSxCLDR1VbFetr1mPBwq2TbjU7HBGJspsm3kS8PZ7yo+Vsb9hudjgiItJf9TuhswEciVByQdiHX9KQBsBo7/6wjy0iZ64i+zIAxh9dFvG54uxW7pwb2gTk/945HPH5YoGpSbOVK1eyaNEi1q1bxxtvvIHf7+eqq66iq6ur75gvfelLvPTSSzz33HOsXLmS2tpabr1VH+BFIq23NPPCkgvJT843ORoRibZUZyrXl14PwN93/t3kaEREpN96V5mNvgjszrAO7Q5YWN4UKs0c7a0I69gicnb2Z16KgYXCjh0keyO/wOhjc4tx2CxsqWple3VrxOczm6lJs1dffZV77rmHyZMnM336dP7yl79QVVXF5s2bAWhra+NPf/oTP//5z7nsssuYPXs2TzzxBO+88w7r1q0zM3SRIe/Z3c8C8B+T/sPkSETELHdMuQOAp3c9TSAYMDkaERHplwiWZr7ZmEp3wMbIBB/ZPY1hH19EzlyXM4fa1OkAjDu6POLz5aQ4+dC0QmB4rDazmx3Ae7W1tQGQmZkJwObNm/H7/Vxxxbu/8CdOnEhxcTFr167l/PPP/8AYXq8Xr/fd7U/b29sjHLXI0HOg+QDra9ZjtVi5fbL6mYkMZWVlZSd9bURgBKmOVI60H+H3b/ye83OO/3c3Ozub4uLiSIcoIiL95WmD6vWhxxFImv27Lh2Amwpa8A6fzfNEYl5F1mWMaN9G6dG32Fb40YjPd88Fo1i8tYaXdtTy4HWTIj6fmWImaRYMBrn//vuZP38+U6ZMAaC+vp64uDjS09OPOzYvL4/6+voTjvPII4/w3e9+N9LhigxpvbvlXT76cpVmigxRnc2dANx5552nPvA64DxY9IdF8PzxLyUkJrC3bK8SZyIiseLAcgj2QNY4yBwd1qFbfTZWHts186aCVv4R1tFFZCAqsi7lkkM/Z0T7NpJ8LrrisiM63/SidGYWp7O1qpW/b6hiQUZEpzNVzCTNFi1axK5du1i9evWAxnnwwQd54IEH+n5ub2+nqKhooOGJDBuGYfDUzqcA+NjUj5kcjYhEiqfTA8Cln7uU0umlJz2u0dfIC0dfwDbNxsev/Dhx1jgAmiqbWPyjxbhcLiXNRERixb7XQvfjrwn70Esa0vAbVialuBmf7D39CSISNZ3OfGpTplLYsZOxR5ezoyDy1UL3XDCKrVXbeHJdJXOvGrpZs5hImt133328/PLLvP3224wcObLv+fz8fHw+H62trcetNmtoaCA//8SrX5xOJ05neBteigwnOxp2UOYqw2lzcsvEW8wOR0QiLGNEBgXjC076er6Rz+pNq3F1uziadpRZBbOiGJ2IiPRbMAAVkUuavVua2Rr2sUVk4CqyLqOwYyelR9+KStLs2ikF/CCljMYOL+tqPBGfzyymbgRgGAb33Xcfixcv5q233mL06OOXEM+ePRuHw8GyZe9unVpeXk5VVRXz5s2Ldrgiw8LTO58G4EPjP0RafJrJ0YiI2SwWC9PzQs1lt9dvNzkaERE5qZrN0H0UnGlQ/MHezwNR63awoSUJgBvyW8M6toiEx/6sywAY2baFBF9zxOeLs1u5c24JAC/v64r4fGYxNWm2aNEinnzySZ5++mlSUlKor6+nvr4et9sNQFpaGvfeey8PPPAAy5cvZ/PmzXziE59g3rx5J9wEQEQGJmgE+fuuvwMqzRSRd03Lm4YFC1XtVRztPmp2OCIiciLlS0P3pVeAzRHWoV+sT8fAwnkZnYxI8Id1bBEJj/b4QuqTz8FKkHHNK6Iy58fmFhNnt1LR7Mc5YmhuCGBqeebvfvc7AC655JLjnn/iiSe45557APjFL36B1Wrltttuw+v1cvXVV/Pb3/42ypGKDF1VVVW4XC4ANrk2Ud1eTZI9iYLOArZs2XLKc0+1656IDB2pzlTGZo5lf/N+ttRv4coxV5odkoiIvF+E+pkZBvyzJtSv6BaVZorEtIqsy8nv3EOpaxk782+N+Hw5KU5umTGCZzdVk3ru0GztY2rSzDCM0x4THx/Po48+yqOPPhqFiESGl6qqKiZOmoi7O7S6k5uBGdC1rosL/vuCfo/T2dkZifBEJIbMKpjF/ub9bK/fzmWjLjM7HBERea/WKmjcDRYrjLsirENvbUtkf1c88dYgH1LSTCSmVWRdxoWVv6GobTPx/lY8jvSIz3nvhaN5dlM1CePPp9PfE/H5oi0mNgIQEXO4XC7c3W5ueegW0ovS+Vvj3+gxerjx6hvJv+HEm228V8X6Cpb/eTkez9Bt/CgiIeMzx5PkSKLL30X50XIyGLq7JImIDDq9q8yKzofEzLAO/dyxVWbX5beRYg+GdWwRCa+2hJE0JE0gr6ucsc0r2Z13U8TnHJ+Xwsx8J1vrvezvsDEx4jNGl5JmIkJOSQ4NqQ30NPSQmZDJjMkzsFgspz3PVeWKQnQiEgtsVhsz82eyuno1W+q2cHn85WaHJCIivfa+ErqfEN7STHfAwkvHds28fUTkG4uLyMBVZF1OXlc5pa5lUUmaAdw4IYmt9V4Od1nx+APEO2xRmTcaTN0IQERiR++ueDPy+pcwE5HhZ2bBTAAOtBygo6fD5GhERAQAdwscXhV6PPFDYR361YY0OgM2ihO8zM0YurvjiQwlFdmhNhrFbRtw+tuiMue03Dh8jYcIGBZ21URnzmhR0kxE6Ojp4HDbYSC0S56IyIlkJmQyOn00AHvde02ORkREANj3OgR7IGcSZI0N69D/qAmVev7HiBas+k5VZFBoTSihMakUmxFg/NFlUZnTYrHQvnExANuOtBIInr5//WChpJmIUO4uB2BM+hjS4tNMjkZEYtnswtkA7O3eC0Nn5b2IyOC196XQ/aTwrjI70OVkbXMyVgxuK2wJ69giEll7s68FYGLTq1Gbs6vsbeKtBl3eABUNQ6ciQUkzkeHOAuXdoaTZjIIZ5sYiIjFvYtZEUuJScAfdMMnsaEREhjm/G/YfW0kS5tLMJ6tCq8wuy2lnRII/rGOLSGSV51yFgYWR7VtJ8dZHZ9JAD2NTAgBsqWrFMIbGajMlzUSGu3HQFewiwZ7ApGx9AhaRU7NZbcwuCK024zxzYxERGfYOvAX+bkgrhoLpYRu2u8fCP2tDSbOPFx8N27giEh2dzjyOpM4CorvabHRyELvVQlOnlyMt7qjNG0lKmokMd8c++87In4Hdqg11ReT0ZhXMwoIFiqG8rdzscEREhq+yl0P3E6+HMG7k9GJ9Bh09NkoSvFyY1Rm2cUUkevbmhHbTjWbSzGmDcwpSAdhSNTTKuvUJWWQYa3Q3wvjQ41kFs8wNRkQGjRRnCqPjR3PQc5B/HP4Hd3CH2SGJiAw/AT/sWxp6HMZ+ZoYBf63KAuDO4qPaAEAkhnS0t1NXV9evY1sCk7kUO9ndBzAOv0O9c3Tfay6XK1IhMqM4nR01bRw+2k1zl4/MpLiIzRUNSpqJDGP/rv43WKEgroDsxGyzwxGRQWRK0hQOeg6y9MhSjnYfJSsxy+yQRESGl0Nvg7sFErOh6PywDbulLZE9HQk4rUH+QxsAiMQEjz/UK2zTpk1s3Xuw3+edOy2bG3Lrsa75NX/Y/24rnkBnM0C/E3BnIiMxjjHZSRx0dbG1qoXLJ+WFfY5oUtJMZJjqCfawuDK0LfCkRPUyE5Ezk+fIg1rwFnp5bNNjfPOib5odkojI8LLnhdD9OTeCLXwf6/54OPRF6k0FrWTEBcI2roicPV9P6O/i9LG5XHDuzH6f1xJIAv+z3DOqiboJd2JYQh269pZX8NJ2aG1tjUS4zCrO4KCri7L6DuaNzSIxbvCmngZv5CIyIC+Wv0iDpwG6YFT+KLPDEZFBxmKxwFrgNvjfjf/LVy74Ck670+ywRESGh4Afyl4KPZ58S9iGreyO49WGNAA+NaopbOOKSHgkxTsoyErt9/Gtxmw8df8m3WhnToqLI85xADQkx0cqRAAK0+PJTXHS2OFl55E25o4ZvBUJ2ghAZJj6zYbfhB5sAbtF+XMROQt7IDc+l/rOep7Z9YzZ0YiIDB+HVoZKM5NyoGR+2Ib94+FsDCxcmt3O+GRv2MYVEXMELA4qEkI7607s3hy1eS0WC7OKMwDYfqSNnkAwanOHm5JmIsPQzoadrDi8ApvFBhvNjkZEBq0AfGT0RwD4+bqfYxiGyQFJLHn77be54YYbKCwsxGKx8MILLxz3umEYfOtb36KgoICEhASuuOIKKioqzAlWZLDZHWqxwaQbwWoLy5DNPhvP1WQC8GmtMhMZMvYmzgag1L0dm9ETtXnH5SaT7LTj9gfY29ARtXnDTUkzkWHofzf8LwCX5F8C7ebGIiKD263Ft5LoSGRHww7ePPim2eFIDOnq6mL69Ok8+uijJ3z9pz/9Kb/+9a957LHHWL9+PUlJSVx99dV4PJ4oRyoyyPT4oOzl0OMwlmY+WZ2FJ2hlSmo38zK7wjauiJjrSNxYOqxpxBtuRnn2RG1em9XCjKJ0ALZWtQ7aL1eVNBMZZlrcLTy580kAPjLqIyZHIyKDXWpcKvfOvBeAH6/5scnRSCy59tpr+cEPfsAtt3zwQ71hGPzyl7/kv//7v7npppuYNm0af/3rX6mtrf3AijQReZ9DK8HTCkm5UHJBWIbs7LHy58rQBgCfGdWExRKWYUUkFlislCfOAmBSFEs0AaaMSMVhs9Dc5aOyuTuqc4eLkmYiw8wft/yRbn83U3OnMitrltnhiMgQ8JULvoLdauetQ2+xoWaD2eHIIHDo0CHq6+u54oor+p5LS0tj7ty5rF271sTIRAaBnf8M3Z9zU9hKM/+vKotWv50xiV6uz28Ly5giEjvKjpVojvbsJj4QvZWkTruNyYWhzUW2VrVGbd5wUtJMZBjxBXz8av2vAPjS+V8K7X4nIjJAxWnFLJy6EIBHVj9icjQyGNTX1wOQl5d33PN5eXl9r52I1+ulvb39uJvIsOLrenfXzKm3h2XIzh4rjx/OAeDzYxuw6fJQZMhx2QtpdIzAToCJ7uiuNptZlI4FqGrupqlj8G0woqSZyDDy7K5nqemoIT85n49N/ZjZ4YjIEPL1+V/HgoUX9r7A7sbdZocjQ9QjjzxCWlpa362oqMjskESiq3wp+LsgvQSKzgvLkO9dZXZDfmtYxhSRGGOxsCvxfACmdK0DotdfLDXBwbjcZAC2VrdEbd5wUdJMZJgwDIP/t/b/AfCF876A0+40OSIRGUom5Uzi5ok3A+ptJqeXn58PQENDw3HPNzQ09L12Ig8++CBtbW19t+rq6ojGKRJzdvwjdD/tw4Sj8VjH+1aZ2fXpUGTI2ps4ix7s5PTUMdrmiurcs4ozACiv76DTG70dPMPBbnYAIhIdbx58kx0NO0hyJPGfc/7T7HBEZAh66MKHWLx3MU/vfJpvXvhNJmZPPOXxVVVVuFxnf9GWnZ1NcXHxWZ8v5hk9ejT5+fksW7aMGTNmANDe3s769ev57Gc/e9LznE4nTqe+9JFhqssFB5aFHk/9cFiG/P2hHK0yExkmvNZEKhKmM8m9mYvjy6M6d35aPIVp8dS2edhe3cr8cdlRnX8glDQTGSZ++s5PAbh35r1kJmSaHI2IDEVzCudw44QbebH8Rb6z4js88x/PnPTYqqoqJk6aiLvbfdbzJSQmsLdsrxJnMaqzs5P9+/f3/Xzo0CG2bdtGZmYmxcXF3H///fzgBz+gtLSU0aNH8/DDD1NYWMjNN99sXtAisWz3Ygj2QMEMyBk/4OHqPXb+eGyV2dfG12mVmcgwsCvpfCa5N3N+3AESHdGde1ZJBrU76thZ08a5ozKJGyS/dJQ0ExkGNtRs4M2Db2Kz2PjSvC+ZHY6IDGHfu+R7vFj+Is/ufpaHLnyIaXnTTnicy+XC3e3mloduIack54znaapsYvGPFuNyuZQ0i1GbNm3i0ksv7fv5gQceAODuu+/mL3/5C1/72tfo6uriM5/5DK2trSxYsIBXX32V+Ph4s0IWiW3vLc0Mg5/vz8cTtDInvYurc7WphshwcCRuLK22bNJxcfs50c2ajc5OIj3BQavbz566dmYUpUd1/rOlpJnIMPDDVT8E4M5pdzIqfZS5wYjIkDY9fzq3n3M7z+15jm+v+DaLP7L4lMfnlORQML4gStFJNF1yySUYxskbDVssFr73ve/xve99L4pRiQxSTfvgyAaw2GDKbQMebm9HPM/VhHoMPTihLhzt0URkMLBY2JU0lwXtr/CpWQ4qozi11WJhZnE6y8ub2FrVwrSRaVgHwS+fwbEeTkTO2s6GnbxY/iIWLDy44EGzwxGRYeC7l3wXq8XKC3tfYHNtdLc1FxEZkrY9FbovvRJSTr5ZRn8YBnx3byEGFq7La2V2encYAhSRwWJP4rkEDAsLiu2k+uqjOvekglTiHVbaPT0caOyM6txnS0kzkSHuR6t/BMDtk29nQvYEk6MRkeFgUs4kPjb1YwB8a8W3TI5GRGSQC/TA9mM9ImcsHPBwq7sKWNucjNMa5Bvjo/uBWUTM12VLY7u/CICxbe9EdW6Hzcq0EekAbKlqPeWK9FihpJnIEFbuKucfu0P9Lx5a8JDJ0YjIcPLti7+NzWJjScUS1lavNTscEZHB68Bb0FkPiVkw/poBDWWJS+AvzaGdje8b00hxoi8cEYrIIPO2J7SYYkzHOuiJ7u+BaSPTsFkt1Ld7qGvzRHXus6GkmcgQ9t2V3yVoBLlxwo1Mz59udjgiMoyMyxzHPTPuAeDh5Q+bG4yIyGC29W+h+2kfAXvcgIZKX7CQlkA8oxO9fGZ0UxiCE5HBaLu/iNqOIPGBTtj3alTnTnLamZifAsCWqpaozn02lDQTGaJ2Ne7imV2hpfzfveS7JkcjIsPRwxc9jMPqYNmhZSw/tNzscEREBp+uo1C+NPR4gKWZ+476SJl9AwDfnVSD0xr7ZVEiEhlBrPxlmz/0w5b/i/r8s4pDG5EcaOqipTu2V7wqaSYyRH135XcxMLht0m3MyJ9hdjgiMgyVpJfw6VmfBuAby75B0AiaHJGIyCCz/e8Q9EPBdMifctbDePwB/ndjGxarjYuSargoe3A04BaRyPnT1mPJqv3LoPlgVOfOTIpjVFYiAFurWqM695lS0kxkCNpev51/7vknFix855LvmB2OiAxjD1/8MMlxyWyo2cCzu541OxwRkcHDMGDzE6HHsz8xoKF++WYFR9p76Ols5t6ssjAEJyKD3cEWg5rEyYABG/8U9fl7V5uV1bXj9gWiPn9/2c0OQEQGpqqqCpfLddxz92+4H4ArC6/Ed8THliNbTnhuWZkumkQksvKT8/n6/K/z8PKHeXDZg9wy6Rbi7fFmhyUiEvsOr4Kj+yEuGab+x1kPs6WqhT+8fQCA5tf+l5Sp54YrQhEZ5PalX8SI7t2h3omXfhPiEqM298iMBHJTnDR2eNlR08rc0VlRm/tMKGkmMohVVVUxcdJE3N3ud58sBj4JBOH1B1/n9aOvn3aczk4t0ReRyHlg3gM8tukxKtsq+dW6X/H1BV83OyQRkdi36c+h+2kfBmfKWQ3R7vHzhb9vJWjAxSUJ/HX/BkBJMxEJqUucDOkl0FoJu/4Js+6K2twWi4WZxem8truB7dVtzC7OwG6LvWJIJc1EBjGXy4W7280tD91CTkkOhmHw4tEXafA3MCl5Ehf+6MJTnl+xvoLlf16OxxP7W/2KyOCV6Ejkkcsf4a4X7uKHq37IJ2YOrMxIRGTI62yEspdDj+d88qyGMAyDh57fyZEWN0WZCXxqZip/DWOIIjL4GRYrnHsvvPEt2PA4zPw4WCxRm780N4U1+4/S6e1hb0MHUwrTojZ3fylpJjIE5JTkUDC+gL2uvTTUN+CwOrh22rWknOZbSVeV65Svi4iEy8JpC/nV+l+xuW4z31nxHT5V8CmzQxIRiV1bn4SgH2/ONHbX+qH2xK02TuXNg928vKMNmwUWzUyk6kA5AGVVTWEJsdbVHpZxRMQ8hw4dYvvY+Uy1xmGt30H5m3+lK2vqGY9ztm1/bFYLM4vSWbXfxdbKViYXpGKJYtKuP5Q0ExkiAsEAyw4tA+D8keefNmEmIhJNVouV/7nqf7jk/y7hD5v/wOUXX252SCIisSnQ01ea+YX/28If7pt9xkPE5Y0l/86fYbHH4Vr+BHf8+F99r935o3+ELVQAt68nrOOJSOR1doSS3g8//DAPPwyP3xDPp2bFsfPxz3L7c+7TnH2Kcc+i7c/kEamsP9RMc7ePw0e7GZ2ddNbzR4KSZiJDxKbaTbi6XSQ6Ermg6AKzwxER+YCLR13MTRNu4t/l/+aXe35pdjgiIrGp/BVoq8Yfl8b/banmyYc+zKTinH6f3haI46s1F+AKxDEnoZFv3JOP9ROL+OOSTfzuxfVccfPtTJs8acBhLn/7HbauehNvT+zueiciJ+Z1hxJjF33sC8yZfwktPdXQ/DC3nhPH93/9S1ps/f+dA1C2YSVL/+9XZ9X2x2m3MWVEKluqWtlS1aKkmYiEnzvgZkXlCgAuG3WZdqYTkZj10yt/yisVr7C6cTWMMTsaEZEYtO4xAFwlN+AN/JZJxTnMGj+iX6f6g3DX5jG4AgmMTvTy5/MbSXWEzi3csA+AzOwcRpaUDDjM5HTtwi4y2KXljWRk6WRgMpW7XqKkbQPXOrfy9ugvndE4DVUHBhTHjKJ0tlW3cqTFTWN7bPXbjr2tCUTkjG3q3ISnx0N+cj4zC2aaHY6IyEmNzxrP5+Z8LvTDtRA0guYGJCISS+q2Q9U7YLXjGnXjGZ1qGPDtshGsbU4myRbgDzMPk+rQ71gR6Z8thR8DYErDv3H0dEV17pR4B6W5ofZCW6paozr36ShpJjLY5cHe7r0AXDP2GqwW/bUWkdj2nUu+Q3pcOuTArq5dZocjIhI71v8+dH/OTfgTzqw86vHD2Tx9JAsLBr+cVk1psjcCAYrIUHU4Yx7NCSU4A11Mafx31OefVZwOwL7GDrpjqFWiPl2LDGKGYcC1YGAwOWcyJekDX2ovIhJpGQkZ3DfxPgA2d26m03fmTWNFRIaczkbY+c/Q47mfPaNTl9Sn8aN9hQD894Q6rszVzpYicoYs1r7VZrNq/441GN3MVW5qPCMzEjAM2N9hi+rcp6Kkmcgg9mbdmzAKbNi4csyVZocjItJvNxXfBDXgN/wsO7jM7HBERMy3/vcQ8MKIOTByTr9Pe+doEvfvKALgriIXnyxxRSpCERni9uRcR5cjk1RvPeNdr0d9/lnFGQAc6rRiiUuI+vwnoo0ARAYpt9/dt/vc9OTppMWnmRuQiAxLZWVn1wi6fG85LAE+DdsatjG7cDYjU0eGNzgRkcHC2wkbHw89nv9FsFj6ddqOtgQ+vXUUPsPKNbltfHtSbX9PFRH5gIAtnq0FH2VB1W+ZU/M39uZc2+/fR+EwKiuRzMQ4mrt9JE+/OmrznoqSZiKD1M/e+Rn17npogxn5M8wOR0SGmc7mUEnlnXfeOaBxxtjHcLDnIEv3L+VTMz+FRZ/2RGQ42vJX8LRB5liYeP1xL5VVNZ3wlEpfMt+qm0hX0Ma0eBefSNzM9oqTN/6vdalkU0ROb0fBbZx35C/kdO9nVMs7HM6cH7W5LRYLM4vTWba3kdQ5N9ITNKI298koaSYyCO07uo8frfpR6IfXwT5Rf5VFJLo8naHtwC/93KWUTi894/Mr1lew/M/LmchEamw11HbUsrV+K7MKZoU7VBGR2Bbww9pHQ48v+DxYQ7186urqALjzR//4wCmOrCLy7ngEW1Ic3tp9vPzsN3nJ5+7XdG5fDHXYFpGY47WnsiP/FubUPsW5Nf8X1aQZwMT8FFbva4DUXNYe8XBe/6vVI0KftEUGmaAR5DMvfQZvwMu8nHms3b3W7JBEZBjLGJFBwfiCMz7PVRXquRNviefikot5/cDrLDu0jEnZk0hwxEYPCxGRqNj1L2g/Akk5MP2OvqdbW1sBuP7DdzKhdEzf8+1GPG8HJuIljnS6uLCog7ivfvW00yx/+x22rnoTb08g7H8EERlathR+jJl1zzKyfSsj2rZSkzYzanPbbVbGpgTY1eCh25catXlPGo/ZAYjImfnjlj+ysnIliY5EHpr2EDdwg9khiYgMyHmF57G1bitN3U2sqFzBteOuNTskEZHoCAZg1f+EHs/9L3DEf+CQrNxcRpaEdkhv8NpZVZuBFyvZcX5uLewiwda/fpDJ6WfXg1JEhp8uZy67c29kWsPzzK3+I8+nPRrV+celBHn1O5/g6rtWR3XeE9HumSKDSG1HLV99I/RN4g8v+yGFiYUmRyQiMnA2q41rxl0DwMaajTR0NpgckYhIlOx5AVz7ID4NzvvMKQ+tcTt4viYDT9BKrtPPrYUtJNjM7/cjIkPTxpF3E7DYKGnbQEH79qjO7bCC0c+S80hT0kxkELlvyX20e9s5b8R5fP68z5sdjohI2IzJGMOk7EkYGCzdvxTD0AdBERnigkFY+bPQ4/MXQfzJy5AOdcWxuC4Dn2FlRLxPCTMRibj2+EL25H4IgPOr/2hyNOZR0kxkkHi+7HkW712M3Wrnjzf8EduxJrEiIkPFVWOvwm61U9lWye6m3WaHIyISWWUvQlMZONNg7n+e9LBGWy4v16cTMCyMTvRyc0ELTqsSZiISeRtH3kMQG6Na15HfscvscEyhpJnIINDqaWXRkkUAfGP+N5iaN9XkiEREwi89Pp0FxQsAeP3A63h7vCZHJCISIcEgrPxp6PH5n4WE9A8cYhiQcu7NlDknE8TC+GQ31+e3YtcnOBGJkrb4kezJvQ6ACyp/Z3I05tCvXJFB4IHXHqC+s54JWRP45kXfNDscEZGImV80n4z4DDp8HaysXGl2OCIikbHrX9C4O7TK7Pz/+sDL/kCQf9cmkHnZp8BiYWpqN1fntmOzmBCriAxr64s+RcBip6RtA0WtG80OJ+q0e6ZIjFtctpgntj2BBQt/vPGPxNs/uKuSiMhQYbfauXbctTy962nWHVnHjPwZ5Cblmh2WiMSIqqoqXC5X2MbLzs6muLg4bOP1S48Plv8g9Hj+FyAh47iX27r9fPapzWxsdmIYQcb5DnBpdioWJcxEJMw62tupq6s75TF1WFiXcjXz21/h3P2/ZEPhz3j/L6TW1tYIRmkuJc1EYlh9Zz2feTm0k9LX5n+tr2xJRGQoK80qZWL2RPa69rKkYgl3T78biz4tigx7VVVVTJw0CXd3d9jGTEhMZG9ZWXQTZ1v/Ci2HISk3VJr5HodcXdz7l40cdHURZzU48o8fcMm1C7BYJkcvPhEZ8jz+AACbNm1i696Dpz3+hTgv2+ZbKfHuo3rx91nqyj/udV/jIQC6w/j7OVYoaSYSowzD4FMvfgpXt4vpedP57iXfNTskEZGouWbsNRxoPkBlWyU7GncwPW+62SGJiMlcLhfu7m4Wfv1n5BWPHfB4DVUHeOonX8XlckUvaebrereX2cVfg7ikvpeWlTXwwD+20+b2U5gWz205jXzlwAZAX5qKSHj5ekJJs+ljc7ng3Jn9Omed38NlgdX8YmYVJXHXEbS8uzHdunf8rKoAr88XkXjNpKSZSIz61fpf8UrFKzhtTp689UmcdqfZIYmIRE1afBoXlVzEskPLeOPAG0zImqDydBEBIK94LCNLB+nKq7WPQmcDpJfArLuBUP+y//d6Ob9fGVrtMaMonT/cNZs3XvyXmZGKyDCQFO+gICu1X8fuDV7LBfVbyDcauSKhjJ1JF/S9lpoQF6kQTaeNAERi0MaajXztja8B8D9X/Q9TcqeYHJGISPTNGzmPrIQsuvxdLD+83OxwREQGpr0WVv8i9Pjyb4E9jvo2Dx97fF1fwuyeC0bxj/+cR26KviQQkdjitSayLvUqAOa1L8UR9JgcUXQoaSYSY9o8bXzknx/BH/Rz66Rb+dy5nzM7JBERU9isNq4rDW1zvrFmI3Udp25UKyIS05Z9D/zdUDQXptzGivJGrvv1KjYebiHFaed3C2fxnRsnE2fXRzQRiU3bk+bTYsshKdjJuZ1vmR1OVOg3skgMCRpB7n7hbg61HmJU+ij+dOOf1PxaRIa1MRljmJwzGQODJRVLMAzD7JBERM5czWbY/ncA2i/9IQ8u3sk9T2ykucvHOQWpvPT5BVw7tcDkIEVETi1osbMq7QYAZnesIKWnxdyAokA9zURM9t6t0x/f9zj/Lv83cdY4vjf1exzcc+qdTMrKyqIRooiIqa4aexUVzRUc6TjC1vqtzCqYZXZIIiL9FwzC0q8DsKLkCzz4bDt1baGypnsuGMU3rp1IvMN2qhFERGLGgfgpVMeNpch3gIvbXuDlrE+YHVJEKWkmYqLQ1ukTcXe7YTxwB2AB3/M+7vrWXf0ep7OzM2IxioiYLdWZyiUll/D6wdd58+CbTMyeaHZIIiL9t+X/aKvezQ+Dn+Mf5ecDHkqyEvnJbdM4f0yW2dGJiJwZi4Xl6bdyZ+P/UOrZQbFnr9kRRZSSZiImCm2d7uayb17GqrhV+A0/5ySew4LP9m9r8Yr1FSz/83I8nuHRhFFEhq/zRpzHtoZtNHY1suzQMuYwx+yQREROq6e9kb+/soxfeH9OM6lYLPCJC0bzlavHkxinj2IiMjgddRSyLWkBs7re5tK25/mb5VyzQ4oY/aYWMVsKrHeuxx/0MyptFLdOuxWbtX9L9F1VrggHJyISG2xWG9eNu46/bP8LW+q2UJxVbHZIIiKntKK8kR8+s4wK9x0AjM1J4ie3TWPOqEyTIxMRGbi1qdcwwb2VzJ4mbsk8yL/NDihCtBGAiIk6/Z2wELqCXWQnZvPhyR/ud8JMRGS4KUkvYVreNABWt68G7ZMiIjFoV00bd/95A/c8sZEKdyoZdPC9i1N49f6LlDATkSHDZ03g7bQbAbgjex+lmUMzvaSVZiIm6fJ18cUNX4R8SLAmsHDqQhIcCWaHJSIS064ccyXlrnJcfhfMNjsaEZEQwzBYe/Aov1txgFUVoUoABz3cY3uV++ZmknbtR02OUEQk/PYmzGZS9yZGect5/IZ4fs7Q2+VcSTMRE3h6PNzy7C1sa94GHrh25LWkx6ebHZaISMxLjkvmstGXsXT/Urgcmr3NZockIsNYIGjwxp4GfrfyANurWwGwWS3ckHmE+9v/H6Oyk+Ca1eYGKSISKRYLy9I/zMK6H3HxKNjl3oKPm82OKqyG5vo5kRjW7e/mlmdv4Y2Db5BgS4AnIduRbXZYIiKDxpzCOWTZsyAB/nn4n2aHIyLDUHVzNz9/vZwFP3mL/3pyM9urW3Hardw1r4QVt1r4ZedXGWVthJt/B3FJZocrIhIx7fZM/toY2tn8nvi3SPHWmxxReClpJhJFbZ42rn7yal7d/yoJ9gR+cd4v4IjZUYmIDC5Wi5UL0y6El+He8feaHY6IDBNuX4CXd9Ty8T+t56KfLefXb+2nrs1DRqKDRZeOZc03LuN7l2ZR9Nai0AnzFkHx+eYGLSISBS+3jOad6h6SLF6uqvguGEGzQwoblWeKRElNew03/P0GttZvJc2Zxisfe4UEl3qYiYicjdy4XNgENos2TxGRyPH4A6wob+KVnXUsK2ug2xfoe23BuGw+cm4RV03Ow2m3QTAAf/00dB+F/Klw2cMmRi4iEj1BLNy12M2uz2dS3LaJmbXPsHXEx8wOKyyUNBOJgvVH1nPzszdT31lPTmIOr935GjMLZrLFtcXs0ERERETkPTz+AKsqXLy8o5Y39zTQ9Z5E2ciMBG6aUchH5hRTnJV4/Ilv/z84vAq/xclS5610/ONfA4pjzZo1AzpfRCSaDrQY/MlzBYsSlrKg8lGq0s/jaNI4s8MaMCXNRCLIMAwe3/I4X1j6BbwBL1Nyp/DiR19kdMZos0MTERERkWN8PUFWVTTxyo463tjTQIe3p++1wrR4rp9WwPXTCpk+Mg2LxfLBAfa9jrHiESzAJ59v5ckdXw5bbG2d7rCNJSISSa/5Z3FtYTtjWtZwfflDPD39/+ixDe7qKiXNRCLkaPdRPv3Sp1m8dzEAN4y/gadufYoUZ4rJkYmIiIiIYYCzaCq/29TKhpfepM3t73stP7U3UVbAjJHpWK0nSJT1atoH/7oXCwZ/2OyjquRm7rqoaMDxbdy4mbL1K3H7fAMeS0QkOiy8Pu5b3LltIVnuQ1x28Ce8Xvods4MaECXNRMLMMAye3vk0X379yzR0NeCwOvjR5T/igXkPYLVo7w0RERERMx3t9LKnrp2yWgf5H3uENw6GVnLlpji5bmoBH5pWwKzijFMnynq5W+CZO8DbTmP8WO5bspU7PlfEjGmTBxznocrqAY8hIhJt7rhMlkz4Af+x63NMbnyFI6mz2JN3o9lhnTUlzUTCaGvdVr7yxld469BbAEzKnsSTtz7JrIJZJkcmIiIiMnz1BILsb+pkZ00bta2eY89aCHo6uXJSDvdePo25Y7Kw9SdR1svvhr/fAUf3Q1oRb2d+Bn/wsxGJX0RkMKlJm83a4v9kftXvuPzgT3ElldKYPMnssM6Klr2IhMHOhp3c/tztzPrDLN469Bbx9nh+eNkP2fZf25QwExERETFJu9vPqoom/rTmEK/tbqC21YPFAmNzkjg/20/1/36cReemc8G47DNLmAV64J+fhKq14EyDO57Ba1cLDhGRXhtG3sPBjPnYg15uLPsKib6jZod0VrTSTOQs9QR7WFKxhF+v/zXLDi0DwIKFj039GN+/9Ptq9i8iIiJikqOdXjZXtlDe0EHQCD2X7LQzZUQqkwvTSHbaOVLRAgH/qQc6kWAAXvw8lC8BmxPu+DvkTwG2h/XPICIyqFmsLB3/A+7YcQ+Z7ko+tPfr/GvKbwlY48yO7IwoaSbDXlVVFS6Xq1/HBowAe1r3sKxuGUuOLOGoN5Qtt1qs/Mc5/8HDFz3MlNwpkQxXRERERE6ivs3DpspmDjR19T1XlJHAjKJ0RmUl9a9P2akEeuCFz8LOf4DFCrc/AaPmDzBqEZGhyWdP5sWJ/4+P7vgEIzq2c+X+7/Nq6ffgRLsQxyglzWRYq6qqYuKkibi7T7GVdzwwFhgPjAOS3vNaF9h321n5s5VccM4FEY1VRERERE7saKeXNQeOcsj1brJsbE4Sc0Zlkp8aH55Jerzw/Kdhz7/Baofb/ggTrw/P2CIiQ1RL4ihemfAIN5fdz6SmV+lw5rOmZJHZYfWbkmYyrLlcLtzdbm556BZySnKA0O6XLT0tVHmrqPZWU++rx8DoO8dhcVDkLGJcwjgSfAn8e8m/if9+mC7GRERERKTfOjx+1h1spqyuHYPQ4oWJ+SnMKckkM6l/JUBlZWWnPcbmbWPMxm+R0ryDoNXBoTnfps1bAlu29B1z6NChs/1jiIgMCR3t7dTV1X3g+TpK6Mm+j480/YrzjvyFGreTtWkn/9Khv5Vg0aCkmQiQUZxBZ1Yn+5r3UdFcQZu37bjXsxOzKc0sZXzWeIpSi7BZbQDU7fvgLwQRERERiSxvT4CNh1vYVt1K4FjTsnE5yVwwNouMfibL2pubALjzzjtPedzEbCsv3ZFISqaVNo/BfzzXypvf/sJJj+/29vTzTyEiMjR4/AEANm3axNa9B0963P7R4/nm2H3ccvT3vP72Ov5eV3TC4wKdzQAnTMBFm5JmMmwd7T7Ki9Uvwkfh/+r/j0B9oO81m8XG6IzRlGaWUppZSkZChomRioiIiEivqi4rS9dW0u0LXbuNSE9g/rgsCtISzmgcd2c7ANf/5zeZMG32Bw8wDM71rOaWjr/hxMdRaw5/KryfaV8ewbQTjLdh2cusfv7PeP1KmonI8OLrCf0+nj42lwvOnXnS49qMOazuWcqCwHoenbyD+TPGs8P2wZ7ge8sreGk7tLa2RirkflPSTAa9M2nk3+Rp4s3aN1lev5xtzdsIGAGYCAECpDpT+1aTjU4fjcPmiHDkIiIiItJfla1+8u54hI1H7UCAtAQHF43PZnRWEpYBNJXOKixhZOnk456L97dyycH/x6SO1wCoSjuXJeN/gCMuk5EnGad8x+azjkFEZChIindQkJV6ymM2Gh8mrRWmdq/nDv+/yEhOYF/i8Ym2huTYaX+kpJkMav1q5B8HTASmAWMA63teqwfK4Nrrr+XcOecO6IJLRERERMKv3ePnl29U8Jd3XMQXT8VmMThvTDazitOxW62nH+BMGAaTmpZw8aFfkNDTRhAb7xT/J5tG3oVhsYV3LhGR4chiZVn6h7EbPUxyb+balr9hN/zsSTrP7MhOSEkzGdRO1MgfQs386331lLnLOOw5TI/x7jL5XEcuY+LHMCp+FA1VDSxfuZyEqxKUMBMRERGJIYZh8MK2Gn74yl5cnV4AusrXcNul5zJhVGbY5ytq3cj8ykcp6NwNQFPiON4c903qUz5YOiQiImfPsFh5LeNj9FgcTO1ex9WtfyfO8LAt+SKzQ/sAJc1kSMgpyaFgfAFuv5sdDTvYVLcJV/e7JZuZCZlMy53G1LypZCa8e5Hlq/WZEa6IiIiInEJZXTvf/vduNhwONYMek53Enec4ufcnj5B05fNhm8cCTDPKuG3XMxS3bQLAZ01gQ9En2Vx4J0GrPi6JiESCYbHyZvrt9FgczOxaxaVti0kJtLIq9UNmh3Yc/SsgQ0Kjr5EN5RvY1biLnmBoVZnD6mBq3lRm5s9kRMoIrSQTERERiXHtHj+/eGMff11bSSBokOCwcd9l4/jUhaPZvWN72OZJ8jZxve0dvvm5JCYZf4I2CFjs7Mi/lQ0jP0l3XFbY5hIRkZOwWFmRdgtdtlQWtL/CnM7lpARa2MMMsyPro6SZDFod3g7+dfhf8J/wwtEX+p7PTcplTsEcpuZNJd4eOw0ERURERGLdmWyw1B/Z2dkUFxef9rhg0GDx1hoeWfpuKeZ1U/P55vXnMCL9+F0xXS4XtuS6MwvEMMj21zLRvYnJXRsY7dmN1RGEHBvdxLOn8Da2FXyEjviCMxtXREQGxmJhY8oVdNrSuLLlGSa4t/HNtGpeS42NRS9Kmsmgs61+G7/f9Hue3Pkknb5OKAAbNqbkTWF2wWxGpo6M+qqysrKyqJ4nIiIiEm5VVVVMmjSR7lNtsHSGEhMTKCvbe8rE2bbqVr770m62VrUCMCYnie/eOJkLS3OOO66uLpQoe/7557Eln7qnWZwlwNSUdualNzM3vYW5ac3kOo9vy/FOYyJPrD+K98qHmDn6lrP404mISLiUJZ5Luy2DDzX/hVH2o2z8dBLb3fvNDktJMxkc2r3t/GP3P/jjlj+yvmZ93/MlSSVU/quShXcvZPTE0VGPq7O5E4A777xzYON0doYjHBEREZGz5nK56O528+RDH2ZScc7pTziNsqom7vzRP3C5XCdMmjW0e/jJq3t5fksNAIlxNj5/WSn3LhhNnP2Du2K2trYCcOnMMUycUIrd8JNqdJBGO5lGK7nBJnKNJnINF5lGCzaCx53fg41KaxG7rRPZbZ3I0iNlrNryHDdcHOYdOEVE5KzUOMfxdM4DXFnzW0qSj5LfXW52SEqaSewyDIPVVav587Y/84/d/6Db3w2EepXdOulW/mvOf5FyNIU5X51D/CfMKcP0dHoAuPRzl1I6vfSMz69YX8HyPy/H4/GEOzQRERGRszKpOIdZ40dEbPxuXw9/Xn2I3644QLcvAMBts0bytWsmkJcaD4YB7hZor4OOWmivhfY6zmtYyct3JDBlxBJyfV4Sgl2nnMdtSaTWOZrauNCtIa6IgMUBQDyQmnAgYn9GERE5Ox32TH7QdgNJGx/j3PuuZZrJ8ShpJjGntqOWv27/K3/e+mcqmiv6np+QNYF7Z97LXdPvIi85D4AtzVvMCvM4GSMyKBh/5j0wXFXh6xkiIiIiEss8/gBPr6/it8v34+oKlUrOzOrh26WVzGAJPF8ZSpB11MGxL0vfqxQoHe8AmuldRNaDgw5bGh22dJodebTYc2m253HUkUeXNQ20EZSIyKDjw84f1/t48vPmrwRW0kxiQqunlcVli3lm9zO8efBNgkboSijJkcRHJn+Ee2fdy7yR87QDpoiIiMggYQ36mDvCRtqhV3h6+2p+cyCPup5kAIotDXzZ/hw3dr6DZdtJBkjIgJRCSC2E1AJ2HHbx67/8i0mX3EzOuGl02tLwWhKVGBMRkYhR0kxM0+5t55V9r/DM7md4df+r+ALvNmedXzSfT878JB+e/GGS45JNjFJERERETivgh86G0CqxY7fR3V4+ec+HuWtjETWEeqQVcJQv2J/nPxxrcWQUQvolkFYE6SWQXgRpIyGlIJQocxy/a+bOp57iT1uf4a75RcxwFJrwhxQRkeFGSTMZsDPZmrzB3cDKhpWsrF/JJtcmeoyevtfGpozlqsKruKrwKoqTi8GAfbv2nXI87T4pIiIiYoIeL7TXQGsVtFWHEmXHKgUOBvP5S+Am/hm4iG5CfWezHT4WnePljvPGEp/zW0jOB6v5ZTciIiKnoqSZDEhVVRUTJ03EfbKtyW1AMTAGGAu8/0tBF7AH2AUHGg/wu2P/O1PafVJEREQkggwDOuqh+QA0HwwlyTD6Xm4zEnnNsoB/Gxeyxje273lf4yG+dN0MPn/TPOIdNhMCFxEROXtKmsmAuFwu3N1ubnnoFnJKcjAMg+aeZo54j1DjraHOV0eAwHHn5DnyKIkvYVT8KJqqmlj+1nLtPikiIiIx6UxW1PdHdnY2xcXFYRsvnPF9YAW/3w0th44lyg59oDl/pzOXlY6LedE/m+XtI/EZ764cuzynnYtsZdzzk+/jHfN9/uWtHHB8a9asGfAYJ9LR3k5dXd2Ax2nv6AhDNCIiEkuUNJMB8QV8MBLqsurY699LVVsVXf7jt/9OjktmTMYYxmSMYWzG2ON6lPXUhsoztfukiIiIxJrQivpJuLs/uJPj2UpITGRvWVlYEmfhjs8CzCqwktS4EbreCu1k+Z7VZH5rAtuS5rPaMps1nlFsa0+lx3i3Cf/4ZA83FbRwY34rRYl+nnh1NwAPP/xwWOLr1dZ5kgqHM+Txh77Y3bRpE1v3HhzweL7GQwD09PSc5kgRERkslDSTfjMMg5qOGjbVbmJN1RreOfIOG2s2wqdgXcc6OPblmsPqYFT6qL5EWU5ijna9FBERkUEntKK+m4Vf/xl5xWNPf8JpNFQd4KmffBWXyxWWpFk44ksKdlDq28NE3w7GdW0hw+aGwF68bXYqjBJ2O6ayxz6J3YFi9rjT6O4+vsSyJMHLdflt3FTQysSU41f+17hCF4fzrrmZ0nFjzu4P+R4bN26mbP1K3D7f6Q/uB19PKGk2fWwuF5w7c8DjvfVWF5srIBAMnP5gEREZFJQ0C4OBLosP9zL9M3Wi+ANGgKrOKva27WVf+z7K28opby+n1df6wQG6oCSzhNLCUorSihiRMgKbVT0rREREZGjIKx7LyNLJZodxUmcSnzXoJ699J5lHN5PUuhejq5mjpLLRyOJ5YyEH/blUUkgj6QSxwvvyU5mOHi7I6mRBVifzMzsoSvSfds6ikYXMmDbw/36HKqsHPMaJJMU7KMhKHfA4ifFxYYhGRERiiZJmA3TaRvj9kJCYwN6yvaYkzvYd3Me0S6fhTfZCFpB97JYLOE5wQhBoAqrfc2uG+f8zn9LiM+9JJiIiIiL9EwwaeHuCePwBPD0Bajt6cOSMxuW10OPqwtsTxBcI4usJ3bw9gdBqKm8HeDvx+Hy09zhoIZkglwCXnHK+VHsPk1M9TE5xMyXVzeRUN2OTvFhVQCAiIsPEoEiaPfroo/zsZz+jvr6e6dOn85vf/IbzzjvP7LCADzbCP1NNlU0s/tHisC3Tf7+eYA+1HbVUtlZS1VZFZdu79/uO7uNwy2GCnwye8Fy7xU6WPYssR+iWbc8mw5GBfYQdZoSOUSN+ERERGYhYvc7z+AN8Z8VR8j76I1Y22HG0VWMYEDQMDEL372n3BXzgxw884fc5KPzU7/j80kbil6847fFBw8DjD+L2B/D4A3h7PnjNVvjJ37CyAWioPcWfxgKkvO8ZgyRbgHhnHPFOJ8lOO25XLZtfeJyHbpzEpy4qISeuB3XYEBGR4Szmk2bPPvssDzzwAI899hhz587ll7/8JVdffTXl5eXk5uaaGpvb72Zt41oYA958L+4cNxZCVxa9PbwsWLBarFgsx+7f87MFC44eB2RAbXctOW052Kw2bBZb373VYiVoBHH3uHH73XT7u/seu3vcdPo6cXW7PnBr6m6isauR2o5agsaJk2J9PJCbkktBZgFZiVlkJ2STk5RDZkImVov1lKeqEb+IiIicrVi+zgPY0egjvmQaLi/gDccXhBYcWUXUdASgo+v0h5+Cw2bBYQni72whPdFBus1DerCNNKOVVNwkW9yk0E2yxU2CNUBPQjb+lCK60ifiSRtDQpwD6/uWjG1bW87bu9+i5KZscp0jBhSfiIjIUBDzSbOf//znfPrTn+YTn/gEAI899hivvPIKf/7zn/nGN75hamwNXQ3ct/4+uAuWNC+B5rMc6Itww7IbYFlYw+vjsDooSiuiJK2E4rTivvtxmePw1fm46oKruPn3N5/V7pUiIiIiZyuWr/PibFbun5vONx96kA/d+wDZBcVYLRz7IpRjX4B+0KlWZjUdOcw/fvHfPP7HxxlfOv7Y8cefYDGC4O8GXycWbzvx3qPEexqJdzcS764jvr2S+JZ92DuPhE5If8/Jx1rKtsaPoCH5HGpSZ1CbMh1X0jgMi63vkKSz+i8iIiIy/MR00szn87F582YefPDBvuesVitXXHEFa9euNTGykDhbHONTx7Nv3z4yR2Zid9oxDAPj2Nr63seGYRA0gh94HDSCBAIB/B4/zgQnhsUgEAwQMD64447NYiPBkUCCPeG4+yRHEtmJ2eQk5pCdmP2BW1FaEfnJ+SddMbaleUtE/xuJiIiInEisX+dZjQA3Otaz1raWG6xryaISi2FgCQawYGAxglgIhp4jcOw+CMfuLYaBlQAYBjbDjz3oxe2vY/6MA1xX/XOy2pPA7wF/F7hbwdMGnlbwtHOCQs8T6nGksulQM7ZxF9NVMJfGpAk0JY3HZ0+O5H8aERGRYSOmk2Yul4tAIEBeXt5xz+fl5bF3794TnuP1evF6vX0/t7W1AdDe3h72+JJJ5vHZj3PxAxdzwZcvILso+4zHcFW7ePl/XuY3f/gNEyZM6Hs+aARDyTXDwGKxYLee/K2yWq0Eg8dKMHuA9tDNi5f9x/53MuXl5QDU7qvF5z7z7bubKptC94eaqEyq1Pk6X+frfJ2v86Nyvqs61B6gs7MzIv/G945pGP1LXsiZi/XrPPxustd8h8dvSICm34U2QgqDGVMccOA1ThdxD3Z81kQ89lS67Wl47Gl029Jw2zNod2TTGZdNRbWLH/7ph1z1iclktmcAjcduZ6dq/x4Alm89QLf39Ltins6mvaHVcIcOV36gFPRsNNSG+rbVVlezYdPAv/jVeBpP42k8jReb41VV1QDQ3d1t/nWeEcNqamoMwHjnnXeOe/6rX/2qcd55553wnG9/+9sGoa/ndNNNN91000033QZ0q66ujsYlz7Ck6zzddNNNN910083MW3+u82J6pVl2djY2m42Ghobjnm9oaCA/P/+E5zz44IM88MADfT8Hg0Gam5vJysr6QM8I6b/29naKioqorq4mNTXV7HDkJPQ+xT69R4OD3qfYF+n3yDAMOjo6KCwsDPvYEqLrvNih33mDg96n2Kf3aHDQ+xT7Yuk6L6aTZnFxccyePZtly5Zx8803A6GLo2XLlnHfffed8Byn04nT6TzuufT09AhHOnykpqbqF8sgoPcp9uk9Ghz0PsW+SL5HaWlpERlXQnSdF3v0O29w0PsU+/QeDQ56n2JfLFznxXTSDOCBBx7g7rvvZs6cOZx33nn88pe/pKurq2+XJREREREZnHSdJyIiIrEs5pNmH/nIR2hqauJb3/oW9fX1zJgxg1dfffUDTWNFREREZHDRdZ6IiIjEsphPmgHcd999J12mL9HhdDr59re//YGSCIktep9in96jwUHvU+zTezR06DrPfPr7NDjofYp9eo8GB71PsS+W3iOLYWgvdRERERERERERkfeymh2AiIiIiIiIiIhIrFHSTERERERERERE5H2UNBMREREREREREXkfJc1ERERERERERETeR0kz6fPII49w7rnnkpKSQm5uLjfffDPl5eXHHePxeFi0aBFZWVkkJydz22230dDQYFLEAvDjH/8Yi8XC/fff3/ec3ifz1dTUcOedd5KVlUVCQgJTp05l06ZNfa8bhsG3vvUtCgoKSEhI4IorrqCiosLEiIefQCDAww8/zOjRo0lISGDs2LF8//vf57374+h9ir63336bG264gcLCQiwWCy+88MJxr/fnPWlubmbhwoWkpqaSnp7OvffeS2dnZxT/FCKxR9d5g5Ou82KTrvNin67zYtNgvM5T0kz6rFy5kkWLFrFu3TreeOMN/H4/V111FV1dXX3HfOlLX+Kll17iueeeY+XKldTW1nLrrbeaGPXwtnHjRn7/+98zbdq0457X+2SulpYW5s+fj8PhYOnSpezZs4f/+Z//ISMjo++Yn/70p/z617/mscceY/369SQlJXH11Vfj8XhMjHx4+clPfsLvfvc7/vd//5eysjJ+8pOf8NOf/pTf/OY3fcfofYq+rq4upk+fzqOPPnrC1/vznixcuJDdu3fzxhtv8PLLL/P222/zmc98Jlp/BJGYpOu8wUfXebFJ13mDg67zYtOgvM4zRE6isbHRAIyVK1cahmEYra2thsPhMJ577rm+Y8rKygzAWLt2rVlhDlsdHR1GaWmp8cYbbxgXX3yx8cUvftEwDL1PseDrX/+6sWDBgpO+HgwGjfz8fONnP/tZ33Otra2G0+k0/v73v0cjRDEM4/rrrzc++clPHvfcrbfeaixcuNAwDL1PsQAwFi9e3Pdzf96TPXv2GICxcePGvmOWLl1qWCwWo6amJmqxi8Q6XefFNl3nxS5d5w0Ous6LfYPlOk8rzeSk2traAMjMzARg8+bN+P1+rrjiir5jJk6cSHFxMWvXrjUlxuFs0aJFXH/99ce9H6D3KRa8+OKLzJkzh9tvv53c3FxmzpzJ448/3vf6oUOHqK+vP+49SktLY+7cuXqPouiCCy5g2bJl7Nu3D4Dt27ezevVqrr32WkDvUyzqz3uydu1a0tPTmTNnTt8xV1xxBVarlfXr10c9ZpFYpeu82KbrvNil67zBQdd5g0+sXufZIzKqDHrBYJD777+f+fPnM2XKFADq6+uJi4sjPT39uGPz8vKor683Icrh65lnnmHLli1s3LjxA6/pfTLfwYMH+d3vfscDDzzAQw89xMaNG/nCF75AXFwcd999d9/7kJeXd9x5eo+i6xvf+Abt7e1MnDgRm81GIBDghz/8IQsXLgTQ+xSD+vOe1NfXk5ube9zrdrudzMxMvW8ix+g6L7bpOi+26TpvcNB13uATq9d5SprJCS1atIhdu3axevVqs0OR96muruaLX/wib7zxBvHx8WaHIycQDAaZM2cOP/rRjwCYOXMmu3bt4rHHHuPuu+82OTrp9Y9//IOnnnqKp59+msmTJ7Nt2zbuv/9+CgsL9T6JyJCm67zYpeu82KfrvMFB13kSLirPlA+47777ePnll1m+fDkjR47sez4/Px+fz0dra+txxzc0NJCfnx/lKIevzZs309jYyKxZs7Db7djtdlauXMmvf/1r7HY7eXl5ep9MVlBQwDnnnHPcc5MmTaKqqgqg7314/05Xeo+i66tf/Srf+MY3+OhHP8rUqVP5+Mc/zpe+9CUeeeQRQO9TLOrPe5Kfn09jY+Nxr/f09NDc3Kz3TQRd58U6XefFPl3nDQ66zht8YvU6T0kz6WMYBvfddx+LFy/mrbfeYvTo0ce9Pnv2bBwOB8uWLet7rry8nKqqKubNmxftcIetyy+/nJ07d7Jt27a+25w5c1i4cGHfY71P5po/fz7l5eXHPbdv3z5KSkoAGD16NPn5+ce9R+3t7axfv17vURR1d3djtR7/z6DNZiMYDAJ6n2JRf96TefPm0drayubNm/uOeeuttwgGg8ydOzfqMYvECl3nDQ66zot9us4bHHSdN/jE7HVeRLYXkEHps5/9rJGWlmasWLHCqKur67t1d3f3HfNf//VfRnFxsfHWW28ZmzZtMubNm2fMmzfPxKjFMIzjdlUyDL1PZtuwYYNht9uNH/7wh0ZFRYXx1FNPGYmJicaTTz7Zd8yPf/xjIz093fj3v/9t7Nixw7jpppuM0aNHG26328TIh5e7777bGDFihPHyyy8bhw4dMp5//nkjOzvb+NrXvtZ3jN6n6Ovo6DC2bt1qbN261QCMn//858bWrVuNyspKwzD6955cc801xsyZM43169cbq1evNkpLS4077rjDrD+SSEzQdd7gpeu82KLrvMFB13mxaTBe5ylpJn2AE96eeOKJvmPcbrfxuc99zsjIyDASExONW265xairqzMvaDEM44MXU3qfzPfSSy8ZU6ZMMZxOpzFx4kTjD3/4w3GvB4NB4+GHHzby8vIMp9NpXH755UZ5eblJ0Q5P7e3txhe/+EWjuLjYiI+PN8aMGWN885vfNLxeb98xep+ib/ny5Sf8t+juu+82DKN/78nRo0eNO+64w0hOTjZSU1ONT3ziE0ZHR4cJfxqR2KHrvMFL13mxR9d5sU/XebFpMF7nWQzDMCKzhk1ERERERERERGRwUk8zERERERERERGR91HSTERERERERERE5H2UNBMREREREREREXkfJc1ERERERERERETeR0kzERERERERERGR91HSTERERERERERE5H2UNBMREREREREREXkfJc1ERERERERERETeR0kzERERERERERGR91HSTESGvUAgQDAYNDsMEREREYkAXeuJyNlS0kxEYs6rr77KggULSE9PJysriw996EMcOHAAgAsuuICvf/3rxx3f1NSEw+Hg7bffBsDr9fKVr3yFESNGkJSUxNy5c1mxYkXf8X/5y19IT0/nxRdf5JxzzsHpdFJVVcXGjRu58soryc7OJi0tjYsvvpgtW7YcN9fevXtZsGAB8fHxnHPOObz55ptYLBZeeOGFvmOqq6v58Ic/THp6OpmZmdx0000cPnw4Iv+tRERERAYbXeuJyGChpJmIxJyuri4eeOABNm3axLJly7Bardxyyy0Eg0EWLlzIM888g2EYfcc/++yzFBYWcuGFFwJw3333sXbtWp555hl27NjB7bffzjXXXENFRUXfOd3d3fzkJz/hj3/8I7t37yY3N5eOjg7uvvtuVq9ezbp16ygtLeW6666jo6MDCH1LefPNN5OYmMj69ev5wx/+wDe/+c3jYvf7/Vx99dWkpKSwatUq1qxZQ3JyMtdccw0+ny8K//VEREREYpuu9URk0DBERGJcU1OTARg7d+40GhsbDbvdbrz99tt9r8+bN8/4+te/bhiGYVRWVho2m82oqak5bozLL7/cePDBBw3DMIwnnnjCAIxt27adct5AIGCkpKQYL730kmEYhrF06VLDbrcbdXV1fce88cYbBmAsXrzYMAzD+Nvf/mZMmDDBCAaDfcd4vV4jISHBeO21187+P4KIiIjIEKVrPRGJVVppJiIxp6KigjvuuIMxY8aQmprKqFGjAKiqqiInJ4errrqKp556CoBDhw6xdu1aFi5cCMDOnTsJBAKMHz+e5OTkvtvKlSv7lv0DxMXFMW3atOPmbWho4NOf/jSlpaWkpaWRmppKZ2cnVVVVAJSXl1NUVER+fn7fOeedd95xY2zfvp39+/eTkpLSN3dmZiYej+e4+UVERESGK13richgYTc7ABGR97vhhhsoKSnh8ccfp7CwkGAwyJQpU/qWvC9cuJAvfOEL/OY3v+Hpp59m6tSpTJ06FYDOzk5sNhubN2/GZrMdN25ycnLf44SEBCwWy3Gv33333Rw9epRf/epXlJSU4HQ6mTdv3hktte/s7GT27Nl9F3rvlZOT0+9xRERERIYqXeuJyGChpJmIxJSjR49SXl7O448/3te3YvXq1ccdc9NNN/GZz3yGV199laeffpq77rqr77WZM2cSCARobGzsO7+/1qxZw29/+1uuu+46INTk1eVy9b0+YcIEqquraWhoIC8vD4CNGzceN8asWbN49tlnyc3NJTU19YzmFxERERnqdK0nIoOJyjNFJKZkZGSQlZXFH/7wB/bv389bb73FAw88cNwxSUlJ3HzzzTz88MOUlZVxxx139L02fvx4Fi5cyF133cXzzz/PoUOH2LBhA4888givvPLKKecuLS3lb3/7G2VlZaxfv56FCxeSkJDQ9/qVV17J2LFjufvuu9mxYwdr1qzhv//7vwH6vslcuHAh2dnZ3HTTTaxatYpDhw6xYsUKvvCFL3DkyJFw/WcSERERGZR0rScig4mSZiISU6xWK8888wybN29mypQpfOlLX+JnP/vZB45buHAh27dv58ILL6S4uPi415544gnuuusuvvzlLzNhwgRuvvlmNm7c+IHj3u9Pf/oTLS0tzJo1i49//ON84QtfIDc3t+91m83GCy+8QGdnJ+eeey6f+tSn+nZUio+PByAxMZG3336b4uJibr31ViZNmsS9996Lx+PRt5EiIiIy7OlaT0QGE4thvGcvXxEROSNr1qxhwYIF7N+/n7Fjx5odjoiIiIiEka71RIY3Jc1ERM7A4sWLSU5OprS0lP379/PFL36R/9/eHZxAEAJRFOwUBEMyJ6MwSVMwgb3K39PCwLBQFYHH5tHYrbWvvzgAAPg/Zj3g5hAAwA/OOTXnrL139d5rjFFrrbefBQDAA8x6wM2mGQAAAAAEhwAAAAAAIIhmAAAAABBEMwAAAAAIohkAAAAABNEMAAAAAIJoBgAAAABBNAMAAACAIJoBAAAAQBDNAAAAACB8APFmyNTpQFSFAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, axs = plt.subplots(1, 2, figsize=(15, 7))\n",
+ "plt.subplot(121)\n",
+ "sns.histplot(data=df,x='average',bins=30,kde=True,color='g')\n",
+ "plt.subplot(122)\n",
+ "sns.histplot(data=df,x='average',kde=True,hue='gender')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "e7967c7a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAAJaCAYAAAA8mbA5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3ib5b3/8bckS/LeeyWO4yTOnoQkrECYhUMpLR1AaU9PoYsyDqWFU3paSknpaYHTlkLpoHBaSqGF/qCMQCbZZECmk9iOEznxjrcty7Kk3x+KDQkZHpIey/68rstXZEnPfX+cpuHJV/d9f00+n8+HiIiIiIiIiIiI9DEbHUBERERERERERGS4UdFMRERERERERETkJCqaiYiIiIiIiIiInERFMxERERERERERkZOoaCYiIiIiIiIiInISFc1EREREREREREROoqKZiIiIiIiIiIjISVQ0ExEREREREREROUmE0QGCzev1UlVVRVxcHCaTyeg4IiIiEgZ8Ph9tbW1kZ2djNuszxuFK93kiIiIyUAO5zxvxRbOqqiry8vKMjiEiIiJhqLKyktzcXKNjyGnoPk9EREQGqz/3eSO+aBYXFwf4fzPi4+MNTiMiIiLhoLW1lby8vL77CBmedJ8nIiIiAzWQ+7wRXzTrXaofHx+vmykREREZEG35G950nyciIiKD1Z/7PB3SISIiIiIiIiIichIVzURERERERERERE6iopmIiIiIiIiIiMhJRvyZZiIiIiIiIiIioeTz+ejp6cHj8RgdZVSyWq1YLJYhj6OimYiIiIiIiIhIgHR3d1NdXU1nZ6fRUUYtk8lEbm4usbGxQxpHRTMRERERERERkQDwer1UVFRgsVjIzs7GZrOpG3eI+Xw+6uvrOXLkCEVFRUNacaaimYiIiIiIiIhIAHR3d+P1esnLyyM6OtroOKNWWloahw4dwu12D6lopkYAIiIiIiIiIiIBZDar3GKkQK3u0/+KIiIiIiIiIiIiJ1HRTERERESC4ujRo9x0002kpKQQFRXFtGnT2Lp1a9/rPp+PH/zgB2RlZREVFcWSJUsoLS01MLGIiIjIh1Q0ExEREZGAa2pqYtGiRVitVt5880327t3LL37xC5KSkvre87Of/Yxf/vKXPPXUU2zevJmYmBguv/xyurq6DEwuIiIiZ/OlL32JT37yk0bHCDo1AhARERGRgHvkkUfIy8vjmWee6XuuoKCg77HP5+Pxxx/n+9//Ptdeey0Azz33HBkZGfzzn//kc5/7XMgzi4iIiHyUVpqJiIiISMC9+uqrzJ07l8985jOkp6cza9Ysfve73/W9XlFRQU1NDUuWLOl7LiEhgfnz57Nx40YjIouIiEiI+Hw+enp6jI5xViqaiYiIiEjAHTx4kCeffJKioiKWLVvG17/+db797W/z7LPPAlBTUwNARkbGCddlZGT0vXYyl8tFa2vrCV8iIiKjWVtbGzfeeCMxMTFkZWXx2GOPcdFFF3HnnXcC/v923nPPPeTk5BATE8P8+fNZvXp13/V/+tOfSExMZNmyZRQXFxMbG8sVV1xBdXV133s8Hg933303iYmJpKSkcO+99+Lz+U7I4fV6Wbp0KQUFBURFRTFjxgz+/ve/972+evVqTCYTb775JnPmzMFut7Nu3bqg/t4EgopmIiIiIhJwXq+X2bNn8/DDDzNr1ixuvfVWvvrVr/LUU08NesylS5eSkJDQ95WXlxfAxCIiIuHn7rvvZv369bz66qu88847rF27lu3bt/e9/q1vfYuNGzfywgsvsHPnTj7zmc9wxRVXnNB4p7Ozk5///Of83//9H++++y4Oh4N77rmn7/Vf/OIX/OlPf+KPf/wj69ato7GxkVdeeeWEHEuXLuW5557jqaeeYs+ePdx1113cdNNNrFmz5oT3fe973+OnP/0pJSUlTJ8+PUi/K4GjM81EREREJOCysrKYPHnyCc8VFxfzj3/8A4DMzEwAamtrycrK6ntPbW0tM2fOPOWY9913H3fffXff962trSqciYjIqNXW1sazzz7L888/zyWXXALAM888Q3Z2NgAOh4NnnnkGh8PR99w999zDW2+9xTPPPMPDDz8MgNvt5qmnnqKwsBDwF9oefPDBvnkef/xx7rvvPj71qU8B8NRTT7Fs2bK+110uFw8//DDLly9nwYIFAIwbN45169bx29/+lgsvvLDvvQ8++CCXXnppsH5LAk5FMxEREREJuEWLFrF///4Tnjtw4ABjxowB/E0BMjMzWbFiRV+RrLW1lc2bN/P1r3/9lGPa7XbsdntQc4uIiISLgwcP4na7Oeecc/qeS0hIYOLEiQDs2rULj8fDhAkTTrjO5XKRkpLS9310dHRfwQz8H3zV1dUB0NLSQnV1NfPnz+97PSIigrlz5/Zt0SwrK6Ozs/NjxbDu7m5mzZp1wnNz584dyo8cciqaiYiIiEjA3XXXXSxcuJCHH36YG264gffee4+nn36ap59+GgCTycSdd97JQw89RFFREQUFBTzwwANkZ2ePihb2IiIiwdbe3o7FYmHbtm1YLJYTXouNje17bLVaT3jNZDJ97Myys80D8Prrr5OTk3PCayd/2BUTE9PvcYcDFc1EREREJODmzZvHK6+8wn333ceDDz5IQUEBjz/+ODfeeGPfe+699146Ojq49dZbaW5u5rzzzuOtt94iMjLSwOQiIiLhYdy4cVitVrZs2UJ+fj7gXxl24MABLrjgAmbNmoXH46Guro7zzz9/UHMkJCSQlZXF5s2bueCCCwDo6elh27ZtzJ49G4DJkydjt9txOBwnbMUcCVQ0ExEREZGguPrqq7n66qtP+7rJZOLBBx884dwUERER6Z+4uDhuueUWvvOd75CcnEx6ejr//d//jdlsxmQyMWHCBG688Ua++MUv8otf/IJZs2ZRX1/PihUrmD59Op/4xCf6Nc8dd9zBT3/6U4qKipg0aRKPPvoozc3NJ+S45557uOuuu/B6vZx33nm0tLSwfv164uPjueWWW4L0OxB8KpqJiIiIiIiIiIShRx99lK997WtcffXVxMfHc++991JZWdm3avuZZ57hoYce4j//8z85evQoqampnHvuuWf8UOtk//mf/0l1dTW33HILZrOZf//3f+e6666jpaWl7z0//vGPSUtLY+nSpRw8eJDExERmz57N/fffH/CfOZRMvoFsVA1Dra2tJCQk0NLSQnx8vNFxRESGFYfDQUNDw6CvT01N7VsKLjKS6P4hPOh/JxGR4BnqfeLJRst9Y1dXFxUVFRQUFBhy3EBHRwc5OTn84he/4Ctf+UrI5x8uzvS/w0DuH7TSTERklHI4HEwqnoSz0znoMaKio9hXsm9U3ACJiIiIjBb++8RinJ2dARszKjqafSUlum8MsPfff599+/Zxzjnn0NLS0nfkwbXXXmtwspFBRTMRkVGqoaEBZ6eT6+6/jrQxaQO+vv5wPa88/AoNDQ26+REREREZQfz3iZ3c+N3/ISO/cMjj1TrK+csj39F9Y5D8/Oc/Z//+/dhsNubMmcPatWtJTU01OtaIoKKZiMgolzYmjawJWUbHEBEREZFhJiO/kNyiKUbHkDOYNWsW27ZtMzrGiGU2OoCIiIiIiIiIiMhwo6KZiIiIiIiIiIjISVQ0ExEREREREREROYmKZiIiIiIiIiIiIidR0UxEREREREREROQk6p4pIiIiIiIiIhJkDoeDhoaGkM2XmppKfn5+v9/v8/m47bbb+Pvf/05TUxPvv/8+M2fODF7A0zh06BAFBQWGzf9RKpqJiIiIiIiIiASRw+FgUnExzs7OkM0ZFR3NvpKSfhfO3nrrLf70pz+xevVqxo0bR2pqapATDn8qmomIiIiIiIiIBFFDQwPOzk5u/O7/kJFfGPT5ah3l/OWR79DQ0NDvoll5eTlZWVksXLgwyOnCh840ExEREREREREJgYz8QnKLpgT9a6CFuS996UvcfvvtOBwOTCYTY8eOxev1snTpUgoKCoiKimLGjBn8/e9/77tm9erVmEwmli1bxqxZs4iKiuLiiy+mrq6ON998k+LiYuLj4/nCF75A50dW2L311lucd955JCYmkpKSwtVXX015efkZ8+3evZsrr7yS2NhYMjIyuPnmm0Oy1VVFMxERERERERGRUex///d/efDBB8nNzaW6upotW7awdOlSnnvuOZ566in27NnDXXfdxU033cSaNWtOuPaHP/whv/71r9mwYQOVlZXccMMNPP744zz//PO8/vrrvP322/zqV7/qe39HRwd33303W7duZcWKFZjNZq677jq8Xu8pszU3N3PxxRcza9Ystm7dyltvvUVtbS033HBDUH9PQNszRURERERERERGtYSEBOLi4rBYLGRmZuJyuXj44YdZvnw5CxYsAGDcuHGsW7eO3/72t1x44YV91z700EMsWrQIgK985Svcd999lJeXM27cOAA+/elPs2rVKr773e8CcP31158w9x//+EfS0tLYu3cvU6dO/Vi2X//618yaNYuHH374hGvy8vI4cOAAEyZMCOxvxkeoaCYiIiIiIiIiIn3Kysro7Ozk0ksvPeH57u5uZs2adcJz06dP73uckZFBdHR0X8Gs97n33nuv7/vS0lJ+8IMfsHnzZhoaGvpWmDkcjlMWzXbs2MGqVauIjY392Gvl5eUqmomIiIiIiIiISGi0t7cD8Prrr5OTk3PCa3a7/YTvrVZr32OTyXTC973PfXTr5TXXXMOYMWP43e9+R3Z2Nl6vl6lTp9Ld3X3aLNdccw2PPPLIx17Lysoa2A82QCqaiYiIiIiIiIhIn8mTJ2O323E4HCdsxRyqY8eOsX//fn73u99x/vnnA7Bu3bozXjN79mz+8Y9/MHbsWCIiQlvGUtFMREREREREJMw5HI6AdRMsKSkJyDgSvuLi4rjnnnu466678Hq9nHfeebS0tLB+/Xri4+O55ZZbBjVuUlISKSkpPP3002RlZeFwOPje9753xmu++c1v8rvf/Y7Pf/7z3HvvvSQnJ1NWVsYLL7zA73//eywWy6Cy9IeKZiIiIiIiIiJhzOFwMKm4GGdnZ0DH7d2iJ4FT6ygPm3l+/OMfk5aWxtKlSzl48CCJiYnMnj2b+++/f9Bjms1mXnjhBb797W8zdepUJk6cyC9/+Usuuuii016TnZ3N+vXr+e53v8tll12Gy+VizJgxXHHFFZjN5kFn6Q8VzURERERERETCWENDA87OTm787v+QkV845PFK3lvDm8/+L11dXQFIJwCpqalERUfzl0e+E7I5o6KjSU1N7ff777zzTu68886+700mE3fccQd33HHHKd9/0UUX4fP5TnjuS1/6El/60pdOeO6HP/whP/zhD/u+X7JkCXv37j3hPR8dZ+zYsR8bt6ioiJdffrnfP0ugqGgmIiIiIiIiMgJk5BeSWzRlyOOEajXUaJKfn8++kpKAbaHtj9TUVPLz80M230ikopmIiIiIiIiISJDl5+eriBVmgrv5U0REREREREREJAypaCYiIiIiIiIiInISFc1EREREREREREROoqKZiIiIiIiIiIjISdQIQERERERERET6zev1Ud3aRXWzk5rWLkwmE5ERZhKirUzMiCMu0mp0RJGAUNFMRERERERERM7K6/Oxv6aNzRWNtDjdp3zP+rJjjEmJZsG4FDLiI0OcUCSwVDQTERERERERkTM61u7izd01HOvoBiAywkxOUhRZCVFEmE043R6ONDk52uzk8LFOKhs7WViYyuz8RGODiwyBimYiIiIiIiIicloHattYXlKL2+MjMsLMnDFJzMhLxGr5+DHpzZ3drCtroLy+g3VlDVQ2dTIryoDQw5DD4aChoSFk86WmppKfnx+y+U7lS1/6Es3Nzfzzn/80NMdgqWgmIiIiIiIiIqe05VAjG8qPAZCbFMWVUzOJtp2+lJAYbeMT07LYU9XKmgP1HD7WSXdUBJgtoYo8LDkcDoqLJ9HZ6QzZnNHRUZSU7DO8cBbOVDQTERERERERkY+pdMdw8HjBbM6YJBaOS8FsNp31OpPJxNScBBKjrfzzgyqqnWZSr7oLr88X7MjDVkNDA52dTv58/w0U56cFfb4SRz03PfwiDQ0NKpoNgYpmIiIiIiIiInKC2FlXcdCdAMCCcSmcU5A84DFyk6L5xLQsXttxlJgpF/H3ve3MnRPopOGlOD+N2RNyjI5xShdddBHTpk3DYrHw7LPPYrPZeOihh/jCF77At771Lf7+97+TkZHBr371K6688ko8Hg+33norK1eupKamhvz8fL7xjW9wxx13nHYOr9fLI488wtNPP01NTQ0TJkzggQce4NOf/nQIf9L+U9FMRESGpKSkZNDXDodzFkRERETkRE3EkLzkNgDmjU0aVMGsV0FqDLOTPWxrjODFve18rrKZmXmJAUoqgfbss89y77338t577/G3v/2Nr3/967zyyitcd9113H///Tz22GPcfPPNOBwOrFYrubm5vPTSS6SkpLBhwwZuvfVWsrKyuOGGG045/tKlS/nzn//MU089RVFREe+++y433XQTaWlpXHjhhSH+ac9ORTMRERmU9sZ2AG666aZBjxEVHcU+nbMgIiIiMmy0Ot3sJxuT2UKmpYMF48YPecwxMV7eXf8uMcUX8PVnN/GLy1KJjPh4E4GB0IevwTFjxgy+//3vA3Dffffx05/+lNTUVL761a8C8IMf/IAnn3ySnTt3cu655/KjH/2o79qCggI2btzIiy++eMqimcvl4uGHH2b58uUsWLAAgHHjxrFu3Tp++9vfqmgmIiIjR1d7FwCLv7GYohlFA76+/nA9rzz8is5ZEBERERkmejxeXt9VTQ8RuKoPUDQuFpPp7GeYnU1bUz2Ny57AnlNMNWlc8/0/0PjOU0MaMyo6mn0lJbqPDLDp06f3PbZYLKSkpDBt2rS+5zIyMgCoq6sD4IknnuCPf/wjDocDp9NJd3c3M2fOPOXYZWVldHZ2cumll57wfHd3N7NmzQrwTxIYKpqJiMiQJOUkkTUhy+gYIiIiIjJEGw8eo67NRQQ9HPnnUsz/+ZOAjOtsb8Xr6mC8uY5DpBE3+xN88qrLSbQNrjFAraOcvzzyHX34GgRWq/WE700m0wnP9RZRvV4vL7zwAvfccw+/+MUvWLBgAXFxcfzP//wPmzdvPuXY7e3+nSqvv/46OTknnutmt9sD+WMEjIpmIiIiIiIiIqNcdYuT9x3NAEygmvLW+oDPMSY9CWtsLKV17Rzojue6yTkBWckmxli/fj0LFy7kG9/4Rt9z5eXlp33/5MmTsdvtOByOYbkV81RUNBMREREREREZxXo8Xt7ZW4sPKM6MI7mmPWhzLRqfysH6DiobnRw61klBakzQ5pLgKioq4rnnnmPZsmUUFBTwf//3f2zZsoWCgoJTvj8uLo577rmHu+66C6/Xy3nnnUdLSwvr168nPj6eW265JcQ/wdmpaCYiIiIiIiIyim2qaKSp002MzcIFE9LYUxO8uRKirMzMS2Sbo4l1pQ2MSY7GbB49q81KHIFfwWfUPLfddhvvv/8+n/3sZzGZTHz+85/nG9/4Bm+++eZpr/nxj39MWloaS5cu5eDBgyQmJjJ79mzuv//+oOcdDBXNREREREREREappo5u3nc0AXDxpHQirZagzzlvbBJ7q1tp7Oxmf20bxVnxQZ/TaKmpqURHR3HTwy+GbM7o6ChSU1P7/f7Vq1d/7LlDhw597Dmf78Oz6J555hmeeeaZE15funRp3+M//elPJ7xmMpm44447uOOOO/qdy0gqmomIiIiIiIiMUu+W1uP1QUFqDOPSYkMyp91qYVZ+IhvKj7HtcBOTMuNG/Nlm+fn5lJTso6GhIWRzpqamqlHCEKloJiIiIiIiIjIKHWro4NCxTswmOL+o/yuSAmF6TgJbDzVxrKN71Jxtlp+fryJWmFHRTERERERERGQEaGhowBJb3a/3en0+VpZ3AlCUbKWr5RjVLf7Xmpubg5TwQ3arhak58Wx3NLP1UOOoKJpJ+FHRTEQkjDkcjkEv8S4pKQlwGhERERExQnW1v1D28ssvY4lN7tc1toxCoovm4+3uYvO/XmKzx933WnddBQCdnZ2BD/sRs/KT2FHZQlVLF1XNTrITo4I6n8hAqWgmIhKmHA4Hk4on4ex0Dmmc9vbgtRQXERERkeDrXRm2eNY4Jk0sOuv7PT4Tb7SOwemDOQmtFF0584TXN21ws7YUXN3dQUj7oVh7BJOy4thT1cp2R5OKZjLsqGgmIhKmGhoacHY6ue7+60gbkzbg60s3l7Lqj6vo6uoa0HU+n4+mriZaaYUUcPvcZ79IRERERIIuKTaSrJSzd6L8oDkKp89KrMXDwkwfEeYTr4mPsgUr4sfMzEtkT1UrFQ0ddLh6iLGPjDLFRztMSugF6vd/ZPxpFBEZxdLGpJE1IWvA1zU4Brat81DzIXbU7KCsqYz27nawArfDv3r+xY4PdlCUXMTsrNlEW6MHnEVEREREQsPthS3N/vPDzknuIMJsbJ7UWDtZCZFUt3Sxp7qVc8b2b3vpcGW1WgH/1taoKK2cM0r38VWSFotlSOOoaCYiImfU0tXCsvJllDR8eAZahDkCs8dMt6sbX6QPR4sDR4uDdY51nJd/HvNz5mO1WA1MLSIiIiKnsrMlmk6PhYSIHibHDe2Yj0CZmpPgL5odbWHemCRMJpPRkQbNYrGQmJhIXV0dANHR0WH984Qjr9dLfX090dHRREQMreylopmIiJzW/ob9/KPkH7i9bkyYmJU1iylpU8hPyKdkZQkv//RlLn/ociwFFrZVbaO2o5YVFSv4oOYDbphyA+kx6Ub/CCIiIiJyXI8Xtrf4dwWck9SBZZjUcorSY1lzoJ7Wrh4cjZ2MSQnvTpqZmZkAfYUzCT2z2Ux+fv6QC5YqmomIyCltr97Ovw78Cx8+8uPzuaroKjJiMz72vhhTDNOypzE3ay676nax/OByjjmP8fvtv+fqCVczPWO6AelFRERE5GT72qPo9FiIjfAwMW5g59oGk9Vipjgzjh1HWth1tCXsi2Ymk4msrCzS09Nxu3X+rxFsNhtm89D3HqtoJiIiH7PpyCaWlS8DYGbmTK6ZcA1m05n/o2MymZieMZ3xyeN5ueRlypvKeWXfK7R1t7Eob1EoYouIiIjIaXh9sK3Zv8psdkLnsFll1mtqTgI7jrRwsKGDzu4eom3hX66wWCxDPlNLjGXwkX8iIjLc7G/Y31cwW5S3iH+b8G9nLZh9VLQ1mi9M+0JfoWz5weWsc6wLSlYRERER6Z/yDjvN7gjsZi9T4ofHWWYflRprJyPejs8HpbXtRscRAVQ0ExGRj6jvqOflfS8DMCdrDkvGLRnUOQBmk5kl45Zw0diLAFhRsYL1lesDGVVERERE+snng23HO2bOSOjEZvYZnOjUJmbEAbC/ts3gJCJ+KpqJiAgArh4Xf939V7o93YxJGMOV468c8pgXjrmQiwsuBvwrzvbW7x3ymCIiIiIyMNUuK7UuKxaTjxkJnUbHOa0Jx4tm1S1dtDh1FpgYL/w3CYuISEAsr1hOU1cTCfYEPjP5M1jMgTl/4fz882nvbue9o+/xyr5XSLAnkBOf0/d6SUnJoMdOTU0lPz8/EDFFRERERqwdxztmToztItoyPFeZAcTYI8hLiqKyycmB2jbmjU02OpKMciqaiYgIh5oPsbVqKwDXTryWGFtgOxZdXng5Tc4mShtLeWHPC9w25zbaG/1nVdx0002DHjcqOop9JftUOBMRERE5jfYeM2XtdgBmDuNVZr0mZsZR2eRkf42KZmI8Fc1EREa5Hl8Pr+5/FfCfY1aQVBDwOcwmM9cXX88f3v8D9Z31vFLyCjPaZwCw+BuLKZpRNOAx6w/X88rDr9DQ0KCimYiIiMhp7G6NwouJ7Mhu0uw9Rsc5q/FpsazaV8+xjm4a2l2kxtqNjiSjmIpmIiKj3D7vPpq6moi3x3PpuEuDNo89ws5nJn+Gp7c/zcHmg0SaIwFIykkia0JW0OYVERERGa08PtjVGgUwrM8y+yi71cLY1GjK6zvYX9NG6ngVzcQ4agQgIjKaJUCZtwyAq8ZfhT0iuDclaTFpXFV0FQAl5hLIC+p0IiIiIqNaWXsknR4LMRYPhTEuo+P02/j0WADK69sNTiKjnYpmIiKj2cXgxcvYhLFMSJkQkilnZsxkWvo0fCYfXAsenyck84qIiIiMNruPrzKbGu/EYjI4zAAUpMZgNkFTp5vGjm6j48gopqKZiMgo1UQT+I8V49LCSzGZQnMnZTKZuKroKiJ9kZAKe717QzKviIiIyGjS1G3hSJcN8DEl3ml0nAGxR1jIS/J3/NRqMzGSimYiIqPUbstuAPJMeWTHZYd07siISGZ5ZgFQ6i3lSOuRkM4vIiIiMtLtafOvMhsT3U1chNfgNANXqC2aMgwYWjTzeDw88MADFBQUEBUVRWFhIT/+8Y/x+Xx97/H5fPzgBz8gKyuLqKgolixZQmlpqYGpRUTC3+Hmw9Sb68EDky2TDcmQ5cuCnf7Hr+5/FY9X2zRFREREAsHjg5I2f9OlqXHhtcqs17jUGABqW120dbkNTiOjlaFFs0ceeYQnn3ySX//615SUlPDII4/ws5/9jF/96ld97/nZz37GL3/5S5566ik2b95MTEwMl19+OV1dXQYmFxEJb2sda/0P3ocYU4xxQd4EGzbqO+t57+h7xuUQERERGUEqOux0eixEWzwUhFEDgI+KsUeQleAv/B2s7zA4jYxWhhbNNmzYwLXXXssnPvEJxo4dy6c//Wkuu+wy3nvP/w8nn8/H448/zve//32uvfZapk+fznPPPUdVVRX//Oc/jYwuIhK2qtqqKG8qx+QzwXqDwzhhqmUqAKsPr6bN1WZwIBEREZHw17s1sziuK6waAJxsfJp/i2aZtmiKQQwtmi1cuJAVK1Zw4MABAHbs2MG6deu48sorAaioqKCmpoYlS5b0XZOQkMD8+fPZuHHjKcd0uVy0trae8CUiIh/qXWWW58uDJoPDAGNMY8iJy6Hb083yg8uNjiMiIiIS1jp6zBzutAEwJUy3ZvYal+bfEVHV7MTVo6M8JPQMLZp973vf43Of+xyTJk3CarUya9Ys7rzzTm688UYAampqAMjIyDjhuoyMjL7XTrZ06VISEhL6vvLy8oL7Q4iIhJG6jjr2NewDYIJngsFp/Hq7aQLsrNuJo8VhcCIRERGR8LW/PRIfJrLs3STZwrvQlBhtIynaitcHjmOdRseRUcjQotmLL77IX/7yF55//nm2b9/Os88+y89//nOeffbZQY9533330dLS0vdVWVkZwMQiIuFt05FNABSnFhNPvMFpPpQdl82sTH83zXfK3zmhIYyIiIiI9F9vA4BJcSPjHPCxxxsCVBzTuWYSeoYWzb7zne/0rTabNm0aN998M3fddRdLly4FIDMzE4Da2toTrqutre177WR2u534+PgTvkREBDq6O9hZ629XeW7uuQan+bjFYxdjNVs50naEkoYSo+OIiIiIhJ12cywN3VYs+JgQO0KKZin+otnhY536YFVCztCiWWdnJ2bziREsFgterxeAgoICMjMzWbFiRd/rra2tbN68mQULFoQ0q4hIuNtWvQ2Pz0NWbBZ58cNv63qcPY4Fuf6/21dUrMDjDe/tBCIiIiKhVhvhX1xSEOMi0jIyCkw5iVFYLSY6uz3UtYVnJ1AJX4YWza655hp+8pOf8Prrr3Po0CFeeeUVHn30Ua677jrAf87NnXfeyUMPPcSrr77Krl27+OIXv0h2djaf/OQnjYwuIhJWPF4PW6u2AjA/dz4m0/Bso7QwbyHR1mganY1sq95mdBwRERGR8GEyU2fxnwdePEK2ZgJYzCbyk6MBONSgLZoSWoYWzX71q1/x6U9/mm984xsUFxdzzz33cNttt/HjH/+47z333nsvt99+O7feeivz5s2jvb2dt956i8jISAOTi4iEl70Ne2nrbiPGGsOUtClGxzkte4Sdi8ZcBPi7fLo9bmMDiYiIiISJyDEz6DbbiTR7GRM9slZk9W7RPKRmABJiEUZOHhcXx+OPP87jjz9+2veYTCYefPBBHnzwwdAFExEZYd47+h4Ac7PnEmE29K/+s5qdNZv1letpcbWwtXpr35ZNERERETm9mMkXAFAU24VleG4qGLTeZgA1rV10dvcYnEZGE0NXmomISPDVttdypPUIZpOZudlzjY5zVhazhQvG+G/61jvWa7WZSJj64Q9/iMlkOuFr0qRJfa93dXXxzW9+k5SUFGJjY7n++us/1vxJRET6p8cL0RMWAjBxhDQA+KhYewRpsXYAHFptJiGkopmIyAjXezbYxJSJxNpiDU7TPzMyZpAYmUiHu4MtVVuMjiMigzRlyhSqq6v7vtatW9f32l133cVrr73GSy+9xJo1a6iqquJTn/qUgWlFRMLXgfYIzPYYbN4usiNH5geO+Sn+c80cjSqaSeioaCYiMoK5PW521u4EYE7WHIPT9J/FbOH8/PMBWF+5nm5Pt8GJRGQwIiIiyMzM7PtKTU0FoKWlhT/84Q88+uijXHzxxcyZM4dnnnmGDRs2sGnTJoNTi4iEn53NNgDSPXUM035PQ9bbDMDR2IlvZDQGlTCgopmIyAi2p34PLo+LxMhExiWNMzrOgPSuNut0d/J+zftGxxGRQSgtLSU7O5tx48Zx44034nA4ANi2bRtut5slS5b0vXfSpEnk5+ezceNGo+KKiISlzu4e9rVaAUjrGbnb3LMTIrGYTXR0e2h1j9DKoAw7w/s0aBERGZLerZmzs2ZjCrOPHS1mCwvzFvJG6RtsrNzI3Ky5WMwWo2OJSD/Nnz+fP/3pT0ycOJHq6mp+9KMfcf7557N7925qamqw2WwkJiaecE1GRgY1NTWnHdPlcuFyfdgRrrW1NVjxRUTCxvKSOtw+E+6mKuJsbQEdu621lerq6iGP09zcPOQxIixmchKjcDR2UtcVXve1Er5UNBMRGaHqOur6GgDMypxldJxBmZkxkzWH1tDiamFP/R6mZ0w3OpKI9NOVV17Z93j69OnMnz+fMWPG8OKLLxIVFTWoMZcuXcqPfvSjQEUUERkRXttRBUBnybuYZqQHZMwutweArVu38v6+g0Mer7uuAoDOzqGdRzYmORpHYye1Xdo0J6GhopmIyAj1Qc0HAExInhA2DQBOZrVYmZ8zn5WHVrK+cj3T0qeF3Yo5EfFLTExkwoQJlJWVcemll9Ld3U1zc/MJq81qa2vJzMw87Rj33Xcfd999d9/3ra2t5OXlBTO2iMiw1u7qYc2BegA69q2HGdcFZNzuHn/RbEZhOgvnDf3D100b3KwtBVf30M6pzTt+rlmDywQWlTMk+PSnTERkBPJ4PX0NAGZmzjQ2zBDNzZ7Lusp11HXUUdpYyoSUCUZHEpFBaG9vp7y8nJtvvpk5c+ZgtVpZsWIF119/PQD79+/H4XCwYMGC045ht9ux2+2hiiwiMuyt3FdHd4+XFJuHw/UVAR8/JtJKVkr8kMeJj7IFIA2kxtqItlno7PZgzykOyJgiZ6I1jSIiI1BZYxkd7g5irDGMTx5vdJwhibJG9XX+3HREXfVEwsU999zDmjVrOHToEBs2bOC6667DYrHw+c9/noSEBL7yla9w9913s2rVKrZt28aXv/xlFixYwLnnnmt0dBGRsPHWbv95Y1MT3AYnCQ2TydTXRTNqbHgePyLhRSvNRERGoB21OwCYljFtRByePz9nPpuObKKiuYLa9loyYjOMjiQiZ3HkyBE+//nPc+zYMdLS0jjvvPPYtGkTaWlpADz22GOYzWauv/56XC4Xl19+Ob/5zW8MTi0iEj46u3tYtc+/NXPKKCmaAeQnR7Ovpo3IMTONjiKjgIpmIiIjTKe7k/3H9gP+g/RHgoTIBIpTi9nbsJfNRzfzbxP/zehIInIWL7zwwhlfj4yM5IknnuCJJ54IUSIRkZFlzf56nG4PeclRZEc2Gx0nZHKT/M1kbJmFdLq9BqeRkU7bM0VERphdtbvw+rxkxWaNqBVZ83PnA7Crbhed7qF1XhIREREJd2/srgHgqqlZjKY+SXGRVmIifJjMFkoahtZYQORsVDQTERlhdtb5GwDMyJxhcJLAyovPIzM2kx5vD9urtxsdR0RERMQwXW4PK0tqAbhi6um7Do9UaXb/CrM9dSqaSXCpaCYiMoIc6zxGVVsVJkxMTZtqdJyAMplMzM/xrzbbUrUFr0/L8UVERGR02lDeQEe3h6yESGbmJRodJ+TSIn0A7K5X0UyCS0UzEZERZFfdLgAKkwqJscUYnCbwpqZPJdoaTaurFYfLYXQcEREREUO8s9e/ymxJcQam0bQ387jU4yvNDja5ae0aPU0QJPTUCEBEZITw+XzsrtsNwNSMkbXKrFeEOYKZGTPZcGQDJZ0lRscRERERCTmv18fykjoALp3cv/NrI7zdjOvaQ0pPDVHeDiJ8buqsOVTZCqi35uAzhdd6mugIcDdWYU3OZuuhRi6eNHLO8ZXhRUUzEZERorq9mmPOY0SYI5iUMsnoOEEzJ3sOG45soNJVCYlGpxEREREJrQ+ONFPf5iLOHsG541LO+N64nkbmt73DBOf72H2uE16bcvzXJksa6xOuojRyBuHUUaCrchfW5Gw2HVTRTIJHRTMRkRGid2vmxJSJ2CPsBqcJnuSoZAoSC6horoDZRqcRERERCa3lx7dmXjgxDVvEaVaI+bzM7FjHotbXsfn85361WJI5bJ9IpyUOHyYyux1kd1eQ5Knn6sZnqbKN5c2km2mNSA7VjzIkLscu4mZczsbyY0ZHkRFMRTMRkRHA6/Oyp24PANPSpxmcJvjmZM/xF81mgdurcyxERERk9Og9z+x0WzNtXifXND5DvqsUgKO2AjbEX8UR2zg4aRum1dvFnPbVzGlfRXb3IT5X/xivpvxHcH+AAOly+D8w3lPVQovTTUKU1eBEMhKF18ZlERE5pcPNh2nrbiMyIpLxyeONjhN0k1ImEWWOgjhYW7vW6DgiIiIiIXGooYPSunYizCYumpj+sdeTzB3cUP8r8l2ldJtsrEi4nhdTv8UR+/iPFcwA3OZINsVfwbPp36POmkOMt53P1D/BooS6UPw4Q+JpP0ZWrAWvD7YeajQ6joxQWmkmIjIC9G7NnJw2GYvZYnCa4LOYLUyImsCOjh08v/d5Ls66eFDjpKamkp+fH+B0IiIiIsHRu8ps/rjkj62sGpdk4oH4V0np6aDDHMcrKbdRb8vp17jtEUm8mHo7VzU9x7iuvfywYAerc4f/PeXUdBvV7U42lh/jkmKdayaBp6KZiEiY8/g87K3fC4yOrZm9crtz2cEO3m9/nzkXzoH2gY8RFR3FvpJ9KpyJiIjIWTkcDhoaGgI23mA+vOvbmnlSgSiyp4W3b4ohxdLBsYh0Xkm5jbYBnk3mNtt5NfnfuabxGQq79vDa56P4Tl3bgMYItanpdt456GRThc41k+BQ0UxEJMxVuipxeVzE2eIYkzDG6DghY++0Qw2QB/N/NJ8ZsTMGdH394XpeefgVGhoaVDQTERGRM3I4HBQXT6Kz0xmwMaOjoygZwId3jR3dbD3s34a45KPnmXW1sLjqCZKTzdR54ngl85t0WuIHlclnsvBG0s0sKXuY4phWHspexz+9F9JtjhzUeME2Jc0GwJ6qVp1rJkGhopmISJgrdfoPeZ2aPhVTGLUJD4gPgDw46DnI5UWXj76fX0REREKioaGBzk4nf77/Borz04Y8XomjnpsefnFAH96tKKnF64PirHhyk6L9T3o98NKXSHYdoabdyy/cV5KdP7iCWa8es537ymfzv/krGZPYzuLmf7As+cYhjRksyVEWxqXGcLChgy0VjScWE0UCQEUzEZFwZgdHlwMYXVsz++wG8zVm6jvrqWqrIie+f+d2iIiIiAxGcX4asycYc79xyq6Zq34C5SvpMdm48i+NTP90PNkBmKuxx84XXnby7pdjmOzcSkXnZA5EzwrAyIF3bmEKBxs62HjwmIpmEnDqnikiEs4mgQcPqdGpZMZmGp0m9FyQY/LfuH5Q+4GxWURERESCpMvtYW2p/zy1y3oLQyWvwdpfALAp40Y+qPEGdM4NlR5eaCwG4JLml4jtaQro+IFy7rgUADYd1LlmEngqmomIhLPji8umpU8btVsT883+LQ176vbg8XoMTiMiIiISeOvLGnC6PWQlRDIlOx4aK+CVr/tfPPebHI6bF5R5/9I4mWprPpE+Jxe3/CMocwzVuQX+hgd7q1tp6XQbnEZGGhXNRETCVENXA4zzP56aPtXYMAZKN6UTa4vF2eOkrLHM6DgiIiIiAde7NXNJcQYmbw+8/FXoboP8BXDpj4I2rwczbyd9AQ9mCrv2MM65O2hzDVZ6fCTj0mLw+WCzumhKgKloJiISpt6pegfMkG5NJzlqYC3FRxKTycSUtCkA7K4bfjdyIiIiIkPh9fpYXlIHHD/PbM3P4MgWiEyAT/0OLMHtGNlozWB77EUAXNTyChHe7qDONxgL+rZoNhqcREYaFc1ERMLUW0ffAmB81HiDkxhvesZ0APYd24erx2VwGhEREZHA2VPVSkO7ixibhfnWMlj7c/8LVz8OiXkhybAp7jJaLYkkeBo5p315SOYciHOOb9HcelhFMwksdc8UEQlD5Y3l7G7eDV4YFznO6DiGy4rNIjkqmUZnI/uO7WNGxgyjI4mIiIgExKr9/lVmiwqTsL96G/i8MOMLMPVTIcvQY7azOuE6/q3xGea0rWJX9ALaIpJCNv/plJSUABDV6T/XdvfRFtZv3kqUdeDrg1JTU8nPzw9oPgl/KpqJiIShv+7+q//BQYjOiTY2zDBgMpmYlj6NNYfXsLt2t4pmIiIiMmL0Fs0WezZAUwXE58KVj4Q8R3nkNBy28eR3l7Gw9Q2WJd8Y8gy9WhvrAbjpppv6nsv52h+ISMhgyWf/g67DOwY8ZlR0NPtKSlQ4kxOoaCYiEmZ8Ph9/2fUX/ze7gPMNjTNs9BbNypvK6ejuIMYWY3QkERERkSFp7Ojmg8pmAC46/EswAf/2vxAZH/owJhPrEq7hC/WPUezcxjb3RTRYc0KfA3C2twLwidv+i4nT5wDwXoOFyk646NYHmZw4sI7qtY5y/vLId2hoaFDRTE6gopmISJj5oOYD9jXsw2a20b1v+B3EapSU6BSy47KpaquipKGEudlzjY4kIiIiMiTvHqjH54NJETVkmRph9hdh/BLD8tTa8tkfNZOJzg84r+Vf/DP1NsOyAKRkjyG3yN8Qqimqhcr9dbRZYsktyjU0l4wcagQgIhJmnt/1PADnZ5wPOvP+BJPTJgOwp36PwUlEREREhm718a2ZF/neg7hsuOwnBieC9fFX4cFMgWsfua5So+P0yU6MBKCmpQuP12dwGhkpVDQTEQkjXp+37zyzK3OuNDjN8DM51V80O9x8mI7uDoPTiIiIiAyex+tjzb4aABZbPoBP/NyYbZknaYlIY1fMAgAWtC4D3/AoUCXH2IiMMNPj9VHfpk+WJTBUNBMRCSPvHn6Xo21HSbAnsCh9kdFxhp2kqCSy47Lx4aOkocToOCIiIiKDtsPRSFOXlzg6mF1cBJM+YXSkPu/FLaEHC7nd5eR2lxkdB/A3hspOjAKgqtlpcBoZKVQ0ExEJI71bMz89+dPYLDaD0wxPvavN9tbvNTiJiIiIyOCtXv0OABdElGC9KvTdMs+kw5I4LFeb9RbNjqpoJgGiRgAiImHC1ePi73v/DsAXpn0BmgwONExNTpvM8orlHGo+pC6aIiIiMqyVlJx6Zby1q4FVB44BcUzLTWR7eS1Qe9pxKioqghPwDLbEXcK0jo19q82O2ItCnuFkveeaVbU48fl8mEwmgxNJuFPRTEQkTCwrX0ZTVxPZcdlcOOZCdjTtMDrSsNS7RVNdNEVERGS4qm5sA+Cmm2465et/+Gwmu8b+HoDbv/Mjetr792lpp6snMAH7oXe12ayOdZzbuoy/pxlfNEuPiyTCbKLL7aWp001yjHZmyNCoaCYiEib+susvAHxuyuewmC0GpxneJqdO9hfN6lU0ExERkeGnub0LgE/c9l9MnD7nhNeKXR8Q37gN3JAW0cX1j/zhrOO9t+JfrHv5j7jcoSuaAWyNu4TpHRvJ6y4ny3WIavvYkM5/MovZRGZ8JEeanRxtdqpoJkOmopmISBhoc7Xx6v5XgeNbM+WMJqVO8m/RbDmE0+0kyhpldCQRERGRj0nJHkNu0ZS+762eTm54/3vc5/kMAAW52eQWppx1nP07twUt45m0WxIpiZ7L1M7NzG1fwWv2rxiS46OyE6M40uykqtnJtJwEo+NImFMjABGRMPDPff+kq6eLCSkTmJ012+g4w15KdApp0Wl4fV5KG0uNjiMiIiLSLwscvyW6q453vTMAGJsabXCis9sauxgfJsZ37SbZXWN0nA/PNVMzAAkAFc1ERMLA87v9XTNvnHajDjTtp0mpkwDY17DP4CQiIiIiZ5feXsKsqhd431dEG9FERpjJiI80OtZZNVkzKIucBsDc9lUGp4GshChMQGtXD21dbqPjSJhT0UxEZJir66jjnXJ/y/HPT/28wWnCR3FqMQBljWW4PbphEhERkeHL5OthSdnDmPHyd/t1AOSnRGMOkw9Lt8RdDMCkzq3E9hjb4t0WYSYtzg5AVXOXoVkk/KloJiIyzL2450U8Pg/zsudRlGJ8V6JwkRmbSYI9AbfXzcGmg0bHERERETmtmdUvktGxjy5LHKu8swAoSIkxOFX/1drG4LAXYcHLnPbVRschO9F/nq22aMpQqWgmIjLM9XbNVAOAgTGZTExMnQhoi6aIiIgMX3GuGhYefgqA13LupK7DA/hXmoWTLbGXADCtcxORng5Ds/Sda9aiopkMjYpmIiLD2IFjB9h0ZBNmk5nPTf2c0XHCTu8Wzf3H9uP1eQ1OIyIiInISn4/F5T/D5nVyNG4Gb5kvACAzPpJoW4TB4QbGYZ9ArTUXq6+bmR1rDc2SneBfadbQ3o3L7TE0i4Q3Fc1ERIaxP+/8MwCXF15OZmymwWnCT35CPlERUTh7nBxpPWJ0HBEREZETzGUXhU1r8ZgiWD7+fg4d6wRgTJitMgPAZGJLnH+12cz2tUR4XYZFibFHkBhlBaCqReeayeCpaCYiMkx5fV7+b+f/AXDz9JsNThOezCYz45PHA/5VeyIiIiLDRYIdbva9AsCWnC9SH1lAZaN/O+HY1PA5z+yjyiKn02RJJcrXybTOTYZm0blmEggqmomIDFPrHes51HyIOFsc10661ug4Yau3eUJpY6nBSUREREQ+9MilkSTSRmNkPu/l/TtVzU66PV6irBYyjnd/DDc+k5ltcYsBmN2+BrPPuK2RveeaHVXRTIZARTMRkWHquR3PAfDpyZ8m2hqGS/SHifFJ4zFhoq6jjuauZqPjiIiIiJBuauS2OTYAlo//LzxmO4eO+Q/PH5sSjclkMjLekOyNnkeHOZZ4TxNFzg8My5FzfKVZXauLHo/OtpXBUdFMRGQYcrqdvLT3JUBbM4cqyhpFXnweAKXHtNpMREREDObtYb5lNwCrOJejCbMBOHz8PLNw3ZrZy2Oy8n6sv6HB3PaV4PMZkiMhykq0zYLH56O21bjz1SS8qWgmIjIMvXbgNVpcLeTF53Hh2AuNjhP2tEVTREREho3DG4g3dVLV5uVF0ycAaHW6OdbRjQnITw7/HQY7YxbRbbKR7q4i37XfkAwmk+nDc81atEVTBkdFMxGRYai3AcBN02/CbNJf1UM1IWUCABXNFbg9boPTiIiIyKjVXgeV/gPyv/VGF50mf1Gnd2tmZkIkkVaLYfECxWWOZnf0uQDMa19pWI7sBJ1rJkOjf4mJiAwzdR11vFX2FqCtmYGSFp1Ggj2BHm8PFc0VRscRERGR0cjnhQNvgc9LpTedV/b19L10aIRszfyo7bEX4cVMvquUwshmQzL0nmtW3dyF16BtohLeIowOICIiJ3ph9wv0eHuYmz2X4rRio+OMCCaTiaKUIrZWbeXAsQN9K89EREREQubodmirAoudLe7JQBkAPV4vlY3+ollBysgpmrVFJLE/ahbFzm18KrmcXwZhjqbmZqqrq0/7utfnI8IM3R4v+w8dJTHy1Kv4GhoagpBORgIVzUREhpnerZlaZRZYE5InsLVqK6WNpfj0SaOIiIiEUlcLVKzxPx53Ec69H3bHPNrkpMfrI8ZmITXWZlDA4Ngat5hi5zbOi69ibGLgOoI6nf7tlqtWruTd9z4443tjpizGmpTFP99ZS3f1gVO+x9PeCHDGApyMTiqaiYgMIyX1JWyt2kqEOYLPTf2c0XFGlLGJY4kwR9DqaqWuo87oOCIiIjJa+HxQ+jZ43RCfC1kzYe+Ovpd7t2aOSYnBZApcYWk4aLDmcMg+ibGufdy9wM47ARrX5fJ3w5w7MYd5s6ae8b17u6zs7oKJkyayYE7CKd+zb38pr+2A5ubmACWUkUJFMxGRYeTZHc8CcMX4K0iPSTc4zchitVgpSCygtLGUA40HGM94oyOJiIjIaFBfAo3lYLLAxCvhpMJYbxOAsanh3zXzVLbGXcxY1z6+MsvKpq7OgI4dF20nKyX+jO/xOM3sroJGbzSZyfEn//YDUBsbGdBcMnKoEYCIyDDR4+3pK5p9acaXjA0zQvWeZVZ6rNTgJCIiIjIquJ1Qttz/eMxCiE454WWn10JzpxuzCfKTR2bRrNI2nlJnAtFWE1dZt4Z8/ky7GzM+OjwWWnvCvzOphJaKZiIiw8QbpW9Q015DWnQa10y8xug4I1JRchEAR1qP0OXtMjiNiIiIjHjlK8HdCdGpkHfux15u9NgByE6Iwh4xQgs6JhMvHysE4GrbViI8ob0HizBDht0NwFGnNaRzS/hT0UxEZJj4/fbfA/DFGV/EZhlZh8AOFwmRCaTHpOPDR6Wr0ug4IiIiMpI1HYLaXf7HE64E88eLYo0e/7bAsakjp2vmqaxvy+Jgk5cEcyeT614L+fzZUf6iWVWX7rFlYFQ0ExEZBqrbqnmj9A0AvjLrKwanGdkmJPu3aDq6HAYnERERkRHL44YDb/kfZ8+GhJyPvcUUYafZ619pNiZlZG7N7OXFzC82+g/vn1P1F0w+T0jnz47sBuBol1aaycCoaCYiMgw8u+NZPD4PC/MWUpxWbHScEa0o5fgWTdcRGFkNqkRERGS4OLQOuprBHgcFF57yLfb8aXgxEWuPICVm5K+AeuZ9N63eKBK7jjL+2KqQzp0d6QZ8NLsj6OhRGUT6T90zRUQM5vP5+MP7fwDgP2b9h8FpRr7c+FzsFjsujwuyjU4jIiIiI05bDRx5z/+46HKIsJ/ybVHj5gCQHg01NTVDmrK1rW1I14eCswded8/l8/a1zDvyLKUpl3ysk2iwRFp8pNh6ONZtparLSlGsKyTzSvhT0UxExGDvHn6XssYyYm2xfGbKZ4yOM+KZTWbGJY2jpKEECo1OIyIiIiOKzwsH3gR8kDYJUsaf8m31LR1EjbsUgJ3rV7C98eiQpu2uqwCgp6dnSOME27+65/HpqC1kdOxjTPNGDictDNncOZHu40Uzm4pm0m8qmomIGKx3ldnnp36eWFuswWlGBxXNREREJCiObIH2WoiIhPGXnv5t3dFYk7Mw+TzcvCAHq2loy99XruxgWyl4vKE9K2yg2nzR7Mi8nrlVf+Hcyj9wOHFByFabZUd2s7M1Wh00ZUBUNBMRMVBzVzMv7X0JUAOAUCpMOl4ty4N2d7uxYURERGRkcDbDobX+x+MWg+30HTErbQUAxLkbyU+NG/LU0ZHhcyba9pybmFn9EtltO8lt2caRxLkhmTfneAfNhu4IXF4TdrMvJPNKeNMJeCIiBvrrrr/S1dPF1PSpnJNzjtFxRo2kqCQSLAlghi0NW4yOIyIiIuHO54PSt8HbAwn5kDn9jG8/YhsDQKK7PhTphpUOWyq7M64FYP6RP4Rs3tgILwkRPfgwUa0umtJPKpqJiBiod2vmV2Z9BVOIlqaLX649F4BN9ZsMTiIiIiJhr74Emg6CyQITrjjjlsOOHjPV1hwAErtHX9EMYGvuF/GYIshv2UpW646QzZt9fLVZlbZoSj+paCYiYpAPaj5gW/U2bBYbN02/yeg4o05v0Wxj/UaDk4iIiEhYczuhbLn/8ZiFEJ18xrevOxaL1xSBu6maSG9HCAIOP232TPamfwKA+Uf+GLJ5syO7ATjaFT7bWcVYKpqJiBjkyS1PAnDdpOtIjU41OM3ok23LBg8c7TxKeWO50XFEREQkXB1cBe5OiE6FvHPP+vZV9f4zzJzlWxjN+wy25HwJL2YKmjaQ3l4SkjlzIv0rzWpdVnp0pJn0g4pmIiIGaOlq4c+7/gzAN+Z9w+A0o5PVbIVK/+Nl5cuMDSMiIiLhqfkw1Oz0P55wBZgtZ3y7zwerGuIBcB7cGux0w1pLVC770y4HYH5laFabJVo9RFk8eHwmanWumfSDimYiIgZ4dsezdLo7mZI2hfPzzzc6zuh1fIHZ2+VvG5tDREREwo+3Bw4c/+AtaxYk5J71kj1tkdS6rET43HQ5dgU54PD3Xu6X8WFifONqUjrKgj6fyfTharMqFc2kH1Q0ExEJMZ/Px2+2/AaAb877phoAGOn4vdnKipW4PW5js4iIiEh4cWwEZyPYYmHchf26ZHW9f5VZdrcDdO9BY3QBpSmXAHBuZWg6aepcMxkIFc1EREJsZcVK9h/bT5wtTg0AjFYDibZE2rrb2HREXTRFRESknzoa/EUzgPFLICKyX5etbPCfZ5bffShIwcLPpryv4MPEhGPLSe04EPT5co530KzusuLVuWZyFiqaiYiE2G+2+leZfXHGF4mzxxmcZpTzwfy0+YC2aIqIiEg/+Xxw4C3weSFlPKRO7Ndljd0W3m+OBiBPRbM+x2LGcyB1CQALHb8N+nypth5sJi/dXjPHuiOCPp+ENxXNRERC6EjrEf7fvv8HwNfnft3gNAJwbpq/y5WaAYiIiEi/VO+A1iNgscH4y/wHZfXDmoY4fJgojnMS420PcsjwsjHvVryYKWx8l4y2PUGdy2yCrOPnmh3VuWZyFiqaiYiE0NPbnsbj83DhmAuZkj7F6DgCLEhbAMDWqq0c6zxmcBoREREZziI8TqhY5f9m7AUQGd/va1ceP8/s4rTWYEQLa03RYylJvxKAhY6ngj5f9vEtmkedOtdMzkxFMxGREOn2dPP0tqcBfwMAGR7SItOYmj4VHz5WVKwwOo6IiIgMYzlt70OPC2IzIGd2v6/r8cKahlgALk5tC1a8sLY57z/wmCyMbd5ETsv7QZ0rt7cZgNOGT+eayRmoaCYiEiKvlLxCbUctWbFZfHLSJ42OIx9x2bjLAFhWpi2aIiIicmoL8yykOMv93xRdDqb+/3N6e0s0rT0RJFp7mJnYGaSE4a0lMpc96dcCsNDxJMGsZmVEuokw+XB6zTS6LUGbR8KfTr0TERkCh8NBQ0NDv977yPpHALgm+xp27dgFQGpqKvn5+UHLJ/1zWeFlPLrpUd45+A4+nw9TP88mERERkVHC6+E3V/k7ZDZEjcdR44Oao/2+/K+NEwCYZqtjR+lRqhq0RfNUNuf9O5Pr/kVu6/vkt7yHI3F+UOaxmCArsptKp50j2qIpZ6CimYjIIDkcDiYVT8LZ6Tz7mzOArwNeePq2p3m6zb9NMyo6in0l+1Q4M9h5+edhs9iobK2krLGMopQioyOJiIjIMGLf8SxTMi0c6/Qy6Wfvc8y5fUDXZ/37r7Glwct//Qt/LlnT97yzuyfQUcNauz2DnZmfYnb1Cyw8/BSOhHP63WhhoHKj3FQ67Rx12sgOygwyEqhoJiIySA0NDTg7nVx3/3WkjUk743tXN6/mgPMA46LHseTn/pba9YfreeXhV2hoaFDRzGAxthgW5C5gzeE1rKhYoaKZiIiIfKithglHXwLg+ZZZ3HL34gFd3umz8aZnLODj36+7GNunLmTVuxt4f+1yXD2ewOcNc1tyb2Fa7T/Jat9NQdM6KpLPD8o8OcfPNTvitJEVlBlkJFDRTERkiNLGpJE14fT/qW3vbqd8k//8i8XFi8mK13+Wh6Ml45b0Fc2+NvdrRscRERGR4eLtB7B6u9h8xMO2qLnMGDNmQJfvbImCBsiKdDMuJxeA2MSSYCQdETptqXyQdQPzjj7HQseTVCQtGtD5cf310XPNOk3RAR9fRgY1AhARCbItVVvw+DzkxueSG59rdBw5jUsKLgFgZcVKvD6vwWlERERkWKhYC7texIeJb7zhxMfAtwpWdNoBKIh2BTrdiLUl54t0WWJJ7yhlYsM7QZkj4vi5ZgDNlqSgzCHhT0UzEZEgcnvcbK3aCsC5uecanEbOZF7OPOJscTQ6G/mg5gOj44iMKD/96U8xmUzceeedfc91dXXxzW9+k5SUFGJjY7n++uupra01LqSIyMk8PfDmvQCUJpzH9uqBf6jm9kLl8YPmx0Z3BzTeSOayJrAt52YAFjqewuwNztlvuVFuAFosiUEZX8KfimYiIkG0q24Xne5OEuwJFKcWGx1HziDCHMFFYy8CYPnB5caGERlBtmzZwm9/+1umT59+wvN33XUXr732Gi+99BJr1qyhqqqKT33qUwalFBE5hW3PQN1eiEpmR8q/DWoIh9OOx2ciPsJDqk2H/g/E+9mfo8OaTGLXEabUvRqUOXK00kzOQkUzEZEg8fl8bDqyCYBzcs7BHISzGCSwlozzN2lYUbHC4CQiI0N7ezs33ngjv/vd70hK+vAfJC0tLfzhD3/g0Ucf5eKLL2bOnDk888wzbNiwgU2bNhmYWETkuM5GWPmQ//HF/0W3JWZQw5R3+LdmjovpClYTyBHLbYnmvdwvA3Bu5e+xeLoCPkfvuWZukw1rSl7Ax5fwp3/BiYgEycGmg9R31mOz2JidNdvoONIPveearT28FlePzh0RGapvfvObfOITn2DJkiUnPL9t2zbcbvcJz0+aNIn8/Hw2btwY6pgiIh+36mHoaoaMqTDny4MawuuDQ31FM91XDMauzE/RYs8itruemdUvBXz8j55rZs+fFvDxJfypaCYiEiQbj/j/4TcrcxaREZEGp5H+mJw2mczYTJw9zr7//URkcF544QW2b9/O0qVLP/ZaTU0NNpuNxMTEE57PyMigpqbmtGO6XC5aW1tP+BIRCbjaPbD1D/7HVywFs2VQw1R3WXF6zdjNXrIj3QEMOHp4zDY25X0VgHlHn8XW0x7wOXrPNYvMmxrwsSX8qWgmIhIE9R31lDeVAzA/Z77BaaS/TCZT32oznWsmMniVlZXccccd/OUvfyEyMnAfGixdupSEhIS+r7w8baURkQDz+eDN74LPC8X/BgUXDHqog8dXmY2NdmHR1sxBK0m/imNRBUT1tDDn6J8DPn7vuWaR+dPw+QI+vIQ5Fc1ERIJg01H/mTyTUieRFKWDRcOJzjUTGbpt27ZRV1fH7NmziYiIICIigjVr1vDLX/6SiIgIMjIy6O7uprm5+YTramtryczMPO249913Hy0tLX1flZWVQf5JRGTUKXkNDq0Fix0ue2jQw/h8cLDTXzQr1NbMIfGZLGzI/xoAs6ueJ6q7MaDjZ0S6Mfs8WGKSqHepRCIn0p8IEZEA6+juYGftTgDOzTnX4DQyUL0rzd47+h4tXS0GpxEJT5dccgm7du3igw8+6PuaO3cuN954Y99jq9XKihUfFqf379+Pw+FgwYIFpx3XbrcTHx9/wpeISMC4u+Dt//I/XvRtSBoz6KGa3Baa3RFY8DEmujtAAUevspTF1MQWY/M6OefIMwEdO8IE8V7/PV9FR0RAx5bwpz8RIiIBtvnoZnq8PeTE5ZCfkG90HBmgvIQ8JqRM4MCxA6w5vIZ/mzi4FvMio1lcXBxTp554NkxMTAwpKSl9z3/lK1/h7rvvJjk5mfj4eG6//XYWLFjAuefqwwYRMcjGX0OzA+Ky4by7hjRU79bM3KhubGbt+Rsyk4n1Y77J9Xu+xfSaf5Bm/kJAh0/0NNNsSVbRTD5GK81ERALI1eNiS9UWABblLcKk3uJhSeeaiQTfY489xtVXX83111/PBRdcQGZmJi+//LLRsURktGqrhXWP+R9f+iOwxQxpuIPqmhlwjoRzcCTMJcLn5gux7wV07ERPEwAHOyLw6WAz+QgVzUREAmh79Xa6erpIiUphYupEo+PIIOlcM5HAW716NY8//njf95GRkTzxxBM0NjbS0dHByy+/fMbzzEREgmrVT6C7HXLmwNRPD2mojh4z1S4roKJZQJlMrB/zDQAujtrHpNTAlTPivK143V109Jgprw98h04JXyqaiYgEiMfr6WsAsDBvIWaT/ooNVxeNvQgTJvbW76WqrcroOCIiIhJMtXvg/f/zP778YTAP7R6uotMGmEi3u4mN8A49n/SpiZtGWfKFWEw+frzYHrBxzfhwHd0HwMbyYwEbV8KfNuyKiATIrrpdtLpaibXFMj1jutFxZAiSo5KZkz2HrVVbWVmxkpum32R0JBERERkgh8NBQ0PDWd83fuN3iPd5acq6kIoGGzRs/9h7Kioq+j3vwY5IAMZFa5VZMGzI/xrjjq3h05OtbKgOXIGry7GTqLEzWVfWwM0LxgZsXAlvKpqJiASAz+djQ+UGAObnzCfCrL9ew90lBZewtWoryw8uV9FMREQkzDgcDoqLJ9HZ6Tzj+y4vtPDWTTG4enzMve9fHGx67Yzvd7t7zvy6FxxOG6CtmcFyLGY8q7smcnHUfm5K/IA1XBaQcbsOfQAXfJEN5cfweH1YzDqbWIZB0ezo0aN897vf5c0336Szs5Px48fzzDPPMHfuXMD/D9H//u//5ne/+x3Nzc0sWrSIJ598kqKiIoOTi4h86MCxA9R31mO32JmbPdfoOBIAS8Yt4ZH1j7CiYgU+n09NHURERMJIQ0MDnZ1O/nz/DRTnp536TT4vxQ3/gp4WmhOm8NLSOacd7/dvbOXJVzfj8Zy5aOZw2vH4TMRHeEi1nfm9Mnh/aZ/P+bZ9zI6qptxVxhH7+CGP2V1TRqTZS1tXDzuPNDMrPykASSXcGVo0a2pqYtGiRSxevJg333yTtLQ0SktLSUr68A/nz372M375y1/y7LPPUlBQwAMPPMDll1/O3r17iYyMNDC9iMiH1leuB2BO9hwiI/R300iwKG8RdoudI61HOHDsgBo7iIiIhKHi/DRmT8g59YtV70NNC0REkTHzMjLOcA+X/d6Bfs1X3tc1swt93hY8tZ4Ent7u5pvzbCxq+Rd/S7uDIf+G+7wUxvawp9XGutIGFc0EMLgRwCOPPEJeXh7PPPMM55xzDgUFBVx22WUUFhYC/lVmjz/+ON///ve59tprmT59Os899xxVVVX885//NDK6iEifmu4aKlsrsZgsnJtzrtFxJECirFEsyl8EqIumiIjIiNPjgkNr/Y/HLoIAfOjp8cHB40WzQm3NDLqH3nXh8lrIdh9mrGtfQMYsjPWvDlxXdvaz8GR0MLRo9uqrrzJ37lw+85nPkJ6ezqxZs/jd737X93pFRQU1NTUsWbKk77mEhATmz5/Pxo0bTzmmy+WitbX1hC8RkWDa0b4DgOkZ04mzxxmcRgLpkoJLAFh+cLnBSURERCSgHBvB3QlRyZA1KyBDHnHacHnNRFk8ZEe6AzKmnF5Nu4832iYAcG7rMvD5hjzm+ONFs+2OJjpc2l4rBhfNDh482Hc+2bJly/j617/Ot7/9bZ599lkAampqAMjIyDjhuoyMjL7XTrZ06VISEhL6vvLy8oL7Q4jI6JYOh12HAViYt9DgMBJoS8b5P7RZdWgVHq/H4DQiIiISEF0tcGSL//G4xWC2BGTY0nb/KrPxMS50hnxovNI6mR6sZLkPk+/q3xbaM0m2eclNisLt8fFeRWMAEkq4M7Ro5vV6mT17Ng8//DCzZs3i1ltv5atf/SpPPfXUoMe87777aGlp6fuqrKwMYGIRkZOc7/9lStoUUqNTjc0iATcnaw4J9gSau5rZXv3x9vMiIiIShirWgM8DifmQMvQD5AG8Pijv8G/xHK+tmSHT7I1iZ8wCAM5tG/pqM5MJzhvvv6fXFk0Bg4tmWVlZTJ48+YTniouLcTgcAGRmZgJQW1t7wntqa2v7XjuZ3W4nPj7+hC8RkWA43H4Ypvgfn5d/nrFhJCgsZguLCxYDOtdMRERkRGitgrq9/sfjLh764fHHHXHa6PKaiTJ7yY3qDsiY0j9b4y6mhwhyuivI6y4b8njnFR0vmpWqaCYGF80WLVrE/v37T3juwIEDjBkzBoCCggIyMzNZseLDf6i0trayefNmFixYENKsIiIn+1PZn8AM+fZ8MmNPXciX8KdzzUREREYInw/KV/ofZ06DuMDdv5X1NQDo0tbMEOuwJLArxt+M65y2d4Y83sLCVEwm2F/bRl1r15DHk/BmaNHsrrvuYtOmTTz88MOUlZXx/PPP8/TTT/PNb34TAJPJxJ133slDDz3Eq6++yq5du/jiF79IdnY2n/zkJ42MLiKj3OHmw7x+5HUAZsUG5vBYGZ56zzVb51iH0+00OI2IiIgMWsMBaD0CZiuMvSBgw3p9HxbNxsdqa6YRtsUuxoOZfFcpGd2OIY2VHGNjSrZ/x9r6cq02G+0ijJx83rx5vPLKK9x33308+OCDFBQU8Pjjj3PjjTf2vefee++lo6ODW2+9lebmZs477zzeeustIiOH3hJYRGSw/mfD/+DxeeAgZGRlnP2CMygpKQnpdTIwE1Mmkh2XTVVbFRsqN3DJuEuMjiQiIiID5fVAxWr/49x5EMCO51VdVpweC3ZtzTRMW0Qy+6NmM9m5lbltK3k95UtDGu+88WnsPtrK2tIGrpuVG5iQEpYMLZoBXH311Vx99dWnfd1kMvHggw/y4IMPhjCViMjp1bTX8Pvtv/d/8y6waHDjtDe2A3DTTTcNKU97e/uQrpczM5lMLBm3hOd2PMeKihUqmomIiISj6vfB2QTWGMibH9ChS9v9CzoKY1xYtDXTMFvjLmaycytFXTtJ7KmnOSJt0GOdNz6Vp9aUs76sAZ/PhylAZ99J+DG8aCYiEm4e3fgoLo+L6UnT2Xlo56DH6Wr3n5Gw+BuLKZpRNODrSzeXsuqPq+jq0lkLwXZJwSU8t+M5lh9czsOXPGx0HBERERmIni44tN7/eOx5EGEP2NC+j27NjNE9mZGOWbM4GDmZcV17mdu2kuVJnx30WHPHJmGPMFPb6qKsrp2ijMCtTJTwoqKZiMgAHOs8xpNbnwTg34v+nTu5c8hjJuUkkTUha8DXNTh0xkKo9DYD2Fa9jSZnE0lRSQYnEhERkX5zbIIeJ0SnQNaMgA5d1WWl02PBZvaSH62tmUbbEnsJ47r2Uty5hQ3xV9FpGVyxK9Jq4ZyCZNaWNrC2tEFFs1HM0EYAIiLh5pebf0l7dzszM2dyXvp5RseREMmJz2FS6iS8Pi+rD602Oo6IiIj0k62nHY5s8X8zbjGYAvtP4L6umdHamjkcVNnHUW0dQwQepnVsGNJYi8anArC+TB9Uj2YqmomI9FOrq5VfvvdLAO4/736dbTDKLCnwd9FcUbHC4CQiIiLSX1ntH4DPAwn5kFwY0LF9Pig7fp7Z+FhtzRwutsf6O6PO6FiPxdcz6HHOO14023TwGG6PNyDZJPyoaCYi0k9PbnmS5q5mJqVO4lPFnzI6joRYbwOA5QeXG5xERERE+mN2lpkUZ4X/m8KLIcAfeNa4rLR7LNhMXvLVNXPYKIuaQZs5gRhvGxM7tw96nMlZ8STH2Ojo9rD9cFMAE0o4UdFMRKQfnG4nj256FID7zrsPi9licCIJtYvGXoTZZGb/sf0caT1idBwRERE5E5+P/7nUvwqM9CkQlxnwKQ60+7dmjo1xEaF/WQ8bXpOFHbH+Y1RmdbzrXxI4CGazifOL/KvNVh+oD1g+CS/6v7aISD/8fvvvqeuoY2ziWD4/9fNGxxEDJEYmMi97HqDVZiIiIsNdfN0mLi6IwIsZCi4I+PheHxw4vjVzorZmDju7ohfgNllJdx8lp7t80OMsnpgOwKp9dYGKJmFGRTMRkbPo9nTzsw0/A+C7i76L1WI1OJEYZck4nWsmIiIy7Hl6yNnzWwDqYoohMiHgU1Q6bXR6LESavYxR18xhp8sSQ0nUXMB/ttlgXTAhDZMJ9tW0Ud3iDFQ8CSMqmomInMVzO57jSOsRsmKz+NLMLxkdRwzUWzRbfnA5vkEu9RcREZEge///iGo/TEOnl9rYqUGZYv/xVWZFsV3qmjlM7YxZBMB4506iPW2DGiM5xsasvEQAVu3TFs3RSEUzEZEz6PH2sHTdUgDuXXQvkRGRBicSIy3IXUC0NZqa9hr21O8xOo6IiIiczNUGqx4G4ME13XjMtoBP0eOF8uPnmWlr5vBVb8uhyjoGC16mdG4a9Dh9WzT3a4vmaKSimYjIGbyw+wUONh0kLTqNr87+qtFxxGD2CDsXjPGfi/JO+TsGpxEREZGP2fAr6KijKyaHp7YGZ9vkwU473T4zcREesiPdQZlDAmNXzEIApnVsxOTzDmqMxZP8RbP1ZQ24ejwByybhQUUzEZHT8Pq8/GTtTwC4e8HdxNhiDE4kw8GSguNbNCvUDEBERGRYaa32F82AquKv4h5cjeSs9rd92ADApK2Zw9r+6Jl0maJJ8DQx1lUyqDGmZMeTHmens9vDexWNAU4ow52KZiIip/Fyycvsa9hHYmQi35j3DaPjyDDRe67ZmkNr6Pbo4F8REZFhY9VPwN0JefNpzgp8x0yAHpOVQ529WzN1MPxw5zHZ2BNzDgDTOzYMagyTycRFE9MAnWs2GqloJiJyCj6fj4fefQiAO+bfQbw93uBEMlxMy5hGekw6He4ONh0Z/PkYIiIiEkC1e+D9P/sfX/YQwVoC1mjLxIuJVJubVLu26oWDXdELABjbVUKMp2VQY+hcs9FLRTMRkVN4vfR1dtTuINYWy7fnf9voODKMmE1mLim4BPB30RQREZFh4J0fAD6YfC3knRO0aRrs2YAaAISTJms6R20FmPFR3Ll1UGOcV5RKhNlERUMHFQ0dAU4ow5mKZiIiJ/H5fPz43R8D8M153yQ5KtngRDLc9G7RfOegmgGIiIgYrnwllC0HsxUu+e+gTWOJS6PNmgL4mBinolk42RPtL6RO6XwPfL4BXx8XaWXeWP+/CVZrtdmooqKZiMhJlh9czntH3yMqIoq7F9xtdBwZhnqLZu8dfY+WrsEt8xcREZEA8Hrg7R/4H8/7D0gpDNpUMZP956TlRLqJiwhSlwEJigNRM3GbbCT31JHVfWhQY1x8vIvmyn0qmo0mKpqJiJzkobX+s8xunXMr6THpBqeR4Sg/IZ8JKRPw+rysPrTa6DgiIiKj186/Qe0usCfAhfcGdaqYyRcBMEmrzMKO2xzJgaiZwPHVZoOweJK/GcDmg410dvcEKpoMcyqaiYh8xLuH3+Xdw+9iNVu5Z+E9RseRYezScZcC2qIpIiJiGLcTVvo/7OSC/4To4B2p0WhJwZZegMnnZXyMimbhqHeL5kTn+0R4XQO+vjAtltykKLo9XjaUHQt0PBmmVDQTEfmIn6z9CQBfnvllcuNzDU4jw1nvFk01AxARETHIe7+D1qMQnwvn3BbUqUojiwFIdNcRaRn4mVhivKO2cTRbUrH5XIzv2j3g600m04dbNHWu2agRYXQAEREjORwOGhoaANjdtJu3y9/GYrLwicRPsH379jNeW1JSEoqIMkxdNPYizCYz+4/tp7KlkryEPKMjiYiIjB7OZlj7C//jxfeBNTJoU7m9HxbN0rqOAPpvflgymdgXPZtz295mUuc29kXPGfAQiyem89zGw6zeV4fP58NkMgUhqAwnKpqJyKjlcDiYVDwJZ6fT/8TngEnged/Dtf99bb/HaW9vD05AGdYSIxM5J+ccNh3ZxPKDy/nyrC8bHUlERGT02PAr6GqGtEkw4/NBnWpVQzxd5mg8HU0kuOtR0Sx8lUTN4dy2txnj2k+Upx2nJXZA1587LgV7hJmqli5KqtuYnB0fpKQyXKhoJiKjVkNDA85OJ9fdfx3mbDP/aPgHADdcegOJVyae9frSzaWs+uMqurp0rsVotaRgib9oVqGimYiISMi01cKm3/gfX/wAmC1Bne6lo0kAtO9eiXl8VFDnkuBqtqZTY80j013JBOcH7Ig9b0DXR9ksnF+UxvKSWt7eW6Oi2SigM81EZNRLG5PGPtM+AKakTaF4cjFZE7LO+pWUlWRwcjHaR8818/rUel5ERCQk3v0ZuDshdx5M+kRQp6p3RbCy3l8Y6dilc0xHgt5tmZOc2wZ1/eVTMgB4e09twDLJ8KWimYiMes09zeyp3wPA+fnnG5xGwsmCvAVEW6Op66hjd93AD5QVERGRAWo8CNv+5H+85IcQ5DOl/lmdiMdnIs1dg/tYZVDnktDYHzULLyayuw+R0NMw4OsvKc7AbIK91a1UNnYGIaEMJyqaicio9377+wBMTJlIRmyGwWkknNgsNi4ccyEA75S/Y3AaERGRUWDVw+DtgfFLYOzAttYNlM8HLx5JBmBC156gziWh02mJp9JeBMDEzjM3/jqV5Bgb88b6/1y8s1erzUY6Fc1EZHRLgjJnGaBVZjI4fVs0K7RlQ0REJKiqd8Kul/yPL/lB0Kfb0RJFaUckdrOXQteBoM8nobMvyr9Fc6Lzg0Fdf9mUTACW7akJVCQZplQ0E5HRbRH48FGYVEhOfI7RaSQMXTruUgDePfwurh6XwWlERERGsJUP+X+d+mnImhH06V6q8q8mujKjBZuvO+jzSeiUR03Fg4XUnmqS3ANfLXbZZP/ulC2HGmns0J+NkUxFMxEZtRq6GmCm/7FWmclgTU2fSkZMBp3uTjYe2Wh0HBERkZHp6HYoXQYmMyy+P+jTdXlMvFqdCMBncpqCPp+ElssczWH7BAAmOHcM+Pq85GgmZ8Xj9cGKEm3RHMlUNBORUeuFihcgAtKt6eQn5BsdR8KUyWQ6oYumiIiIBMGaR/y/Tv8spBQGfbpltQm09VjIiexmQXJ70OeT0CuNmgnAhEFv0TzeRVPnmo1oKpqJyKjU5mrjpUP+MzFmxs7EFOTOSzKy9RbN3jmoZgAiIiIBV/U+HHjLv8rsgu+EZMqXqpIA+HROE2bdJo5IH92imWVuHvD1l032n2u2trQeZ7cnwOlkuIgwOoCIiBGe3vY07T3t0ABjMscYHUcMVFJSMuhrU1NTyc/P7yuaba3aSpOziaSopEDFExERkTU/8/867TMhWWVW6bSy/lgsAJ/Obgz6fGIMlzkah30CBa4S5tkrAKioqGD79v511PT5fGTEWKjt8PCnZZuZnxN5wuu994kS3lQ0E5FRp9vTzWObHvN/swFM0/Tx4WjU3ujfanHTTTcNeoyo6Cj2lewjPz+fSamT2Newj9WHVnNd8XWBiikiIjK6VX0A+98I6Sqzvx1JxoeJRclt5EW7QzKnGONA1AwKXCXMjSgD4IEHHuCBBx7o9/VJF/8H8fM+yQNP/Z1jbzx2wmtR0dHsKylR4SzMqWgmIqPOX3f9laNtR0mxp3BsxzGj44hButq7AFj8jcUUzSga8PX1h+t55eFXaGho8K82K1jCvoZ9vF3+topmIiIigdK7ymzq9ZA68P9eD5Tb6y+aAXwhT6vMRrryqGl4ml9kjK2FomQzWVd8i7mLLur39fVdJt6tg6QZF3PzVef3beWtdZTzl0e+03efKOFLRTMRGVW8Pi//s+F/APjCuC/wK8+vDE4kRkvKSSJrQtaQx7m08FJ+veXXvH3w7QCkEhEREap3wv7XAVPIVpmtqI+nvttKqs3NpemtIZlTjOMyR3PEPp4xrgNcOymC/Rm55BZN6ff12V4fW5oqcLo9mFILyE2ODmJaMYIaAYjIqPJm6Zvsqd9DnC2O68dcb3QcGUEWj12M1WzlYNNByhrLjI4jIiIS/no7Zk69HtImhmTK5ytTAH8DAJvZF5I5xVhlkdMA+OTEga8pMptNFKTGAHCwviOguWR4UNFMREaVR9b7b76+NvdrxFnjDE4jI0mcPY5F+YsAWFa2zOA0IiIiYa5mF+z7F2CCC+8NyZSVnVbWHm8A8Plcbc0cLQ5GTQVgQZ6FRFP7gK8vTPMXzcrq2/H5VGgdabQ9U0RGjY2VG1nrWIvVbOWO+XdQW1ZrdCQZAT7afXNq5FRWs5q/bf8bCyIWnPVadVUSERE5jbWP+n+dcl3IVpn99UgKPkycn9LGmOjukMwpxmu3JHLAmciEqGbmRxxgoP/L5ydHY7WYaHf1UNvqIjMh8uwXSdhQ0UxERo3ejpk3Tb+JnPgcalHRTAbvlN03M4GvwdrKtcz51hzwnHmMj3bfFBERkeMaK2DvP/2Pz787JFO6vfDi0SQAvpCrRlGjzca2zONFs/2sHeC1ERYzBakxHKhtp7SuTUWzEUZFMxEZFSpbKnm55GUA7jr3LoPTyEhwqu6bPp+PP9f9GafNydWPXU22Pfu015/cfVNERESO2/gE+LxQeDFkTgvJlMvr4mk43gBgiRoAjDqb2jK5JX0fMyIOsbmnne6I2AFdX5Qed7xo1s5541ODlFKMMKii2bhx49iyZQspKSknPN/c3Mzs2bM5ePBgQMKJiATKk1ufxOPzsHjsYqZlhObmS0aHk7tvFnmL2Fm3k6aYJuaMm2NgMpHB0X2eiPSXw+GgoaEhYOOlpqaSnxID7//Z/8SiOwI29tk8f8T/d94NOU1YdfL3qFPZHcuBYx4mpMDYpg0cSLtsQNePSYkmwmyirauHujZXkFKKEQZVNDt06BAez8f3nLhcLo4ePTrkUCIigeR0O3l629MAfHv+tw1OIyNdYXIhO+t2Ut5UzhKWGB1HZMB0nyci/eFwOCgunkRnpzNgY0ZHR3H0+TtI7HFC1gwouDBgY5/J4U4ba4/FYcLH57U1c5Qy8f/29/CdhRYKmtYPuGhmPb5Fs7TOv9psbHBCigEGVDR79dVX+x4vW7aMhISEvu89Hg8rVqxg7NixAQsnInI2/fmE8/85/h/HnMfIisoipyOH7du3Ayce4C4SKIVJhQDUtNfQ3t1OrG1gy/tFjKL7PBEZiIaGBjo7nfz5/hsozk8b8ngljnq+8siLxOz5i/+Jhd8Gk2nI4/bHC0eSATg/pZ28aHdI5pTh5/UDPXxnoZ2xTRv824NNA1tyWJQe6y+a1bYxZuj/l5BhYkBFs09+8pMAmEwmbrnllhNes1qtjB07ll/84hcBCyciciYOh4NJxZNwnu0Tzq8BmVD9/6o557vnfOzl9vaBt5YWOZ0YWwxZsVlUt1dT3lTOjIwZRkcS6Rfd54nIYBTnpzF7Qk5Axvr8NCvW7hZIyIPJnwzImGfT7TXxUm8DgDytMhvN1ld66PDZielpJrN9LzVxUwd0/djUGCLMJlq7emh2h6bgK8E3oKKZ1+sFoKCggC1btpCaqgPuRMQ4DQ0NODudXHf/daSd5uOcalc1rzW+RoQpghtvvhH7Lfa+10o3l7Lqj6vo6uoKVWQZJQqTCv1Fs0YVzSR86D5PRAzl83HHfJv/8bz/AEtoeta9c7wBQJrNzSVpagAwmvV44YOecSyyllDQtH7ARTOrxczY1BjK6to52qmD8UaKQf1NVFFREegcIiKDljYm7YSD2D9q7R5/0+gZmTMYO2HsCa81OAJ3cK3IRxUmF7Kuch3lTeX4fD5MIdpeIhIIus8TESPEdtcxIdOC12LHPPuLIZv3r8e3Zn42t1ENAIStPYUsspYwtmk9G/NvG/D1RemxlNW1c0RFsxFj0OX7FStWsGLFCurq6vo+mez1xz/+ccjBRESGqqWrhX0N+wA4J+fj2zJFgiUvPg+bxUanu5Pq9mqy47KNjiQyILrPE5FQS+v037Mdy72UtOjkkMx5qMPGuuMNAD6b2xiSOWV429YzHoDM9hKiu4/RaUs5yxUnGpvi36LZ0QPW9IJgRJQQG1T580c/+hGXXXYZK1asoKGhgaamphO+RESGgy1VW/DhoyCxgPSYdKPjyChiMVsoSPTfKJU3lhucRmRgdJ8nIiHX1UJiVyUA9QWfCtm0vavMLkhtIy9KDQAEmn2x1MYUA/gbAgyQLcLMmJRoAGImnhfQbGKMQa00e+qpp/jTn/7EzTffHOg8IiIB4fa42V7t75KpVWZihMKkQvYf2095Uznnjznf6Dgi/ab7PBEJueoPMOFj+cEekv8tNKtzur0m/l7lL5p9QavMQqattZXq6uohj9Pa1haANKdWkbSQjI4SCpo2sDfjmgFfX5QeR3l9B9GTzsPn8wUhoYTSoIpm3d3dLFy4MNBZREQCZlfdLpw9ThIjE5mQMsHoODIKFSYXAlDZWomrx4U9wn6WK0SGB93niUhIeT1QvROAJ7d2818hmvbtuniOdUeQblcDgFDocnsA2Lp1K+/vOzjk8brr/Odv9vT0DHmsk1UkL+LcI38gv3kTZm8PXvPAyiYFqTGYTT6syTkcaulhTsATSigNqmj2H//xHzz//PM88MADgc4jIhIQvavM5mTNwWzSQZwSeslRySRHJdPobKSiuYJJqZOMjiTSL7rPE5GQOlYK7g7c5ihe3d8asqLZ85XHGwDkNBKhW8Wg6+7xF81mFKazcN6sIY+3cmUH20rB4/UMeayT1cZOpjMikeieZrLadnA0YWBlL1uEmcxIH1VOExsru7g+4AkllAZVNOvq6uLpp59m+fLlTJ8+HavVesLrjz76aEDCiYgMRk17DUfbjmI2mZmVOfT/KIsMVmFSIY3ORsqbylU0k7Ch+zwRCamqDwA4FlVIj7c2JFNWdNjY0KgGAEaIibSSlRI/5HGiI20BSHNqPpOFw0kLKK5/k4KmDQMumgHkRHupcprZcMSpTuphblBFs507dzJz5kwAdu/efcJr+sMgIkbbVr0NgOLUYmJsMQankdGsMKmQLVVb1AxAworu80QkZJxN0HwIgIboImDgB68Pxl+P+DsiXpTaRq4aAMgpVCQtOl40W8+6sbcP+PqsKC++nm6q2mzsq2mjOGvohUIxxqCKZqtWrQp0DhGRgOj2dLOrdhcAs7NmG5xGRruCpALMJjNNXU00OhtJjko2OpLIWek+T0RCpvoD/69J4+iOiA3JlC6vib8fTQLgC3laZSandijxXLyYSe0sJ85VQ5s9c0DXW83gLN9K9MSFvL6zWkWzMKbd2yIyouyp24PL4yIpMomCxNB0XxI5HZvFRn58PgBljWUGpxERERlGvB6oOb6aNXtGyKZdVhtPozuCTHs3i1PVAEBOzWVNoDpuGgAFjesHNUbH/nUAvL6rWl00w9igVpotXrz4jMvzV65cOehAIiJD0dsAYHbWbG0jkmGhMLmQQy2HKG8s55ycc4yOI3JWus8TkZBoqgB3B1ijIXk8NNaEZNrerZk35DapAYCcUUXSInLadjC2aT07swZ+nL+z7D1sFqho6GBPVStTcxKCkFKCbVB/TcycOZMZM2b0fU2ePJnu7m62b9/OtGnTAp1RRKRf6jvqOdJ2BBMmZmbONDqOCOA/1wygorkiKB2eRAJN93kiEhI1/uM0SJ8MZktIpqzosLGxMdbfACBHWzPlzCqSFwGQ37IFi9c14Ot97i7mZEUC/tVmEp4GtdLsscceO+XzP/zhD2lvbx9SIBGRwfqg9gMAilKKiLWF5lwMkbPJjM0kxhpDh7sDR4uDgiRtG5bhTfd5IhJ0biccO35sQeaJxfg33niDkpKSIU9RUVHxsedePOo/W/TC1DZy1ABAzqIhuog2Wzpx3XXktmzncNKCAY+xKC+SjUe6eH1nNfdePlE7YcLQoIpmp3PTTTdxzjnn8POf/zyQw4qInJXX52Vn7U4ArTKTYcVkMlGYXMjO2p2UN5WraCZhS/d5IhIwdXvB54HYdIjNAGDHQf9KnAceeCCgU5VV1jB7Qg5uL7x0vAHA53K1ykz6wWTicOJ8pta9Rn7ze4Mqms3OshNlteBo7GT30Vam5WqLZrgJaNFs48aNREZGBnJIEZF+KW8sp727nWhrNBOSJxgdR+QEhUkfFs2WsMToOCKDovs8EQmY453OyfhwldnRhjYAFlzxSYrGjxvyFHv2l7Ptnf9HXZP/sP+V9fE0dFtJtbm5JE0NAKR/HL1Fs5bNg7o+MsLMxcXpvL6zmn/tqlLRLAwNqmj2qU996oTvfT4f1dXVbN26NeCfDIiI9McHNR8AMC19GpYQnYsh0l+955rVtNfQ5mojzh5ncCKR09N9nogEVUcDtNWAyQzpUz72cl5uNjOnf/z5gWpq72LbR77/2/GtmddnN2FVAwDpJ0fCPADSO0qJ7j5Gpy1lwGNcPS2L13dW8/rOar53xSRt0QwzgyqaJSScWB01m81MnDiRBx98kMsuuywgwURE+qvL28X+Y/sBbc2U4SnGFkNOXA5H245S1ljGrKxZRkcSOS3d54lIUNXt9f+aVAC26JBMWd1lZXW9/wOrz2prpgyA05ZMXUwR6R2l5LVsYX/aFQMe46KJ6UTbLBxpcrLzSAsz8hIDH1SCZlBFs2eeeSbQOUREBu2g8yAen4eMmAwyYzONjiNySuOTx6toJmEhUPd5Tz75JE8++SSHDh0CYMqUKfzgBz/gyiuvBKCrq4v//M//5IUXXsDlcnH55Zfzm9/8hoyMjIDMLyLDkM/3YdEsY+iryfrrpaNJeDExP6mdcTHdIZtXRgZHwnzSO0oZ07x5UEWzKJuFS4ozeG1HFa/vqlbRLMwMaWHqtm3b+POf/8yf//xn3n///UBlEhEZkFJnKQDTM6YbnETk9IqSiwAobyrH4/UYnEbk7IZ6n5ebm8tPf/pTtm3bxtatW7n44ou59tpr2bNnDwB33XUXr732Gi+99BJr1qyhqqrqY1tDRWSEaauGrmYwWyFlfEim9AF/O+LfmqkGADIYhxPnA5Df/J6/8DsIn5iWBcDrO6vxDXIMMcagVprV1dXxuc99jtWrV5OYmAhAc3Mzixcv5oUXXiAtLS2QGUVETi8Rat21AExNn2psFpEzyI7LJtoaTae7kyOtR7BhMzqSyCkF6j7vmmuuOeH7n/zkJzz55JNs2rSJ3Nxc/vCHP/D8889z8cUXA/4VbsXFxWzatIlzzz03oD+TiAwTvavMUsaDJTT/HTxsyedol434iB6uzGgJyZwyshyNn0mPyUZcdx1JzsM0RY8d8BgXTUwjxmbhaLOTDyqbmZWfFPigEhSDWml2++2309bWxp49e2hsbKSxsZHdu3fT2trKt7/97UBnFBE5veNNlwoSC4i3xxubReQMTCYT45P8n6qXNpYanEbk9IJxn+fxeHjhhRfo6OhgwYIFbNu2DbfbzZIlH3aTnTRpEvn5+WzcuDFQP4qIDCc+L9Tv8z9OnxyyaXda/dtAr8tuJtKiFT4ycB5LJFXxMwAY0zzILppWC0sm+48feH1ndcCySfANqmj21ltv8Zvf/Ibi4uK+5yZPnswTTzzBm2++GbBwIiJn4vP5+opm09KnnfnNIsPA+BQVzWT4C+R93q5du4iNjcVut/O1r32NV155hcmTJ1NTU4PNZutbydYrIyODmpqa047ncrlobW094UtEwkRzJXS3Q4QdkgtCMqU5Kp6yCH8H68/maGumDJ4j8RwA8gdZNIMPt2i+sasar1cF3HAxqKKZ1+vFarV+7Hmr1YrX6x1yKBGR/jjQegDSwYKF4rTis18gYrDCpEJMmKjrqKPd0250HJFTCuR93sSJE/nggw/YvHkzX//617nlllvYu3fvoLMtXbqUhISEvq+8vLxBjyUiIVZf4v81dSKYB3VK0IDFTL0Er8nC9PhOJsd3hWROGZl6zzXLbd2O2dszqDEumJBGrD2CqpYu3q9sCmQ8CaJBFc0uvvhi7rjjDqqqqvqeO3r0KHfddReXXHJJwMKJiJzJm0f9Kx7yI/OJjIg0OI3I2UVbo8mJzwGg0lVpcBqRUwvkfZ7NZmP8+PHMmTOHpUuXMmPGDP73f/+XzMxMuru7aW5uPuH9tbW1ZGaevgvyfffdR0tLS99XZaX+fyQSFnxeaDjgfxyiDzp9QOw0/xbwz6oBgAxRXcxEnBEJ2D0dZLbvGdQYkVYLlx7fovkvbdEMG4Mqmv3617+mtbWVsWPHUlhYSGFhIQUFBbS2tvKrX/0q0BlFRD7G5/Px9tG3ARgfGZruSyKBMD7Z/+e1skv/2JfhKZj3eV6vF5fLxZw5c7BaraxYsaLvtf379+NwOFiwYMFpr7fb7cTHx5/wJSJhoOUIuDshIhIS80MyZVdEPLa0MVh8PVydqQYAMkQmM46EeYC2aI42g1oXm5eXx/bt21m+fDn79vkPcywuLj7hMFcRkWDafHQztV214IK8SG3PkfBRlFzE6kOrOdp9FCxGpxH5uEDd5913331ceeWV5Ofn09bWxvPPP8/q1atZtmwZCQkJfOUrX+Huu+8mOTmZ+Ph4br/9dhYsWKDOmSIjUcN+/68p48Ecmv/4NUX6V3YX9hwkweoJyZwysjkSz2HiseWMad7MpvxbBzXG+RNSibNHUNvqYpujiXljkwOcUgJtQCvNVq5cyeTJk2ltbcVkMnHppZdy++23c/vttzNv3jymTJnC2rVrg5VVRKTPi3te9D/YDxGm0JyLIRIIWbFZxFhjcPvcoHqvDCOBvs+rq6vji1/8IhMnTuSSSy5hy5YtLFu2jEsvvRSAxx57jKuvvprrr7+eCy64gMzMTF5++eVg/XgiYhSfD+qPb81MnRiSKb0+aI7MBmCKe19I5pSRz3H8XLPMtj3YegZ3Nq09wsKlU9RFM5wMqGj2+OOP89WvfvWUS+ETEhK47bbbePTRRwMWTkTkVLw+Ly/tfcn/zeCOFBAxjMlk6tuiSZGxWUQ+KtD3eX/4wx84dOgQLpeLuro6li9f3lcwA4iMjOSJJ56gsbGRjo4OXn755TOeZyYiYaqtCrrbwGILWdfMw502eix2PB3NjPUcDsmcMvK1RmbTFJmHGQ+5LdsGPc410/0F3Td2VePRFs1hb0BFsx07dnDFFVec9vXLLruMbdsG/4dHRKQ/Nh3ZxJHWI8RExEC50WlEBk5FMxmOdJ8nIkFRf3xrZnJhyLpm7muPAqCjZA0WBtb1V+RMHInnAJDf8t6gx1g0PpX4yAjq2lxsPaQmFcPdgIpmtbW1p2xB3isiIoL6+vohhxIROZPerZkXZlwIg+v4LGKowqRCTJggHao7tTRfhgfd54lIwPl8H+maGZqtmS6PifIOOwAdu1eGZE4ZPQ4f36I5ZgjNAGwRZi6f4l9Z/fou3QcOdwMqmuXk5LB79+7Tvr5z506ysrKGHEpE5HQ+ujXz0uxLz/JukeEpyhpFhtV/nsWGug0GpxHx032eiARcRz10NftXmCWPC8mUpR2ReHwm7D1tdNdqS4IE1pGEuXgxk+w8TKyrdtDjfGJ6bxfNGm3RHOYGtD72qquu4oEHHuCKK64gMjLyhNecTif//d//zdVXXx3QgCIysjkcDhoaGvr9/p2NO6lqqyImIobExsTgBRMJsrzIPGrcNayvW290FBFA93kiEgTHyvy/Jo7xn2kWAiVt/r+/kpxHQzKfjC6uiDjqYieR2b6XvJZtlKRfNahxFo1PJSHKSkO7i/cqGllQmBLgpBIoAyqaff/73+fll19mwoQJfOtb32LiRP8S23379vHEE0/g8Xj4r//6r6AEFZGRx+FwMKl4Es5OZ/8vuhRYBB3vd/Dl738ZgPb2wXWvETFSnj2PLW1beK/hPVw9LuwRdqMjySin+zwRCbhjpf5fU0NziGeL20JVlw3wkdSlopkER2XCXDLb95LbsnXQRTOrxcwVUzL529ZKXt9VpaLZMDagollGRgYbNmzg61//Ovfddx8+n38Zoclk4vLLL+eJJ54gIyMjKEFFZORpaGjA2enkuvuvI21M2lnf7/P5+Fv932j1tLLk/CV4Ejys+uMqurq6QpBWJLBSIlKgDZxxTtY61rJk3BKjI8kop/s8EQmo7nZoO35eU28DnCDbd3yVWX5UN1avKyRzyuhTmTCHeUefI28IHTTBv0Xzb1sreWt3DT+8ZgoRlgGdniUhMuD2JWPGjOGNN96gqamJsrIyfD4fRUVFJCUlBSOfiIwCaWPSyJpw9nNyattraa1pxWKyMG/qPPb3dmMSCUMmkwlKgdnwRukbKprJsKD7PBEJmGPHzxOLywJ7bNCn8/mgpN1fNCuO60LHq0uwVMXPxGOykOCqIr7rKK2ROYMaZ0FhCknRVhrau9lc0cii8akBTiqBMOhSZlJSEvPmzeOcc87RjZSIhMS+hn0AFCYXYgvRuRgiQXX8qJc3y940NofISXSfJyJD1rs1MyU0q8xqXFZa3BFYTV4KY7QLQYLHbYmmNnYKwJBWm1ktZq6Y6u+i+a+dKvMOV1r/JyJho6ShBIBJqZMMTiISIOVgMVnY17CPiqYKo9OIiIgEhscNTYf8j1NCc57Z/uNbM8fHuLDqX7kSZJUJcwHIa9k6pHE+MS0bgLd2V9Pj8Q45lwSe/joRkbDQ5GyitqMWEyYmpkw0Oo5IYLhgRtIMQKvNRERkBGk6BN4esMdDzNnPrR0qrw9KO/wNdSbEapWZBF9lwhwAclu2+fcGD9K545JJjrHR1Olm48FjgYonAaSimYiEhX3H/FszxySMIdoabXAakcBZlLEI8J9rJiIiMiI0Hj/PLGU8mExBn66qy0qnx4Ld7CUvujvo84lUxU2nx2QlrruOxK7KQY8T8ZEtmq9ri+awpKKZiISFAw0HAJiYqlVmMrIsSvcXzVZWrKSrR5+Oi4hImPP5oPGg/3FyYUimPHC8AUBhjAtL8Gt0IngskdTETQWGvkXz6mn+hmhv7anBrS2aw46KZiIy7DndTg63HAbQ1kwZccbHjScnLgdnj5M1h9YYHUdERGRoOhvA1QomCyTmB306rw/KtDVTDNB7rlnuEJoBAJxTkExqrI3mTjcbyrVFc7hR0UxEhr2ypjJ8+EiLTiMpSl3cZGQxmUxcVXQVoHPNRERkBOhdZZaYDxZr0Kc76rTi9FiINHvJjdLWTAmd3nPN8lq2DulcsxO3aFYFJJsEjopmIjLsHTjm35o5IWWCwUlEguPK8VcCOtdMRERGgL6tmeNCMt2Bjt6tmV3amikhVRM3jR6znRh3I8nOoXVB7+2iuWxPLd092qI5nKhoJiLDmsfroayxDFDRTEauS8ZdgtVspbSxtO/Pu4iISNjpcUHL8UPRQ3CemdcH5cfPMyuKdQV9PpGP8pht/H/27ju+7ere//hLy/LeOx5xEmeQPSCEMAKkzLJvSxm30FJ6W0IXbW8L/dHd0nG7L11QSnsphdISoJCwQhJCSEL2dBzHSWzHW/G2Zc3v7w/FhkCGE0v6eryffeghWfp+z/n4W0ccfXTO59QlzQAGX9fsnJJ0spKctLt9rK10hSM8CRMlzURkSKvpqKHX30u8I56C5AKzwxGJiGRnMucXnQ/A8got0RQRkWGqrQqMIMSmQhRKahx2x+AOWom1BinU0kwxQV9ds8JB1jWzWS1cpV00hyQlzURkSCs/Ug5AaXopVovesmTk6qtrtmy/lmiKiMgw9d6lmZbIr5Ws6AptADAhsRerlmaKCfrqmhW0bw4ljAfh6hl9SzQbtERzCNEnUBEZ0lTPTEaLvqTZqkOr6PH1mByNiIjIaTIMaD1a1ykK9cwCBuw/Ws+sNEFLM8UcjYlT8VrjiPO3k9lTOai25hWnkZ3kpLPXz5qK5jBFKINlNzsAEZETaXG30OJuwWqxMj4t8nUxRMw0JXMKRSlFVLdXs+rQqv4kmoiIyLDQ2wa97WCxhnbOjLDD7hh6g1bitGumhFFnRwf19ae3PPKgczKT3FtJrnmDnSmJALhcobpkZWVlp9XW2bk2XuqEv67aTZq79pjXMjMzKSqK/L8tOZaSZiIyZFW2hL6tKUwuxGl3mhyNSGRZLBaumnAVv9/8e5ZVLFPSTEREhpfWQ6H75DFgi4l4dxVHNwDQ0kwJh15fAIBNmzaxde+B0zo3rtjNd0rBXvZv/rijAQBfSyjhdfvtt59WW84xU8i9/aes3Ofir5+7AgK+d/uJj2dvWZkSZ1GmpJmIDFn7W0O7CE5In2ByJCLRcWXplfx+8+9Zvn85hmFgiUI9GBERkbDoS5qljY14V6GlmaEvVEsTeyPen4x8Xn8oaTZzfDbnnT37tM7NDOaBdy+XZLfzX1fPxbBYWf+2jzVlcOGtn2fewkUDbsswYHmdgduZwMd+9A/y4w0AGqsr+duPv4rL5VLSLMqUNBORIckf9HPwaF0MJc1ktLik5BJibDEcaD1ARUuFavmJiMjwYBihnTMBUosj3t1hdwyeoJU4W4Axsb5TnyAyQAmxDvIykk/rnIAxCU99LHFGLzOSO2mKKSQ5LjTbMiWngILSqafV3kSjie2H22l3ZHBOac5pnSvhp40ARGRIqmmvwRf0kRiTSE6C/mMho0NiTCIXFl8IwLIK7aIpIiLDRFcj+HtDyzKT8iLeXeXRWWbjEzxamimmMyw2ap2hzS8KPfsH3d6E7FBdtAPNXQSDxqDbk8FR0kxEhqT9LaH/4IxPG68lajKqXDUhVMts+f7lJkciIiIyQH1LM1OLwGqLaFeGAQeOJs3GxWvXTBkaamJKASjwVAy6rfyUOOIcNnr9QWrb3INuTwZHyzNFZEhSPTMZLd6/q1KRN1SnYuXBlax9Zy1x9rgTnqtdlEREZEjoX5o5NuJdNXnsdAdsOCxBCrVrpgwRNc7QZ5Yx3gNYjMCg2rJaLYzLSmB3XQf7m7soTI8PR4hyhpQ0E5Ehp8PTQVN3EwDj0saZHI1IZHS1dAEn2FXpC+BL83H+f54P+07cRlx8HHvL9ipxJiIiprEYAWivCf2QFvl6Zgd6QrPMiuO92LVuSoaIZkc+vZZ4Yo0ecnyHB93e+KxEdtd1UNncxaKJWWGIUM7UkEma/ehHP+L+++/nC1/4Ar/85S8B6O3t5ctf/jJPPfUUHo+Hyy+/nN/+9rfk5Ki+kchI1rc0c0zSGOId+mZFRqbertBuXxffczGlM0uPee2t9rfY07OHsz51FuennH/c85urmln6w6XaRUlEREyV4G2GoB9iEiA+M+L99dUzG5egpZkyhFisHHaOZ0LvTgo9FQy2ElZhehwxNivdngANHdoh1kxDImm2ceNG/vCHPzBjxoxjnv/Sl77ESy+9xDPPPENKSgr33nsvN954I2vXrjUpUhGJhsqWSkBLM2V0SBuTRt7EY4smzzwykz279lAbqCW3NFd1/UREZMhK9tSHHqSOhQj/96rdZ+WI14EFg7EDrGdW09zBln21g+67ztUx6DZkZKtxTnhP0mzSoNqyW62MzYxnX2MXlU3djA1LhHImTE+adXV1cdttt/HII4/w/e9/v//59vZ2/vSnP/Hkk09yySWXAPDnP/+ZKVOmsH79es4991yzQhaRCAoaQSpblTST0a0ktQSbxUa7px1Xj4usBE3LFxGRoSnJ2xB6EI2lmUdnmeXH+oiznXxXwZ6uTgB+8swGfvLMhrDF4Pb6w9aWjCx9dc3yvYewU3qKo09tQlYi+xq72N/cRXHkJ3HKCZieNFuyZAlXX301ixcvPiZptnnzZnw+H4sXL+5/bvLkyRQVFbFu3TolzURGqMMdh/EEPMTZ48hPyjc7HBFTOGwOxqaOpbK1koqWCiXNRERkSEpxQrzvSOiHKGwCcKA7FhjY0kyvJ7Sk7dwrruO8uTMH3ffKN99m65rX8fgHV+RdRq4j9lx6rInEB7uYGNc66PaKMxKwWS20u310+LTqwCymJs2eeuoptmzZwsaNGz/wWkNDAzExMaSmph7zfE5ODg0NDSds0+Px4PG8+yba0aFptCLDSV89s/Fp47FaVN1VRq8J6ROobK1kf8t+zis8z+xwREREPmDRWDsWDIhLh9jkiPbVG7BQ2+sATq+eWXJ6JgXFg58Fl5haduqDZHQ7Wtdsons70+OPDLq5GLuV4vR4Dri6qXUraWYW0z6R1tTU8IUvfIG//e1vxMbGhq3dhx56iJSUlP5bYWFh2NoWkcjrW5o5Pn28yZGImKs0PTStv6q9Co9fxY5FRGTouXTc0TkYaWMj3tehHicGFjIcflIdmu0lQ1NNTGiJ5oyEwSfNAMZnJwJQ16PJBGYx7cpv3ryZpqYm5syZg91ux263s3r1an79619jt9vJycnB6/XS1tZ2zHmNjY3k5uaesN3777+f9vb2/ltNTU2EfxMRCZdubzd1nXVAaKaZyGiWEZ9BWmwaQSPIwbaDZocjIiLyAYtLbKEHUaxnNi5BOwnK0HXYGfrSc3JcCzG2wbc3LjMBiyW0CYY9Ne/UJ0jYmZY0u/TSS9m5cyfbtm3rv82bN4/bbrut/7HD4WDFihX955SXl1NdXc2CBQtO2K7T6SQ5OfmYm4gMD32zzHITc0lyJpkcjYj5SjNCA6+KlgqTIxERETmWw93MlCwbBhZIiWzSzG/AoZ4Y4PSWZopEW4s9m25rEk5rkPljBp81i3XYKEiLAyB+4onzIBI5ptU0S0pKYtq0acc8l5CQQEZGRv/zd911F/fddx/p6ekkJyfzuc99jgULFmgTAJERqrLl6NJMzTITAWBC2gTeqX2H/S37MQwDi0X1LEREZGhIat4MQI8jnQRH+MrtHE+tOwafYSXBFiDHqd0rZQizWDjsnMAk91YWjbWxLQxNTshKpKbFTfxE1bg1w5BeGPuLX/yCD3/4w9x0001ceOGF5Obm8uyzz5odlohEgGEYHGg7AChpJtJnbOpY7FY7HZ4OmnuazQ5HRESkX5JrCwCdMZFfMlZ5dGlmSYIHfX8kQ91hZ+izzMVjwzNHaXxWImDgHDOZIz2q5xdtpu6e+X6rVq065ufY2FgefvhhHn74YXMCEpGocfW46PJ2YbfaKUzRBh4iAA6bg5LUEipaKqhoqSA7IdvskERERABIPLIDgE5nDieuOD14hgEH++qZxWtppgx9NTGh8hoLCm38b8/gZ0YmOO1kxBgc8Vp4p7aXDw26RTkdQ3qmmYiMHn2FzguTC7Fbh1Q+X8RUE9JDuzDtP7Lf5EhERESOaqvB6W7EHzTodmRFtKtmr52ugA27xaAwzhvRvkTCodWeRYvfSazdwiTb4bC0mR8fBGB9rTbCiDYlzURkSDjUdgiAktQScwMRGWJK00PfVlZ3VOPx6xt2EREZAqrXAbClPkjQ6ohoV30bABTGebHr06sMBxYLO7ozAZhurwpLk31Js93NXlq6lTyOJr3tiIjpgkawf6ZZSZqSZiLvlRaXRkZcBkEjyIHWA2aHIyIiAlVrAXizKvJF+at6Qkszx2pppgwjO3syAJhuC0/SLNEO3sZKgga8XtYYljZlYJQ0ExHTtfhb6PX3EmOLIT8p3+xwRIacviWaFS0VJkciIiICVIVmmq2pjmxRck/AQn1vaCabkmYynOzsDiXNJtlqsQXCs6SyZ1/o390ruxrC0p4MjJJmImK6Wk8tAGNTxmK16G1J5P36lmjub9mPYRgmRyMiIqNatwtc5QC8FeGkWbU7BgMLaQ4/yY5gRPsSCac6XwK1HUEclgD5nTvD0mZf0mzNfhddnsjP8pQQfToVEdPVeesAGJs21txARIao4tRiHFYHnd5OmrqbzA5HRERGs6P1zNxJY2lxR/aLnENaminDloWVh0KJrYL2zWFp0eeqIi/RhtcfZOVejQejRUkzETGXDeq99QCMSx1ncjAiQ5Pdau/fJENLNEVExFRVbwPQlTEjot0YBlQd3QSgOF6Fz2X4WXUoNBOzsCM8STOAcwtiAXhlt5ZoRovd7ABEZJQbA37DT7wjnuyEbLOjERmyJmRMYF/LPipaKji/6HyzwxERkdGqL2mWHtmkmctrpztgw24xGBOnpJkMP30zzXI7d2EP9OK3xQ66zRxfA5DEij0NbNi4GYfNcsZtZWZmUlRUNOiYRjolzUTEXEc3yyxJLcFiOfM3fZGRrq+uWU17Db3+8BSUFREROS29HdCwA4j8TLNDR2eZFcZ5sWuIKMPQgVaD5mASWdZO8ju3U506/4zb6mhpBuD+T9/KmHsex52UwaKPfYbeA5vOuM24+Hj2lpUpcXYKSpqJiLmOJs3Gpo41NQyRoS41NpXM+ExcPS4qWytJJ93skEREZLSpeQeMIKQW44vLimhXffXMilXPTIaxnf6xXBKzk4L2LYNKmrm7OgC4+r8eoCcvlQNdMP/OB5mbcWabcTRWV/K3H38Vl8ulpNkpKGkmIqZx+91QEHrcV69JRE5sQvoEXD0u9rfs5xzLOWaHIyIio011aGkmxQsj2o0nYKG+1wFoEwAZ3nYFirmEnRS2n/mMsPfKyC9mwoRCDmyro9EbQ/6EEqxarRNR2ghAREyzvXU72CHBmkB6nGbNiJxK3xLN/S37MYzI7lgmIiLyAVV9SbPzItpNtTsGAwtpDj8pjmBE+xKJpJ3+YgByunZjD7jD0mZBWjxOuxW3L0B9u0p2RJqSZiJimo2ujQCMcY5RPTORAShKKcJhddDl7eKI/4jZ4YiIyGji64Xao7sARjhpVqWlmTJCNBqpdDhzsRkB8ju2h6VNm9VCSWYCAJXNXWFpU05MSTMRMU1f0iw/Jt/kSESGB7vVzri0cQBU91abHI2IiIwqtZsh4IXEHEgfF7FuDKDq6CYAY+O1a6YMdxYOJ88FoLBjc9haHZ+VCEBlU5dWH0SYkmYiYoq23jbK2soAyHcqaSYyUBPSJwBQ46kxORIRERlV+uqZFS2ACK4QcNuS6ArYsFsMxsQqaSbDX01KKGlW0B6+pFlxRjw2q4WOXj+uLv07iSQlzUTEFKsPrSZIEFyQaEs0OxyRYaOvrlmTrwniTA5GRERGj6robALQ5gjtylkQ58WuT6syAhw+mjTL7dyDI9ATljYdNivF6fGAlmhGmt6GRMQUbxx8I/TgoLlxiAw3KbEpZMVnYWBA5FbHiIiIvCvgh5p3Qo+LF0S0q7aYUNJMu2bKSNERm0+7Mx8rAfI7toWt3fHZR5doKmkWUUqaiYgp3jikpJnImeqbbUapuXGIiMgo0bADvF0QmwLZZ0WsG0tMHF32NACKVc9MRpDDKXMAKAzjEs1xmQlYLODq8tLu9oWtXTmWkmYiEnWNXY3satoV+uGQqaGIDEt9dc2YAEEjaG4wIiIy8vUtzSw8F6y2iHUTWzgNw2Ilxe4n1RGIWD8i0VaTMg8Ib12zWIeNMamhWh2VTZptFilKmolI1K08tBKAScmTIDzL+kVGlaKUIhwWByTC3va9ZocjIiIjXfW60H3xeRHtJnbsLAAKNctMRpi+umY5XXuJ8YcvwdW3i+Z+LdGMGCXNRCTq+uqZzcucZ3IkIsOTzWpjTMwYANY2rTU5GhERGdGCwfdsAhCdpFlRnJJmMrJ0OnNpix1ztK7Z9rC1Oz4rAYD69l66Pf6wtSvvUtJMRKJuxcEVAJydebbJkYgMX0WxRYCSZiIiEmGufeBuAXsc5M2KWDfd1gRiMovBMChU0kxGoMPJodlmhR3hW6KZFOsgO8kJwAFXd9jalXcpaSYiUXWo7RAHWg9gs9iYkzHH7HBEhq1CZyEAu1p34epxmRyNiIiMWFVHv5wpmAf2mIh1U+sIfRmUEGgn1mZErB8Rs9QcXaJZ0L4prO1qF83IUtJMRKKqb2nmOWPOIcGeYHI0IsNXgi0BGsDA4NXKV80OR0RERqr+emYLI9pNXUzoy6AUr74IkpGpr65Zdld5WOuaTTha1+xwixuPXxtohJvd7ABEZHTpS5pdUnKJyZGIjAAVQC4sq1jGrdNvNTsaEREZ4qqrq3G5TiMpZRhMq1hFDFDhzaRzy5b+l8rKysIWl2G8O9Ms2ecCksLWtshQ0eXMoTW2kLTeGsZ0bONg+vlhaTc9IYa0eAetPT4OuXqYlKt/P+GkpJmIRI1hGP1Js0tLLoVWkwMSGe72AxfAK5WvEAgGsFltZkckIiJDVHV1NVOmTKanxz3gc4pTLBz6YhK+gMGsaz5Nj++Dx3R2DX7GTHlXLG5bAkFfL0n+tkG3JzJUHU6ZQ1pvDQXtm8KWNIPQLpqbqlqpbO5S0izMlDQTkajZ69pLfVc9TpuTBYUL2NO6x+yQRIa3Gki0J+LqcbGpbhPzC+abHZGIiAxRLpeLnh43TzzwUaYUZQ3onPSeSmh/G29sFmt+8/FjXlv2zj4efOw1ent7Bx3bW0dCy8s8NbuxpgQH3Z7IUFWTMo/pjc9T2L7l1Aefhr6k2aEj3fgDQew2VeIKFyXNRCRq+maZLSxaSKw91uRoREaAIMzPms+K+hUs379cSTMRETmlKUVZzJk4ZmAHl++AdkjIGc+c8ceeU1bdHLaY+pJm7kPbYGZe2NoVGWr6dtDM6i7H6e/EYw/PrLCcZCeJTjtdHj81rW5KMlU7OlyUfhSRqHnj0HuWZopIWJyfHZrav6ximcmRiIjIiNNeE7pPLYxYF56ghQ2toaRZ76GtEetHZCjodmbREluElSBjOsL3926xWBh3NFGmXTTDS0kzEYmKQDDAyoMrAW0CIBJOC7IXALCpbhNN3U0mRyMiIiOGtwvcLaHHyQUR62ZrWzzugJXYYA++5kMR60dkqOjbRbOgfXNY2x2fHUo+H2juJmgYYW17NFPSTESiYnvjdlp7W0mKSWJe/jyzwxEZMbJis5idOxsDg1f2v2J2OCIiMlK0Hw7dJ2SBI3JlNfqWZo7xVkesD5GhpCYl9Fko3EmzMalxOO1W3L4A9W2DrzUoIUqaiUhU9NUzu2jsRditKqcoEk5XTrgSgOX7l5sciYiIjBh9SzNTIrc0E2DNkVBNJyXNZLQ4nDIHgOzufcT62sLWrs1q6a9ltl9LNMNGSTMRiYoVB1cAcMlYLc0UCberSq8C4JXKVwgEAyZHIyIiI0IUkmbtPhs72+MAGOOriVg/IkNJT0wmR+JKsGBQEIFdNCFU18zQEs2w0HQPEYk4b8DLmqo1AFw6TpsAiITb/IL5pMWm0eJu4Z3ad1hQuMDskEREZDjz90LX0TqZEUyarWtJIIiF8Qm9JGhmjIxAnR0d1NfXf+D5vY6zWOg+SEb9atb4ppyynba2tgH1V5wRj91qobPXj6vLS1aS83RDlvdR0kxEIu6d2nfo9nWTGZ/JtOxpZocjMuLYrXYun3A5T+16imUVy5Q0ExGRwWmvDd3HpYEzMWLd9C3NvCCjCw5FrBuRqOv1hWb+b9q0ia17D3zg9dqsRhbOhMz61fzx2VMvAPQ2HQSgp6fnpMc5bFaKM+KpbO5mf3OXkmZhoKSZiERcXz2zi8dejNWiVeEikXDlhCtDSbP9y/jeJd8zOxwRERnO+pdmRm7XTIC1RzcBOD+jk/UR7Ukkurz+UNJs5vhszjt79gdejzXcBD2bmZjQzVeunkSHJfmk7a1/28eaCvB4vafse3xWIpXN3VQ2d7FgXMaZ/QLST0kzEYm4vqTZpSVamikSKVdMuAKALfVbqO+sJy8pz+SIRERk2IpCPbMat4NDPU5sFoP56d1KmsmIlBDrIC/jeAmxZJqaCsj11TAvvp6y+JMnqJPjYgbcZ0lmAhYLHOny0tbjJTV+4OfKB2nKh4hEVI+vh3WH1wFwSYk2ARCJlOyEbM7OPxuAl/e/bHI0IiIybAV80Hm0BlMEk2ZvuUJLM2en9JBkD0asH5GhqsZZCkChpyKs7cY6bIxJDW2wUdncHda2RyMlzUQkotZWr8Ub8FKQXMCE9AlmhyMyovXtorls/zKTIxGBhx56iLPPPpukpCSys7O5/vrrKS8vP+aY3t5elixZQkZGBomJidx00000NjaaFLGIANBZB0YQYhIhNjVi3bz1nqWZIqNRtXMiAEWeCgjzTpcT3rOLpgyOkmYiElHvXZppsVhMjkZkZOtLmr1a+Sq+gM/kaGS0W716NUuWLGH9+vW89tpr+Hw+LrvsMrq73/3W+0tf+hL//ve/eeaZZ1i9ejV1dXXceOONJkYtIrS9Z2lmhMZuQQPWtvQlzfShXkanupgS/NhICrSR6m8Oa9vjshIAqG/vpdvjD2vbo41qmolIRK04uALQ0kyRaJiXP4+s+Cyae5p5u+ZtLhp7kdkhySj28svHLhN+/PHHyc7OZvPmzVx44YW0t7fzpz/9iSeffJJLLgn9N+LPf/4zU6ZMYf369Zx77rlmhC0iUahntrsjjjafnURbgJkpJ98NUGSk8ltjqI8podC7nyJPBW2O7LC1nRTrICfZSWOHhwPN3UwvSAlb26ONZpqJSMS09baxuX4zoKSZSDRYLdb+DQGWVWiJpgwt7e3tAKSnpwOwefNmfD4fixcv7j9m8uTJFBUVsW7dOlNiFBn1ggHoqAs9juDOmWuOLs08N70Lhz6RyigWqbpmENpFE7REc7D0FiUiEfNm1ZsEjSATMyZSkBzZLctFJER1zWQoCgaDfPGLX2ThwoVMmzYNgIaGBmJiYkhNTT3m2JycHBoaGo7bjsfjoaOj45ibiIRRVyMEfWCPhYSsiHWz9oiWZooAVPclzbz7Q7UEw6gvaVbT2oPHHwhr26OJkmYiEjErDhxdmjlWs8xEouWy8ZdhtVjZ1bSL6vZqs8MRAWDJkiXs2rWLp556alDtPPTQQ6SkpPTfCgsjt3xMZFTqX5pZELF6Zr0BCxvbQvWWlDST0a4xpgivxUlcsJssX11Y205PiCEt3kHQgIMu7aJ5ppQ0E5GIeePQ0U0Axl1qciQio0d6XDoLChYAsLxiucnRiMC9997Liy++yMqVKykoeHfWcW5uLl6vl7a2tmOOb2xsJDc397ht3X///bS3t/ffampqIhm6yOgThXpm77Qm4A1ayYv1Mj7BE7F+RIaDoMXG4ZjxwNFdNMOsb7bZ/iYlqM+UkmYiEhGNXY3satoFwKKxi8wNRmSUuXLClYCWaIq5DMPg3nvvZenSpbzxxhuUlJQc8/rcuXNxOBysWLGi/7ny8nKqq6tZsGDBcdt0Op0kJycfcxORMDEMaD8cehzBpFnf0syF6V2RmswmMqxUx0aurllpdujfW9WRHnyB8C7/HC2UNBORiFh5aCUAM3NmkhmfaXI0IqNLX12zFQdW4PHrW3wxx5IlS3jiiSd48sknSUpKoqGhgYaGBtxuNwApKSncdddd3HfffaxcuZLNmzfziU98ggULFmjnTBEzdDeDvxesDkjMiVg3a44kAXCBlmaKAO9uBjDGW4nV8Ie17awkJylxDvxBQ0s0z5CSZiISEW8cPLo0s0RLM0WibVbuLPIS8+j2dbOmeo3Z4cgo9bvf/Y729nYWLVpEXl5e/+3pp5/uP+YXv/gFH/7wh7npppu48MILyc3N5dlnnzUxapFRrG+WWfIYsNoi0oXLY2NPZxwA5ylpJgKAy55HjzWBGMNLrje89WgtFgsTjs42q9ASzTOipJmIRMSKg0c3ASjRJgAi0WaxWN5dolmhJZpiDsMwjnu78847+4+JjY3l4YcfpqWlhe7ubp599tkT1jMTkQh77yYAEfJ2S+jD++REN1nO8M6oERm2LNb+2WZFnn1hb75vieYhV7eWaJ4BJc1EJOwOtR3iQOsBbBYbFxRfYHY4IqNS3xJNJc1EROSUDOPdpFlq5OqZvdW3NDNTM15E3qsvaRaJumbZSU6SY+34gwaHtETztClpJiJht/JgqJ7ZOWPOIdmpIs0iZlg8bjF2q53yI+VUtlSaHY6IiAxlvW3g7QKLFZLyI9KFYcBbRzcBOD+jMyJ9iAxX1c6JAOR5q3AEe8PatsVioTQnlLDWEs3Tp6SZiISdlmaKmC8lNoXzi84HYPn+5SZHIyIiQ1rfLLOkPLA5ItLFgR4ndb0xxFiCnJOm2S4i79Vuz6TNloGNAAWe8H/Z2bdE86CWaJ42Jc1EJKwMw9AmACJDxFUTtERTREQGoL+eWeSWZq49OstsbloPcTYjYv2IDFdVsZMAKPaUh71tLdE8c0qaiUhY7XXtpb6rHqfNyYLCBWaHIzKq9dU1W3loJT2+HpOjERGRIast8kmzNVqaKXJS1c5Q0qwoAkkzLdE8c3azAxCRkeW1A68BcH7R+cTaY02ORmTkKysrO+FrhmGQG5dLg7uBR19/lPNzzj/m9czMTIqKiiIdooiIDGWezlBNM4CUMRHpwheEdUeTZhdk6AO7yPHUOEsJYiHD30SSv5VOe1pY2y/NTmRzVSsHXd2cFZnShSOSkmYiElZ9SbMPjfuQyZGIjGxdLaEPHbfffvvJD7waOBu+8L9fgPet0oyLj2Nv2V4lzkRERrP2w6H7xGyI0Bee29vj6QrYSHP4mZrsjkgfIsOdxxpHQ0wx+d5DFHnK2W0/N6zt9y3R7Oj109hrCWvbI5mSZiISNr6Aj1WHVgHwofFKmolEUm9XaGeli++5mNKZpSc87lDvIV5tfZWkBUl87NqPYbGEBknNVc0s/eFSXC6XkmYiIqNZFOqZvXkktCxsYUYXNn1WFzmhaudE8r2HKPbsY3dCeJNmFouF0uwkNle3crhHlboGSkkzEQmb9YfX0+XtIjM+k1m5s8wOR2RUSBuTRt7EvBO+nhHIYMXaFXQGOnEUOMhKyIpidCIiMuRFIWn2Vv/STNUzEzmZKuckzu18lSLPPjCCYAlvcmtCTiKbq1upd1ux2GPC2vZIpfSiiITN6wdeB0K7ZlrD/AYvImcmxhbD2NSxAOxr2WduMCIiMrT4eqG7OfQ4Qkmzdp+VbW3xAJyvemYiJ9UQU4zH4iQu2E22rzbs7eccXaIZMCzEjZsX9vZHIs00E5FBqa6uxuVyAfDczucAmGifyJYtW0557skKmItI+EzMmEhlayUVRypYWLjQ7HBERGSo6JtlFpcOMQkR6WJdSyJBLIxL6GVMnC8ifYiMFEGLjRpnKRN6d1HsKacpJrzJ7L5dNDdXtRJ/1kVhbXukUtJMRM5YdXU1k6dMxt3jBifwNcAK37vze3yv/XsDbqerS986ikTSxIyJLN+/nOr2atw+N3GOOLNDEhGRoaCtOnSfGrnalmuO1jO7ULPMRAakyjkplDTrLWdj0uKwtz+pL2k2/my6vcGwtz/SKGkmImfM5XLh7nFzwwM30J3Tzautr5JiS+Hmn9w8oPMrNlSw8rGV9Pb2RjhSkdEtNTaV7IRsmrqbqGipYEbODLNDEhGRoaD9aNIsgvXM1rhC9czOVz0zkQGpjp0E7ZDvPYg96MFvdYa1/czEGJIcQTqJYUNtLxeEtfWRR0kzERm0rOIsaiw10AoTcyaSV3riouTv5ap2RTgyEekzMX0iTd1N7DuyT0kzEREBfy90NYUeR2imWVVPDNVuJ3aLwbnp3RHpQ2SkabNl0m5LJyXQQoG3kkOxZ4W1fYvFQlF8kN3tVtZUu/lKWFsfeVSpW0TC4kDrAQDGpY0zORIROZ6JGRMB2N+yn0AwYHI0IiJiuvbDgAGxqeBMikgXa47umjkntZtEu5aBiQyIxUK1MzRuK+4tj0gXBQmhf487m7w0dWrVz8koaSYig9bp76TF3YIFS/8ufSIytIxJHkO8Ix5PwEN133IcEREZvaJQz+wtVygZd4HqmYmclqrYSQAUeyKTNEu0g6d2L0EDXtxeH5E+RgolzURk0Gq9oe2QxySPIdYea3I0InI8VouV0vRSAPYd2WdyNCIiYrq+nTMjlDTzB2Fti+qZiZyJamcpQSxk+BtJDLRFpI/uPasAeH57XUTaHymUNBORQTvsOQxoaabIUNe3RHNfyz4MwzA5GhERMY3fA50NoccR2gRgR0c8nX4byXY/M1LcEelDZKTyWBNodIT+bRZFaIlm9963sFpge00bh1yqOXgiSpqJyOBYoNYTmmk2Pm28ycGIyMmMTxuP1WKlxd1Ce6Dd7HBERMQsHbWE6pmlhG4R0Ldr5sKMLmyWiHQhMqJFeolmsKeNGTmhnTlf0GyzE1LSTEQGJxc8hocYWwxjksaYHY2InITT7uyvO1jVW2VuMCIiYp6+emYpkatntuaI6pmJDEaVczIAY3vLsRKZFQIXFIVK6zy3rVarEE5ASTMRGZyjKzLHpo7FZrWZG4uInFLfEs1qjzYDEBEZtfo3AYjM0sxOv5Wt7fEAXKB6ZiJnpD6mmF5LHLFGDxPjWiPSx/wxsTjtVg40d7O7riMifQx3SpqJyOAcXZGpemYiw8OkjNBU/wZvA8SZHIyIiESdNeiDrr56ZpGZabauJZGAYWFsvIfCeF9E+hAZ6QyLjarY0GyzeYlNEekj3mFl8ZQcAJ7fVhuRPoY7Jc1E5Iy5/W44OtZSPTOR4SE1NpXshGwMDJhgdjQiIhJtCb5mMILgTI5YPbPVrr6lmZplJjIYh44u0ZyXEJmkGcC1s/KBUF2zQFBLNN9PSTMROWMbj2wEOyTaEsmIyzA7HBEZoNL00tCDiebGISIi0ZfkaQw9SC0ES/gr9BsGrGoOJc0uzlLSTGQwDsVOAWBCXDs5CZHZUWPRpCySY+00dnhYf+BIRPoYzpQ0E5EztrZxLQBFziIsERh0iUhk9C3RpBR8QS2bEREZTRK9R5NmEVqaWdHtpLY3hhhrkAXp2gRAZDB6bEk0OgoAuGKCPSJ9OO02PjwzNNvsn5sPR6SP4UxJMxE5I4ZhsLYplDQrdEamiKyIRMaY5DHEWmMhFrYc2WJ2OCIiEiVxdoj3HZ1JkhqZpFnfLLMF6V3E2bTUS2SwDsaeBcCVEUqaAXxkbigxt3xXPR29+kL1vZQ0E5Ezsqd5D/XuevDDGOcYs8MRkdNgtVgZ6xwLwBv1b5gbjIiIRM25BTasBCEmCWJTI9LHSlcyABdnammmSDgccoaWaF423h769xsBswpTGZ+VQK8vyLId9RHpY7hS0kxEzsiyimWhBwfBbonctx4iEhljY8cCsKphFUEjMgMwEREZWhaNPTpmi1A9s06/lY2tCaG+lDQTCYuGmCI6/A7S4ixMskVm+aTFYuEj80Krh57REs1j6JOuiJyRZfuPJs0qgAtNDUVEzsAY5xjwgAsX79S+w7kF55odkoiIRNhFxbbQgzDWM6uoayFrXy0A67tz8BsW8uzdtNQepOU02qlzdYQtJpGRxLBY2dKdzaKUWubZ9xOplNaNs8fwk5f3srmqlcrmLsZnJZ7W+dXV1bhcrrDFk5mZSVFRZJaRnw4lzUTktLX3tvNW9VuhHyrMjUVEzozNYoN9wHRYWrZUSTMRkRHOEvAwv+Bo0ix18PVoXe3dAHzut68BrwGQfsXnSJoJ5etfZ+4PHjmjdt1e/6BjExlpNndlsSillrn2yoglzbKTY7loYhYry5v51+bD/PcVkwd8bnV1NZOnTMHd0xO2eOLi49lbVmZ64kxJMxE5ba8feB1/0E9xQjFVrVVmhyMiZ2ovMB2e3fssP1r8I+2CKyIygiW27CLWbsFrjScmLn3Q7XW6vQAsvv4jzJg6BcOAZYFZ9AJXnTOJnHO/eVrtrXzzbbaueR2PPzDo2ERGmi3d2QQNg3G2RhI8zXQ7syLSz0fmFbKyvJlnt9Ty5csmYbMObGzocrlw9/Rw29d+Sk7R+EHH0Vhdyd9+/FVcLpeSZiIy/LxU8RIA5+ecTxVKmokMWxUQY41hf8t+djfvZlr2NLMjEhGRCElq3gxApzOXjDB+SZKemUVBcTHNHju9h2OwWwxmFqdht6adVjuJqWVhi0lkpGkPONlUF+ScMTbGtq1jd861Eenn0inZpMY7aOjoZU1FM4smZZ/W+TlF4ykonRqR2MyijQBE5LQEjSDL9y8HYGH2QpOjEZFB8cL8rPlAaImmiIiMXP1Js5i8iLR/qCcGgMI4L3Z9yhQJu2UVoaXLJa1rI9aH027j+lljAG0I0EdvZyJyWrY1bKOhq4EERwKz02ebHY6IDNLFuRcDsHSvkmYiIiNWTwvx7aFCtB3O3Ih0cajHCcDYeE9E2hcZ7ZbvDyXNito2YA1Grvbff8wtAOC13Y209/gi1s9woaSZiJyWZRWhXTM/NP5DxNhiTI5GRAbrwpwLsVqsbG3YysHWg2aHIyIikXDwTSwY7G4K4LfFh7353oCF+l4HoKSZSKRsqgvQHozHGegmr3N7xPqZmp/M5NwkvIEgL2yvjVg/w4WSZiJyWvrqmV014SqTIxGRcEhzpnFh8YUAPLf3OXODERGRyDi4GoDXD0Zmdkq1OwYDCxkOP8mOYET6EBntggZs8Y8DYFzLWxHrx2Kx8JF5oR12tURTSTMROQ2uHhcbDm8A4MrSK02ORkTC5YbJNwBaoikiMmIdWAXA6wciszPloe7Q0sxizTITiaiN/lIAxrWuiWg/18/Kx2GzsONwO7vr2iPa11CnpJmIDNgr+1/BwGBGzgwKkgvMDkdEwqQvafZW9Vs0djWaHI2IiIRVaxW0HMCwWFl9KPwzzQzeU88sQUkzkUja4h9PwGIn3V1FWs+hiPWTkejksqmh+odPbqiOWD/DgZJmIjJgy/aH6pldXXq1yZGISDgVphQyL38eBgYvlL9gdjgiIhJOR5dmdqdOodMb/ua7bSm4g1ZiLEHyY1U0XCSSeojlcMpcAMa1RHa22W3ziwB4bmstXZ7IbTww1ClpJiID4gv4WF6xHICrSlXPTGSk0RJNEZER6ujSzM6sORFpvjUmB4CieC82S0S6EJH3qEwP1aId3/pmRPtZMC6DcZkJdHsDvLCtLqJ9DWVKmonIgKypXkNrbyuZ8ZksKFhgdjgiEmY3TrkRgNcPvE6Lu8XkaEREJCyCQTgQmmnWmTU3Il30Jc3Ga2mmSFQcOJo0y+vYQZyvNWL9WCwWbj062+xvG6owDCNifQ1lSpqJyID07ap37cRrsVlt5gYjImE3OXMyM3Nm4gv6eLbsWbPDERGRcGjaAz0ucMTTnXZW2Ju3p+bitidhwWCsNgEQiYpOZy5NCROxEqQkgrtoAtw0p4AYu5XddR3sODw6NwRQ0kxETskwjP6k2fWTrzc1FhGJnI9N+xgAT+16yuRIREQkLI4uzaR4IYbVEfbm40rPBWBMnJdY2+ichSJihsr0iwAY1xLZJZppCTF8eHoeEJptNhopaSYip7S1YSs1HTXEO+JZPG6x2eGISIT0Jc1WHlpJQ1eDydGIiMig9SXNxl0UkebjJ8wHYLxmmYlEVd8SzbFt67EFI/vvr2+J5gvb62h3j77NPpQ0E5FT6ptldsWEK4hzxJkbjIhEzNjUsZxbcC5BI8gzu58xOxwRERkMvxeq1oYej1sU9uZ7LbE4C0JLPsepnplIVDUlTKIzJhtHsJfCtk0R7WtucRqTcpLo9QVZuuVwRPsaipQ0E5FT6l+aOel6U+MQkcj72NSjSzR3a4mmiMiwdngj+HogPhOyp4a9+eqYEixWG/H+dpIdwbC3LyInYbG8u4tmy+oId2XhtnNDs82efKd61G0IoKSZiJxUZUslO5t2YrPYuHri1WaHIyIR9tGpH8WChbdr3qaqbXTWrhARGREOHv0gPe4isIb/Y1+VczwAad6msLctIqfWt0RzXMsaMCKbuL5+9hjiHDb2NXaxqSpyO3YORUqaichJ/avsXwBcNPYi0uPSTY5GRCItLymPRWMXAfD07qfNDUZERM5c5crQfQSWZnb5rRyOKQYg3asamCJmOJwyF48tgUSfi5yusoj2lRzr4NqZ+QD8bf3o+lJVSTMROaln9oTqGn3krI+YHImIRIt20RQRGeZ6WqD2aJ2jcReHvfk3mpMIWOz4jhwmLtAZ9vZF5NQC1hiqUhcAkd9FE+hforlsZwPNnaOnjqGSZiJyQofaDrGpbhNWi5UbJt9gdjgiEiU3TbkJu9XO1oatlLvKzQ5HRERO14FVoeVaWZMhtTDszS9rSAWgp3wtlrC3LiIDVZl+AQDjo5A0m1GQyuyiVLyBIH9/pzri/Q0VSpqJyAn9a09oaeaFxReSk5hjcjQiEi0Z8RlcNv4yQLPNRESGpf2vh+4nLA57091+KytdSaHH5WvD3r6IDNzBtIUEsZHVs5/k3tqI93fneWMBeGJ9FV7/6NgAREkzETkhLc0UGb36dtH8+66/j7pdkkREhjXDiGjSbJUrCU/QSlKgDV/TgbC3LyID53GkUJs8C4DxRyK7iybAldPyyEpy0tTpYfmu+oj3NxSYmjR76KGHOPvss0lKSiI7O5vrr7+e8vJjl4H09vayZMkSMjIySExM5KabbqKxsdGkiEVGj+r2ajbUbsCChRun3Gh2OCISZddNvo5YeyzlR8rZ3rjd7HBERGSgGnZCVyM44qH4vLA3v6wxBYASz/6wty0ip68i8xIAJh5ZEfG+YuxWbp8f2gTkL28finh/Q4GpSbPVq1ezZMkS1q9fz2uvvYbP5+Oyyy6ju7u7/5gvfelL/Pvf/+aZZ55h9erV1NXVceON+gAvEml9SzMvKL6A3MRck6MRkWhLdiZzdenVAPx9599NjkZERAasb5ZZyYVgd4a1aXfAwsrm0NLMEk9FWNsWkTOzP/1iDCzkd+4g0RP5CUa3zi/CYbOwpbqN7TVtEe/PbKYmzV5++WXuvPNOpk6dysyZM3n88ceprq5m8+bNALS3t/OnP/2Jn//851xyySXMnTuXP//5z7z99tusX7/ezNBFRryndz8NwH9M+Q+TIxERs9wy7RYAntz1JIFgwORoRERkQCK4NPP1pmR6AjYK4rxk+pvC3r6InL5uZxZ1yTMBmHBkZcT7y0py8uEZ+cDomG1mNzuA92pvbwcgPT0dgM2bN+Pz+Vi8+N03/MmTJ1NUVMS6des499xzP9CGx+PB43l3+9OOjo4IRy0y8lS2VLKhdgNWi5WPTFU9M5GRrKys7ISvjQmMIdmRzOGOw/zhtT9wbtax/93NzMykqKgo0iGKiMhA9bZDzYbQ4wgkzZ6vTwXgurxWPKNn8zyRIa8i4xLGdGyj9MgbbMv/WMT7u/O8sSzdWsu/d9Rx/1VTIt6fmYZM0iwYDPLFL36RhQsXMm3aNAAaGhqIiYkhNTX1mGNzcnJoaGg4bjsPPfQQ3/nOdyIdrsiI1rdb3qUll2pppsgI1dXSBcDtt99+8gOvAs6BJX9cAs8e+1JcfBx7y/YqcSYiMlRUroSgHzImQHpJWJtu89pYfXTXzOvy2vhHWFsXkcGoyLiYRQd/zpiObSR4XXTHZEa0v5mFqcwuSmVrdRt/f6ea89Mi2p2phkzSbMmSJezatYu33nprUO3cf//93Hffff0/d3R0UFhYONjwREYNwzD4286/AXDr9FtNjkZEIqW3qxeAi++5mNKZpSc8rsnbxHNHnsM2w8Z/fug/ibHGANBc1czSHy7F5XIpaSYiMlTseyV0P/GKsDe9rDEFn2FlSpKbiYmeU58gIlHT5cylLmk6+Z07GX9kJTvyIr9a6M7zxrK1ehtPrK9i/mUjN2s2JJJm9957Ly+++CJvvvkmBQUF/c/n5ubi9Xppa2s7ZrZZY2MjubnHn/3idDpxOsNb8FJkNNnRuIMyVxlOm5MbJt9gdjgiEmFpY9LIm5h3wtdzjVze2vQWrh4XR1KOMCdvThSjExGRAQsGoCJySbN3l2a2hb1tERm8ioxLyO/cSemRN6KSNLtyWh7fTyqjqdPD+treiPdnFlM3AjAMg3vvvZelS5fyxhtvUFJy7BTiuXPn4nA4WLHi3a1Ty8vLqa6uZsGCBdEOV2RUeHLnkwB8eOKHSYlNMTkaETGbxWJhZk6ouOz2hu0mRyMiIidUuxl6joAzBYo+WPt5MOrcDt5pTQDgmty2sLYtIuGxP+MSAAratxDnbYl4fzF2K7fPLwbgxX3dEe/PLKYmzZYsWcITTzzBk08+SVJSEg0NDTQ0NOB2uwFISUnhrrvu4r777mPlypVs3ryZT3ziEyxYsOC4mwCIyOAEjSB/3/V3QEszReRdM3JmYMFCdUc1R3qOmB2OiIgcT/ny0H3pYrA5wtr0Cw2pGFg4J62LMXG+sLYtIuHREZtPQ+JZWAkyoWVVVPq8dX4RMXYrFS0+nGNG5oYApi7P/N3vfgfAokWLjnn+z3/+M3feeScAv/jFL7Bardx00014PB4uv/xyfvvb30Y5UpGRq7q6GpfLBcAm1yZqOmpIsCeQ15XHli1bTnruyXbdE5GRI9mZzPj08exv2c+Whi18aNyHzA5JRETeL0L1zAwD/lkbqld0g5ZmigxpFRmXktu1h1LXCnbm3hjx/rKSnNwwawxPb6oh+eyRWdrH1KSZYRinPCY2NpaHH36Yhx9+OAoRiYwu1dXVTJ4yGXdPaHYn1wOzoHt9N+f9v/MG3E5XV1ckwhORIWRO3hz2t+xne8N2Lhl7idnhiIjIe7VVQ9NusFhhwuKwNr21PZ793bHEWoN8WEkzkSGtIuMSLqj6DYXtm4n1tdHrSI14n3ddUMLTm2qIm3guXT5/xPuLtiGxEYCImMPlcuHucXPDAzeQWpjK/zX9H37Dz7WXX0vuNcffbOO9KjZUsPKxlfT2jtzCjyISMjF9IgmOBLp93ZQfKSeNkbtLkojIsNM3y6zwXIhPD2vTzxydZXZVbjtJ9mBY2xaR8GqPK6AxYRI53eWMb1nN7pzrIt7nxJwkZuc62drgYX+njckR7zG6lDQTEbKKs2hMbsTf6Cc9Lp1ZU2dhsVhOeZ6r2hWF6ERkKLBZbczOnc1bNW+xpX4Ll8ZeanZIIiLSZ+9LoftJ4V2a6Q5Y+PfRXTM/MibyhcVFZPAqMi4lp7ucUteKqCTNAK6dlMDWBg+Huq30+gLEOmxR6TcaTN0IQESGjr5d8WblDCxhJiKjz+y82QBUtlbS6e80ORoREQHA3QqH1oQeT/5wWJt+uTGFroCNojgP89NG7u54IiNJRWaojEZR+zs4fe1R6XNGdgzepoMEDAu7aqPTZ7QoaSYidPo7OdR+CAjtkicicjzpcemUpJYAsNe91+RoREQEgH2vQtAPWVMgY3xYm/5HbWip53+MacWq71RFhoW2uGKaEkqxGQEmHlkRlT4tFgsdG5cCsO1wG4HgqevXDxdKmokI5e5yAMaljiMlNsXkaERkKJubPxeAvT17YeTMvBcRGb72/jt0PyW8s8wqu52sa0nEisFN+a1hbVtEImtv5pUATG5+OWp9dpe9SazVoNsToKJx5KxIUNJMZLSzQHlPKGk2K2+WubGIyJA3OWMySTFJuINumGJ2NCIio5zPDfuPziQJ89LMJ6pDs8wuyepgTJwvrG2LSGSVZ12GgYWCjq0keRqi02nAz/ikAABbqtswjJEx20xJM5HRbgJ0B7uJs8cxJVOfgEXk5GxWG3PzQrPNOMfcWERERr3KN8DXAylFkDczbM32+C38sy6UNPvPoiNha1dEoqPLmcPh5DlAdGeblSQGsVstNHd5ONzqjlq/kaSkmchod/Sz76zcWdit2lBXRE5tTt4cLFigCMrby80OR0Rk9Cp7MXQ/+WoI40ZOLzSk0em3URzn4YKMrrC1KyLRszcrtJtuNJNmThuclZcMwJbqkbGsW5+QRUaxJncTTAw9npM3x9xgRGTYSHImURJbwoHeA/zj0D+4hVvMDklEZPQJ+GDf8tDjMNYzMwz4a3UGALcXHdEGACJDSGdHB/X19QM6tjUwlYuxk9lTiXHobRqcJf2vuVyuSIXIrKJUdtS2c+hIDy3dXtITYiLWVzQoaSYyij1f8zxYIS8mj8z4TLPDEZFhZFrCNA70HmD54eUc6TlCRnyG2SGJiIwuB98EdyvEZ0LhuWFrdkt7PHs643Bag/yHNgAQGRJ6faFaYZs2bWLr3gMDPu/sGZlck92Ade2v+eP+d0vxBLpaAAacgDsdafExjMtM4ICrm63VrVw6JSfsfUSTkmYio5Q/6GdpVWhb4CnxqmUmIqcnx5EDdeDJ9/D7Tb/nGxd+w+yQRERGlz3Phe7PuhZs4ftY9+ih0Bep1+W1kRYTCFu7InLmvP7Qv8WZ47M57+zZAz6vNZAAvqe5c2wz9ZNux7CEKnTtLa/g39uhra0tEuEypyiNA65uyho6WTA+g/iY4Zt6Gr6Ri8igvFD+Ao29jdANY3PHmh2OiAwzFosF1gE3wf9u/F++ct5XcNqdZoclIjI6BHxQ9u/Q46k3hK3Zqp4YXm5MAeBTY5vD1q6IhEdCrIO8jOQBH99mzKW3/nlSjQ7mJbk47JwAQGNibKRCBCA/NZbsJCdNnR52Hm5n/rjhuyJBGwGIjFK/eec3oQdbwG5R/lxEzsAeyI7NpqGrgad2PWV2NCIio8fB1aGlmQlZULwwbM0+eigTAwsXZ3YwMdETtnZFxBwBi4OKuNDOupN7NketX4vFwpyiNAC2H27HHwhGre9wU9JMZBTa2biTVYdWYbPYYKPZ0YjIsBWAm0tuBuDn63+OYRgmByRDyZtvvsk111xDfn4+FouF55577pjXDcPgm9/8Jnl5ecTFxbF48WIqKirMCVZkuNkdKrHBlGvBagtLky1eG8/UpgNwt2aZiYwYe+PnAlDq3o7N8Eet3wnZiSQ67bh9AfY2dkat33BT0kxkFPrfd/4XgEW5i6DD3FhEZHi7sehG4h3x7GjcwesHXjc7HBlCuru7mTlzJg8//PBxX//JT37Cr3/9a37/+9+zYcMGEhISuPzyy+nt7Y1ypCLDjN8LZS+GHodxaeYTNRn0Bq1MS+5hQXp32NoVEXMdjhlPpzWFWMPN2N49UevXZrUwqzAVgK3VbcP2y1UlzURGmVZ3K0/sfAKAm8febHI0IjLcJcckc9fsuwD40dofmRyNDCVXXnkl3//+97nhhg9+qDcMg1/+8pf8v//3/7juuuuYMWMGf/3rX6mrq/vAjDQReZ+Dq6G3DRKyofi8sDTZ5bfyWFVoA4BPj23GYglLsyIyFFislMfPAWBKFJdoAkwbk4zDZqGl20tVS09U+w4XJc1ERplHtzxKj6+H6dnTmZMxx+xwRGQE+Mp5X8FutfPGwTd4p/Yds8ORYeDgwYM0NDSwePHi/udSUlKYP38+69atMzEykWFg5z9D92ddF7almX+pzqDNZ2dcvIerc9vD0qaIDB1lR5dolvTuJjYQvZmkTruNqfmhzUW2VrdFrd9wUtJMZBTxBrz8asOvAPjSuV8K7X4nIjJIRSlF3Db9NgAeeushk6OR4aChoQGAnJycY57Pycnpf+14PB4PHR0dx9xERhVv97u7Zk7/SFia7PJbeeRQFgCfG9+ITcNDkRHHZc+nyTEGOwEmu6M722x2YSoWoLqlh+bO4bfBiJJmIqPI07ueprazltzEXG6dfqvZ4YjICPK1hV/DgoXn9j7H7qbdZocjI9RDDz1ESkpK/62wsNDskESiq3w5+LohtRgKzwlLk++dZXZNbltY2hSRIcZiYVf8uQBM614PRK++WHKcgwnZiQBsrWmNWr/hoqSZyChhGAb/s+5/APj8OZ/HaXeaHJGIjCRTsqZw/eTrAdU2k1PLzc0FoLGx8ZjnGxsb+187nvvvv5/29vb+W01NTUTjFBlydvwjdD/jo4Sj8Fjn+2aZ2fXpUGTE2hs/Bz92svz1lNhcUe17TlEaAOUNnXR5oreDZzjYzQ5ARKLj9QOvs6NxBwmOBP5r3n+ZHY6IjEAPXPAAS/cu5cmdT/KNC77B5MzJJz2+uroal+vMB22ZmZkUFRWd8flinpKSEnJzc1mxYgWzZs0CoKOjgw0bNvDZz372hOc5nU6cTn3pI6NUtwsqV4QeT/9oWJr8w8EszTITGSU81ngq4mYyxb2Zi2LLo9p3bkos+Smx1LX3sr2mjYUTMqPa/2AoaSYySvzk7Z8AcNfsu0iPSzc5GhEZieblz+PaSdfyQvkLfHvVt3nqP5464bHV1dVMnjIZd4/7jPuLi49jb9leJc6GqK6uLvbv39//88GDB9m2bRvp6ekUFRXxxS9+ke9///uUlpZSUlLCgw8+SH5+Ptdff715QYsMZbuXQtAPebMga+Kgm2votfPo0Vlm/z2xXrPMREaBXQnnMsW9mXNjKol3RLfvOcVp1O2oZ2dtO2ePTSdmmLzpKGkmMgq8U/sOrx94HZvFxpcWfMnscERkBPvuou/yQvkLPL37aR644AFm5Mw47nEulwt3j5sbHriBrOKs0+6nuaqZpT9cisvlUtJsiNq0aRMXX3xx/8/33XcfAHfccQePP/44//3f/013dzef/vSnaWtr4/zzz+fll18mNjbWrJBFhrb3Ls0Mg5/vz6U3aGVeajeXZ2tTDZHR4HDMeNpsmaTi4iNnRTdrVpKZQGqcgza3jz31HcwqTI1q/2dKSTORUeAHa34AwO0zbmds6lhzgxGREW1m7kw+ctZHeGbPM3xr1bdYevPSkx6fVZxF3sS8KEUn0bRo0SIM48SFhi0WC9/97nf57ne/G8WoRIap5n1w+B2w2GDaTYNubm9nLM/UhmoM3T+pPhzl0URkOLBY2JUwn/M7XuJTcxxURbFrq8XC7KJUVpY3s7W6lRkFKViHwZvP8JgPJyJnbGfjTl4ofwELFu4//36zwxGRUeA7i76D1WLlub3Psbkuutuai4iMSNv+Frov/RAknXizjIEwDPjO3nwMLFyV08bc1J4wBCgiw8We+LMJGBbOL7KT7G2Iat9T8pKJdVjp6PVT2dQV1b7PlJJmIiPcD9/6IQAfmfoRJmVOMjkaERkNpmRN4dbptwLwzVXfNDkaEZFhLuCH7UdrRM66bdDNvdWdx7qWRJzWIF+fGN0PzCJivm5bCtt9hQCMb387qn07bFZmjEkFYEt120lnpA8VSpqJjGDlrnL+sTtU/+KB8x8wORoRGU2+ddG3sFlsLKtYxrqadWaHIyIyfFW+AV0NEJ8BE68YVFOWmDgebwntbHzvuCaK4r3hiFBEhpk3e0OTKcZ1rgd/dN8HZhSkYLNaaOjopb69N6p9nwklzURGsO+s/g5BI8i1k65lZu5Ms8MRkVFkQvoE7px1JwAPrnzQ3GBERIazrf8Xup9xM9hjBtVU6vm30RqIpSTew6dLmsMQnIgMR9t9hdR1BokNdMG+l6Pad4LTzuTcJAC2VLdGte8zoaSZyAi1q2kXT+0KTeX/zqLvmByNiIxGD174IA6rgxUHV7Dy4EqzwxERGX66j0D58tDjQS7N3HfES9LcawD4zpRanNahvyxKRCIjiJXHt/lCP2z5S9T7n1MU2oiksrmb1p6hPeNVSTOREeo7q7+DgcFNU25iVu4ss8MRkVGoOLWYu+fcDcDXV3ydoBE0OSIRkWFm+98h6IO8mZA77Yyb6fUF+N+N7VisNi5MqOXCzOFRgFtEIudPW48mq/avgJYDUe07PSGGsRnxAGytbotq36dLSTOREWh7w3b+ueefWLDw7UXfNjscERnFHrzoQRJjEnmn9h2e3vW02eGIiAwfhgGb/xx6PPcTg2rql69XcLjDj7+rhbsyysIQnIgMdwdaDWrjpwIGbPxT1Pvvm21WVt+B2xuIev8DZTc7ABEZnOrqalwu1zHPffGdLwLwofwP4T3sZcvhLcc9t6xMgyYRiazcxFy+tvBrPLjyQe5fcT83TLmBWHus2WGJiAx9h9bAkf0QkwjT/+OMm9lS3cof36wEoOWV/yVp+tnhilBEhrl9qRcypmd3qHbixd+AmPio9V2QFkd2kpOmTg87atuYX5IRtb5Ph5JmIsNYdXU1k6dMxt3jfvfJIuCTQBBevf9VXj3y6inb6erSFH0RiZz7FtzH7zf9nqr2Kn61/ld87fyvmR2SiMjQt+mx0P2Mj4Iz6Yya6Oj18fm/byVowEXFcfx1/zuAkmYiElIfPxVSi6GtCnb9E+Z8PGp9WywWZhel8sruRrbXtDO3KA27begthlTSTGQYc7lcuHvc3PDADWQVZ2EYBi8ceYFGXyNTEqdwwQ8vOOn5FRsqWPnYSnp7h/5WvyIyfMU74nno0of4+HMf5wdrfsAnZg9umZGIyIjX1QRlL4Yez/vkGTVhGAYPPLuTw61uCtPj+NTsZP4axhBFZPgzLFY4+y547ZvwziMw+z/BYola/6XZSazdf4Quj5+9jZ1My0+JWt8DpaSZyAiQVZxF3sQ89rr20tjQiMPq4MoZV5J0im8lXdWuk74uIhIut824jV9t+BWb6zfz7VXf5lN5nzI7JBGRoWvrExD04cmawe46H9Qdv9TGybx+oIcXd7Rjs8CS2fFUV5YDUFbdHJYQ61wdYWlHRMxz8OBBto9fyHRrDNaGHZS//le6M6afdjtnWvbHZrUwuzCVNftdbK1qY2peMpYoJu0GQkkzkREiEAyw4uAKAM4tOPeUCTMRkWiyWqz87LKfsegvi/jj5j9y6UWXmh2SiMjQFPD3L838/F+28Md75552EzE548m9/adY7DG4Vv6ZW370r/7Xbv/hP8IWKoDb6w9reyISeV2doaT3gw8+yIMPwiPXxPKpOTHsfOSzfOQZ9ynOPkm7Z1D2Z+qYZDYcbKGlx8uhIz2UZCaccf+RoKSZyAixqW4Trh4X8Y54zis8z+xwREQ+4KKxF3HdpOt4vvx5frnnl2aHIyIyNJW/BO01+GJS+MuWGp544KNMKcoa8OntgRi+WnserkAM8+Ka+PqduVg/sYRHl23idy9sYPH1H2HG1CmDDnPlm2+zdc3rePxDd9c7ETk+jzuUGLvw1s8zb+EiWv010PIgN54Vw/d+/UtabQN/zwEoe2c1y//yqzMq++O025g2Jpkt1W1sqW5V0kxEws8dcLOqahUAl4y9RDvTiciQ9ZMP/YSXKl7iraa3YJzZ0YiIDEHrfw+Aq/gaPIHfMqUoizkTxwzoVF8QPr55HK5AHCXxHh47t4lkR+jc/Hf2AZCemUVBcfGgw0xM1S7sIsNdSk4BBaVTgalU7fo3xe3vcKVzK2+WfOm02mmsrhxUHLMKU9lW08bhVjdNHUOr3vbQ25pARE7bpq5N9Pp7yU3MZXbebLPDERE5oYkZE7ln3j2hH66EoBE0NyARkaGkfjtUvw1WO66x157WqYYB3yobw7qWRBJsAf44+xDJDr3HisjAbMm/FYBpjc/j8HdHte+kWAel2aHyQluq26La96koaSYy3OXA3p69AFwx/gqsFv2zFpGh7duLvk1qTCpkwa7uXWaHIyIydGz4Q+j+rOvwxZ3e8qhHDmXy5OEMLBj8ckYNpYmeCAQoIiPVobQFtMQV4wx0M63p+aj3P6coFYB9TZ30DKFSifp0LTKMGYYBV4KBwdSsqRSnDn6qvYhIpKXFpXHv5HsB2Ny1mS7v6ReNFREZcbqaYOc/Q4/nf/a0Tl3WkMIP9+UD8P8m1fOhbO1sKSKnyWLtn202p+7vWIPRzVxlJ8dSkBaHYcD+TltU+z4ZJc1EhrHX61+HsWDDxofGfcjscEREBuy6ouugFnyGjxUHVpgdjoiI+Tb8AQIeGDMPCuYN+LS3jyTwxR2FAHy80MUni12RilBERrg9WVfR7Ugn2dPARNerUe9/TlEaAAe7rFhi4qLe//FoIwCRYcrtc/fvPjczcSYpsSnmBiQio1JZ2ZkVgi7fWw7LgLthW+M25ubPpSC5ILzBiYgMF54u2PhI6PHCL4DFMqDTdrTHcffWsXgNK1dkt/OtKXUDPVVE5AMCtli25n2M86t/y7za/2Nv1pUDfj8Kh7EZ8aTHx9DS4yVx5uVR6/dklDQTGaZ++vZPaXA3QDvMyp1ldjgiMsp0tYSWVN5+++2DamecfRwH/AdYvn85n5r9KSz6tCcio9GWv0JvO6SPh8lXH/NSWXXzcU+p8ibyzfrJdAdtzIh18Yn4zWyvOHHh/zqXlmyKyKntyLuJcw4/TlbPfsa2vs2h9IVR69tisTC7KJUVe5tInnct/qARtb5PREkzkWFo35F9/HDND0M/vAr2yfqnLCLR1dsV2g784nsupnRm6WmfX7GhgpWPrWQyk6m11VLXWcfWhq3MyZsT7lBFRIa2gA/WPRx6fN7nwBqq5VNfXw/A7T/8xwdOcWQUknPLQ9gSYvDU7ePFp7/Bv73uAXXn9g6hCtsiMuR47MnsyL2BeXV/4+zav0Q1aQYwOTeJt/Y1QnI26w73cs7AV6tHhD5piwwzQSPIp//9aTwBDwuyFrBu9zqzQxKRUSxtTBp5E/NO+zxXdajmTqwllouKL+LVyldZcXAFUzKnEOcYGjUsRESiYte/oOMwJGTBzFv6n25rawPg6o/ezqTScf3PdxixvBmYjIcYUunmgsJOYr761VN2s/LNt9m65nU8/kDYfwURGVm25N/K7PqnKejYypj2rdSmzI5a33ablfFJAXY19tLjTY5avyeMx+wAROT0PLrlUVZXrSbeEc8DMx7gGq4xOyQRkUE5J/8cttZvpbmnmVVVq7hywpVmhyQiEh3BAKz5Wejx/M+AI/YDh2RkZ1NQHNohvdFjZ01dGh6sZMb4uDG/mzjbwOpBJqaeWQ1KERl9up3Z7M6+lhmNzzK/5lGeTXk4qv1PSAry8rc/weUffyuq/R6Pds8UGUbqOuv46muhbxJ/cMkPyI/PNzkiEZHBs1ltXDHhCgA21m6ksavR5IhERKJkz3Pg2gexKXDOp096aK3bwbO1afQGrWQ7fdyY30qczfx6PyIyMm0suIOAxUZx+zvkdWyPat8OKxgDXHIeaUqaiQwj9y67lw5PB+eMOYfPnfM5s8MREQmbcWnjmJI5BQOD5fuXYxj6ICgiI1wwCKt/Gnp87hKIPfEypIPdMSytT8NrWBkT61XCTEQiriM2nz3ZHwbg3JpHTY7GPEqaiQwTz5Y9y9K9S7Fb7Tx6zaPYjhaJFREZKS4bfxl2q52q9ip2N+82OxwRkcgqewGay8CZAvP/64SHNdmyebEhlYBhoSTew/V5rTitSpiJSORtLLiTIDbGtq0nt3OX2eGYQkkzkWGgrbeNJcuWAPD1hV9nes50kyMSEQm/1NhUzi86H4BXK1/F4/eYHJGISIQEg7D6J6HH534W4lI/cIhhQNLZ11PmnEoQCxMT3Vyd24Zdn+BEJEraYwvYk30VAOdV/c7kaMyht1yRYeC+V+6joauBSRmT+MaF3zA7HBGRiFlYuJC02DQ6vZ2srlptdjgiIpGx61/QtDs0y+zcz3zgZV8gyPN1caRf8imwWJie3MPl2R3YLCbEKiKj2obCTxGw2Cluf4fCto1mhxN12j1TZIhbWraUP2/7MxYsPHrto8TaP7irkojISGG32rlywpU8uetJ1h9ez6zcWWQnZJsdlogMEdXV1bhcrrC1l5mZSVFRUdjaGxC/F1Z+P/R44echLu2Yl9t7fHz2b5vZ2OLEMIJM8FZycWYyFiXMRCTMOjs6qK+vP+kx9VhYn3Q5Czte4uz9v+Sd/J/y/jektra2CEZpLiXNRIawhq4GPv1iaCel/1743/3LlkRERrLSjFImZ05mr2svyyqWccfMO7Do06LIqFddXc3kKVNw9/SErc24+Hj2lpVFN3G29a/QeggSskNLM9/joKubux7fyAFXNzFWg8P/+D6Lrjwfi2Vq9OITkRGv1xcAYNOmTWzde+CUxz8X42HbQivFnn3ULP0ey125x7zubToIQE8Y35+HCiXNRIYowzD41AufwtXjYmbOTL6z6DtmhyQiEjVXjL+CypZKqtqr2NG0g5k5M80OSURM5nK5cPf0cNvXfkpO0fhBt9dYXcnffvxVXC5X9JJm3u53a5ld9N8Qk9D/0oqyRu77x3ba3T7yU2K5KauJr1S+A+hLUxEJL68/lDSbOT6b886ePaBz1vt6uSTwFr+YXU1xzFUELe9uTLf+bR9rKsDj9UYkXjMpaSYyRP1qw694qeIlnDYnT9z4BE670+yQRESiJiU2hQuLL2TFwRW8VvkakzImaXm6iACQUzSegtJhOvNq3cPQ1QipxTDnDiBUv+x/Xi3nD6tDsz1mFabyx4/P5bUX/mVmpCIyCiTEOsjLSB7QsXuDV3JewxZyjSYWx5WxM+G8/teS42IiFaLptBGAyBC0sXYj//3afwPws8t+xrTsaSZHJCISfQsKFpARl0G3r5uVh1aaHY6IyOB01MFbvwg9vvSbYI+hob2XWx9Z358wu/O8sfzjvxaQnaQvCURkaPFY41mffBkACzqW4wj2mhxRdChpJjLEtPe2c/M/b8YX9HHjlBu55+x7zA5JRMQUNquNq0pD25xvrN1IfefJC9WKiAxpK74Lvh4onA/TbmJVeRNX/XoNGw+1kuS087vb5vDta6cSY9dHNBEZmrYnLKTVlkVCsIuzu94wO5yo0DuyyBASNILc8dwdHGw7yNjUsfzp2j+p+LWIjGrj0sYxNWsqBgbLKpZhGIbZIYmInL7azbD97wB0XPwD7l+6kzv/vJGWbi9n5SXz78+dz5XT80wOUkTk5IIWO2tSrgFgbucqkvyt5gYUBappJmKy926d/si+R3i+/HlirDF8d/p3ObDn5DuZlJWVRSNEERFTXTb+MipaKjjceZitDVuZkzfH7JBERAYuGITlXwNgVfHnuf/pDurbQ8ua7jxvLF+/cjKxDtvJWhARGTIqY6dREzOeQm8lF7U/x4sZnzA7pIhS0kzERKGt0yfj7nHDROAWwALeZ718/JsfH3A7XV1dEYtRRMRsyc5kFhUv4tUDr/L6gdeZnDnZ7JBERAZuy19or9nND4L38I/yc4FeijPi+fFNMzh3XIbZ0YmInB6LhZWpN3J7088o7d1BUe9esyOKKCXNREwU2jrdzSXfuIQ1MWvwGT7Oij+L8z87sK3FKzZUsPKxlfT2jo4ijCIyep0z5hy2NW6jqbuJFQdXMI95ZockInJK/o4m/v7SCn7h+TktJGOxwCfOK+Erl08kPkYfxURkeDriyGdbwvnM6X6Ti9uf5f8sZ5sdUsTonVrEbEmwwbkBX9DH2JSx3DjjRmzWgU3Rd1W7IhyciMjQYLPauGrCVTy+/XG21G+hKKPI7JBERE5qVXkTP3hqBRXuWwAYn5XAj2+awbyx6SZHJiIyeOuSr2CSeyvp/mZuSD/A82YHFCHaCEDERF2+LrgNuoPdZMZn8tGpHx1wwkxEZLQpTi1mRs4MAN7qeAu0T4qIDEG7atu547F3uPPPG6lwJ5NGJ9+9KImXv3ihEmYiMmJ4rXG8mXItALdk7qM0fWSmlzTTTMQk3d5uvvDOFyAX4qxx3Db9NuIccWaHJSIypH1o3Icod5Xj8rlgrtnRiIiEGIbBugNH+N2qStZUhFYCOPBzp+1l7p2fTsqVHzM5QhGR8NsbN5cpPZsY6ynnkWti+Tkjb5dzJc1ETNDr7+WGp29gW8s26IUrC64kNTbV7LBERIa8xJhELim5hOX7l8Ol0OJpMTskERnFAkGD1/Y08rvVlWyvaQPAZrVwTfphvtjxP4zNTIAr3jI3SBGRSLFYWJH6UW6r/yEXjYVd7i14ud7sqMJqZM6fExnCenw93PD0Dbx24DXibHHwBGQ6Ms0OS0Rk2JiXP48MewbEwT8P/dPscERkFKpp6eHnr5Zz/o/f4DNPbGZ7TRtOu5WPLyhm1Y0Wftn1VcZam+D630FMgtnhiohETIc9nb82hXY2vzP2DZI8DSZHFF5KmolEUXtvO5c/cTkv73+ZOHscvzjnF3DY7KhERIYXq8XKBSkXwItw18S7zA5HREYJtzfAizvq+M8/beDCn67k12/sp769l7R4B0suHs/ar1/Cdy/OoPCNJaETFiyBonPNDVpEJApebC3h7Ro/CRYPl1V8B4yg2SGFjZZnikRJbUct1/z9GrY2bCXFmcJLt75EnEs1zEREzkR2TDZsAptFm6eISOT0+gKsKm/mpZ31rChrpMcb6H/t/AmZ3Hx2IZdNzcFpt0EwAH+9G3qOQO50uORBEyMXEYmeIBY+vtTNrs+lU9S+idl1T7F1zK1mhxUWSpqJRMGGwxu4/unraehqICs+i1duf4XZebPZ4tpidmgiIiIi8h69vgBrKly8uKOO1/c00v2eRFlBWhzXzcrn5nlFFGXEH3vim/8Dh9bgszhZ7ryRzn/8a1BxrF27dlDni4hEU2WrwZ96F7MkbjnnVz1Mdeo5HEmYYHZYg6akmUgEGYbBI1se4fPLP48n4GFa9jRe+NgLlKSVmB2aiIiIiBzl9QdZU9HMSzvqeW1PI50ef/9r+SmxXD0jj6tn5DOzIAWLxfLBBva9irHqISzAJ59t44kdXw5bbO1d7rC1JSISSa/45nBlfgfjWtdydfkDPDnzL/htw3t1lZJmIhFypOcId//7bpbuXQrANROv4W83/o0kZ5LJkYmIiIiIYYCzcDq/29TGO/9+nXa3r/+13OS+RFkeswpSsVqPkyjr07wP/nUXFgz+uNlLdfH1fPzCwkHHt3HjZso2rMbt9Q66LRGR6LDw6oRvcvu228hwH+SSAz/m1dJvmx3UoChpJhJmhmHw5M4n+fKrX6axuxGH1cEPL/0h9y24D6tFe2+IiIiImOlIl4c99R2U1TnIvfUhXjsQmsmVneTkqul5fHhGHnOK0k6eKOvjboWnbgFPB02x47l32VZuuaeQWTOmDjrOg1U1g25DRCTa3DHpLJv0ff5j1z1MbXqJw8lz2JNzrdlhnTElzUTCaGv9Vr7y2ld44+AbAEzJnMITNz7BnLw5JkcmIiIiMnr5A0H2N3exs7adurbeo89aCPZ28aEpWdx16Qzmj8vANpBEWR+fG/5+CxzZDymFvJn+aXzBz0YkfhGR4aQ2ZS7riv6LhdW/49IDP8GVUEpT4hSzwzojmvYiEgY7G3fykWc+wpw/zuGNg28Qa4/lB5f8gG2f2aaEmYiIiIhJOtw+1lQ086e1B3lldyN1bb1YLDA+K4FzM33U/O9/suTsVM6bkHl6CbOAH/75SaheB84UuOUpPHaV4BAR6fNOwZ0cSFuIPejh2rKvEO89YnZIZ0QzzUTOkD/oZ1nFMn694desOLgCAAsWbp1+K9+7+Hsq9i8iIiJikiNdHjZXtVLe2EnQCD2X6LQzbUwyU/NTSHTaOVzRCgHfyRs6nmAAXvgclC8DmxNu+TvkTgO2h/V3EBEZ1ixWlk/8PrfsuJN0dxUf3vs1/jXttwSsMWZHdlqUNJNRr7q6GpfLNaBjA0aAPW17WFG/gmWHl3HEE8qWWy1W/uOs/+DBCx9kWva0SIYrIiIiIifQ0N7LpqoWKpu7+58rTItjVmEqYzMSBlan7GQCfnjus7DzH2Cxwkf+DGMXDjJqEZGRyWtP5IXJ/8PHdnyCMZ3b+dD+7/Fy6XfheLsQD1FKmsmoVl1dzeQpk3H3nGQr71hgPDARmAAkvOe1brDvtrP6p6s576zzIhqriIiIiBzfkS4PayuPcND1brJsfFYC88amk5scG55O/B549m7Y8zxY7XDTozD56vC0LSIyQrXGj+WlSQ9xfdkXmdL8Mp3OXNYWLzE7rAFT0kxGNZfLhbvHzQ0P3EBWcRYQ2v2y1d9KtaeaGk8NDd4GDIz+cxwWB4XOQibETSDOG8fzy54n9nthGoyJiIiIyIB19vpYf6CFsvoODEKTFybnJjGvOJ30hIEtASorKzvlMTZPO+M2fpOklh0ErQ4OzvsW7Z5i2LKl/5iDBw+e6a8hIjIidHZ0UF9f/4Hn6ynGn3kvNzf/inMOP06t28m6lBN/6TDQlWDRoKSZCJBWlEZXRhf7WvZR0VJBu6f9mNcz4zMpTS9lYsZECpMLsVltANTv++AbgoiIiIhElscfYOOhVrbVtBE4WrRsQlYi543PIG2AybKOlmYAbr/99pMeNznTyr9viScp3Up7r8F/PNPG69/6/AmP7/H4B/hbiIiMDL2+AACbNm1i694DJzxuf8lEvjF+Hzcc+QOvvrmev9cXHve4QFcLwHETcNGmpJmMWkd6jvBCzQvwMfhLw18INAT6X7NZbJSklVCaXkppeilpcWkmRioiIiIifaq7rSxfV0WPNzR2G5Max8IJGeSlxJ1WO+6uDgCu/q9vMGnG3A8eYBic3fsWN3T+H068HLFm8af8LzLjy2OYcZz23lnxIm89+xgen5JmIjK6eP2h9+OZ47M57+zZJzyu3ZjHW/7lnB/YwMNTd7Bw1kR22D5YE3xveQX/3g5tbW2RCnnAlDSTYe90Cvk39zbzet3rrGxYybaWbQSMAEyGAAGSncn9s8lKUktw2BwRjlxEREREBqqqzUfOLQ+x8YgdCJAS5+DCiZmUZCRgGURR6Yz8YgpKpx7zXKyvjUUH/ocpna8AUJ1yNssmfh9HTDoFJ2infMfmM45BRGQkSIh1kJeRfNJjNhofJaUNpvds4Bbfv0hLjGNf/LGJtsbEoVP+SEkzGdYGVMg/BpgMzADGAdb3vNYAlMGVV1/J2fPOHtSAS0RERETCr6PXxy9fq+Dxt13EFk3HZjE4Z1wmc4pSsVutp27gdBgGU5qXcdHBXxDnbyeIjbeL/otNBR/HsNjC25eIyGhksbIi9aPYDT9T3Ju5svX/sBs+9iScY3Zkx6WkmQxrxyvkD6Fi/g3eBsrcZRzqPYTfeHeafLYjm3Gx4xgbO5bG6kZWrl5J3GVxSpiJiIiIDCGGYfDctlp+8NJeXF0eALrL13LTxWczaWx62PsrbNvIwqqHyevaDUBz/ARen/ANGpI+uHRIRETOnGGx8krarfgtDqb3rOfytr8TY/SyLfFCs0P7ACXNZETIKs4ib2Iebp+bHY072FS/CVfPu0s20+PSmZE9g+k500mPe3eQ5a3zmhGuiIiIiJxEWX0H33p+N+8cChWDHpeZwO1nObnrxw+R8KFnw9aPBZhhlHHTrqcoat8EgNcaxzuFn2Rz/u0Erfq4JCISCYbFyuupH8FvcTC7ew0Xty8lKdDGmuQPmx3aMfRfARkRmrxNvFP+DruaduEPhmaVOawOpudMZ3bubMYkjdFMMhEREZEhrqPXxy9e28df11URCBrEOWzce8kEPnVBCbt3bA9bPwmeZq62vc037klgivEnaIeAxc6O3Bt5p+CT9MRkhK0vERE5AYuVVSk30G1L5vyOl5jXtZKkQCt7mGV2ZP2UNJNhq9PTyb8O/Qv+C5478lz/89kJ2czLm8f0nOnE2odOAUERERGRoe50NlgaiMzMTIqKik55XDBosHRrLQ8tf3cp5lXTc/nG1WcxJvXYXTFdLhe2xPrTC8QwyPTVMdm9iand71DSuxurIwhZNnqIZU/+TWzLu5nO2LzTa1dERAbHYmFj0mK6bCl8qPUpJrm38Y2UGl5JHhqTXpQ0k2FnW8M2/rDpDzyx8wm6vF2QBzZsTMuZxty8uRQkF0R9VllZWVlUzxMREREJt+rqaqZMmUzPyTZYOk3x8XGUle09aeJsW00b3/n3brZWtwEwLiuB71w7lQtKs445rr4+lCh79tlnsSWevKZZjCXA9KQOFqS2MD+1lfkpLWQ7jy3L8XZTPH/ecATPhx5gdskNZ/DbiYhIuJTFn02HLY0PtzzOWPsRNt6dwHb3frPDUtJMhocOTwf/2P0PHt3yKBtqN/Q/X5xQTNW/qrjtjtsomVwS9bi6WroAuP322wfXTldXOMIREREROWMul4ueHjdPPPBRphRlnfqEUyirbub2H/4Dl8t13KRZY0cvP355L89uqQUgPsbG5y4p5a7zS4ixf3BXzLa2NgAunj2OyZNKsRs+ko1OUugg3WgjO9hMttFMtuEi3WjFRvCY8/3YqLIWsts6md3WySw/XMaaLc9wzUVh3oFTRETOSK1zAk9m3ceHan9LceIRcnvKzQ5JSTMZugzD4K3qt3hs22P8Y/c/6PH1AKFaZTdOuZHPzPsMSUeSmPfVecR+wpxlmL1dvQBcfM/FlM4sPe3zKzZUsPKxlfT29oY7NBEREZEzMqUoizkTx0Ss/R6vn8feOshvV1XS4w0AcNOcAv77iknkJMeCYYC7FTrqobMOOuqgo55zGlfz4i1xTBuzjGyvh7hg90n7cVviqXOWUBcTujXGFBKwOACIBZLjKiP2O4qIyJnptKfz/fZrSNj4e86+90pmmByPkmYy5NR11vHX7X/lsa2PUdFS0f/8pIxJ3DX7Lj4+8+PkJOYAsKVli1lhHiNtTBp5E0+/BoarOnw1Q0RERESGsl5fgCc3VPPblftxdYeWSs7O8POt0ipmsQyerQolyDrr4eiXpe9VCpROdAAt9E0i8+Og05ZCpy2VFkcOrfZsWuw5HHHk0G1NAW0EJSIy7Hix8+gGL098zvyZwEqayZDQ1tvG0rKlPLX7KV4/8DpBIzQSSnAkcPPUm7lrzl0sKFigHTBFREREhglr0Mv8MTZSDr7Ek9vf4jeVOdT7EwEosjTyZfszXNv1NpZtJ2ggLg2S8iE5H5Lz2HHIxa8f/xdTFl1P1oQZdNlS8FjilRgTEZGIUdJMTNPh6eClfS/x1O6neHn/y3gD7xZnXVi4kE/O/iQfnfpREmMSTYxSRERERE4p4IOuxtAssaO3kh4Pn7zzo3x8YyG1hGqk5XGEz9uf5T8c63Ck5UPqIkgphNRiSC2ElAJIygslyhzH7pq5829/409bn+LjCwuZ5cg34ZcUEZHRRkkzGbTT2Zq80d3I6sbVrG5YzSbXJvyGv/+18UnjuSz/Mi7Lv4yixCIwYN+ufSdtT7tPioiIiJjA74GOWmirhvaaUKLs6EqBA8FcHg9cxz8DF9JDqO5spsPLkrM83HLOeGKzfguJuWA1f9mNiIjIyShpJoNSXV3N5CmTcZ9oa3IbUASMA8YD7/9S0AXsAXZBZVMlvzv6v9Ol3SdFREREIsgwoLMBWiqh5UAoSYbR/3K7Ec8rlvN53riAtd7x/c97mw7ypatm8bnrFhDrsJkQuIiIyJlT0kwGxeVy4e5xc8MDN5BVnIVhGLT4WzjsOUytp5Z6bz0BAseck+PIoTi2mLGxY2mubmblGyu1+6SIiIgMSaczo34gMjMzKSoqClt74YzvAzP4fW5oPXg0UXbwA8X5u5zZrHZcxAu+uazsKMBrvDtz7NKsDi60lXHnj7+HZ9z3+JenatDxrV27dtBtHE9nRwf19fWDbqejszMM0YiIyFCipJkMijfghQKoz6hnr28v1e3VdPuO3f47MSaRcWnjGJc2jvFp44+pUeavCy3P1O6TIiIiMtSEZtRPwd3zwZ0cz1RcfDx7y8rCkjgLd3wWYE6elYSmjdD9Rmgny/fMJvNZ49iWsJC3LHNZ2zuWbR3J+I13i/BPTOzlurxWrs1tozDex59f3g3Agw8+GJb4+rR3nWCFw2nq9YW+2N20aRNb9x4YdHvepoMA+P3+UxwpIiLDhZJmMmCGYVDbWcumuk2srV7L24ffZmPtRvgUrO9cD0e/XHNYHYxNHdufKMuKz9KulyIiIjLshGbU93Db135KTtH4U59wCo3Vlfztx1/F5XKFJWkWjvgSgp2Uevcw2buDCd1bSLO5IbAXT7udCqOY3Y7p7LFPYXegiD3uFHp6jl1iWRzn4arcdq7La2Ny0rEz/2tdocHhgiuup3TCuDP7Jd9j48bNlG1YjdvrPfXBA+D1h5JmM8dnc97Zswfd3htvdLO5AgLBwKkPFhGRYUFJszAY7LT4cE/TP13Hiz9gBKjuqmZv+172deyjvL2c8o5y2rxtH2ygG4rTiynNL6UwpZAxSWOwWVWzQkREREaGnKLxFJRONTuMEzqd+KxBHzkdO0k/spmEtr0Y3S0cIZmNRgbPGrdxwJdNFfk0kUoQK7wvP5Xu8HNeRhfnZ3SxML2TwnjfKfssLMhn1ozBX7+DVTWDbuN4EmId5GUkD7qd+NiYMEQjIiJDiZJmg3TKQvgDEBcfx96yvaYkzvYd2MeMi2fgSfRABpB59JYNOI5zQhBoBmrec2uBhT9bSGnR6dckExEREZGBCQYNPP4gvb4Avf4AdZ1+HFkluDwW/K5uPP4g3kAQrz908/gDodlUnk7wdNHr9dLhd9BKIkEWAYtO2l+y3c/U5F6mJrmZluxmarKb8QkerFpAICIio8SwSJo9/PDD/PSnP6WhoYGZM2fym9/8hnPOOcfssIAPFsI/Xc1VzSz94dKwTdN/P3/QT11nHVVtVVS3V1PV/u79viP7ONR6iOAng8c9126xk2HPIMMRumXaM0lzpGEfY4dZoWNUiF9EREQGY6iO83p9Ab696gg5H/shqxvtONprMAwIGgYGofv3lPsCPvDjB57weR3kf+p3fG55E7ErV53y+KBh0OsL4vYF6PUF8Pg/OGbL/+RvWN0INNad5LexAEnve8YgwRYg1hlDrNNJotOO21XH5uce4YFrp/CpC4vJivGjChsiIjKaDfmk2dNPP819993H73//e+bPn88vf/lLLr/8csrLy8nOzjY1NrfPzbqmdTAOPLke3FluLIRGFn01vCxYsFqsWCxH79/zswULDr8D0qCup46s9ixsVhs2i63/3mqxEjSCuP1u3D43Pb6e/sduv5subxeuHtcHbs09zTR1N1HXWUfQOH5SrF8vZCdlk5eeR0Z8BplxmWQlZJEel47VYj3pqSrELyIiImdqKI/zAHY0eYktnoHLA3jC8QWhBUdGIbWdAejsPvXhJ+GwWXBYgvi6WkmNd5Bq6yU12E6K0UYybhItbpLoIdHiJs4awB+XiS+pkO7UyfSmjCMuxoH1fVPGtq0r583db1B8XSbZzjGDik9ERGQkGPJJs5///OfcfffdfOITnwDg97//PS+99BKPPfYYX//6102NrbG7kXs33Asfh2Uty6DlDBv6Alyz4hpYEdbw+jmsDgpTCilOKaYopaj/fkL6BLz1Xi477zKu/8P1Z7R7pYiIiMiZGsrjvBiblS/OT+UbD9zPh++6j8y8IqwWjn4RytEvQD/oZDOzmg8f4h+/+H888ugjTCydePT4Y0+wGEHw9YC3C4ung1jPEWJ7m4h1NxHrrie2o4rY1n3Yuw6HTkh9z8lHS8q2xY6hMfEsapNnUZc0E1fCBAyLrf+QhDO6IiIiIqPPkE6aeb1eNm/ezP3339//nNVqZfHixaxbt87EyEJibDFMTJ7Ivn37SC9Ix+60YxgGxtG59X2PDcMgaAQ/8DhoBAkEAvh6fTjjnBgWg0AwQMD44I47NouNOEcccfa4Y+4THAlkxmeSFZ9FZnzmB26FKYXkJuaecMbYlpYtEb1GIiIiIscz1Md5ViPAtY4NrLOt4xrrOjKowmIYWIIBLBhYjCAWgqHnCBy9D8LRe4thYCUAhoHN8GEPenD76lk4q5Kran5ORkcC+HrB1w3uNuhth9426O3gOAs9j8vvSGbTwRZsEy6iO28+TQmTaE6YiNeeGMlLIyIiMmoM6aSZy+UiEAiQk5NzzPM5OTns3bv3uOd4PB48Hk//z+3t7QB0dHSEPb5EEnlk7iNcdN9FnPfl88gszDztNlw1Ll782Yv85o+/YdKkSf3PB41gKLlmGFgsFuzWE/9fZbVaCQaPLsH0Ax2hmwcP+4/+70TKy8sBqNtXh9d9+tt3N1c1h+4PNlOVUKXzdb7O1/k6X+dH5XxXTag8QFdXV0T+G9/XpmEMLHkhp2+oj/Pwuclc+20euSYOmn8X2ggpDGZNc0DlK5wqYj92vNZ4eu3J9NhT6LWn0GNLwW1Po8ORSVdMJhU1Ln7wpx9w2Semkt6RBjQdvZ2Z6v17AFi5tZIez6l3xTyVTXtDs+EOHqr6wFLQM9FYF6rbVldTwzubBv/Fr9pTe2pP7am9odledXUtAD09PeaP84whrLa21gCMt99++5jnv/rVrxrnnHPOcc/51re+ZRD6ek433XTTTTfddNNtULeamppoDHlGJY3zdNNNN9100003M28DGecN6ZlmmZmZ2Gw2Ghsbj3m+sbGR3Nzc455z//33c9999/X/HAwGaWlpISMj4wM1I0aDjo4OCgsLqampITk52exwRhxd38jS9Y0sXd/I0vWNrEhfX8Mw6OzsJD8/P+xtS4jGeYOn95nI0vWNLF3fyNL1jSxd38gaSuO8IZ00i4mJYe7cuaxYsYLrr78eCA2OVqxYwb333nvcc5xOJ06n85jnUlNTIxzp0JecnKx/zBGk6xtZur6RpesbWbq+kRXJ65uSkhKRdiVE47zw0ftMZOn6Rpaub2Tp+kaWrm9kDYVx3pBOmgHcd9993HHHHcybN49zzjmHX/7yl3R3d/fvsiQiIiIiw5PGeSIiIjKUDfmk2c0330xzczPf/OY3aWhoYNasWbz88ssfKBorIiIiIsOLxnkiIiIylA35pBnAvffee8Jp+nJyTqeTb33rWx9YyiDhoesbWbq+kaXrG1m6vpGl6ztyaJx35vTvILJ0fSNL1zeydH0jS9c3sobS9bUYhvZSFxEREREREREReS+r2QGIiIiIiIiIiIgMNUqaiYiIiIiIiIiIvI+SZiIiIiIiIiIiIu+jpJmIiIiIiIiIiMj7KGk2Qnz729/GYrEcc5s8eXL/6729vSxZsoSMjAwSExO56aabaGxsNDHioe3NN9/kmmuuIT8/H4vFwnPPPXfM64Zh8M1vfpO8vDzi4uJYvHgxFRUVxxzT0tLCbbfdRnJyMqmpqdx11110dXVF8bcYuk51fe+8884P/D1fccUVxxyj63t8Dz30EGeffTZJSUlkZ2dz/fXXU15efswxA3k/qK6u5uqrryY+Pp7s7Gy++tWv4vf7o/mrDEkDub6LFi36wN/vZz7zmWOO0fU9vt/97nfMmDGD5ORkkpOTWbBgAcuXL+9/XX+7MlppnBdeGudFlsZ5kaNxXmRpnBdZw3Wcp6TZCDJ16lTq6+v7b2+99Vb/a1/60pf497//zTPPPMPq1aupq6vjxhtvNDHaoa27u5uZM2fy8MMPH/f1n/zkJ/z617/m97//PRs2bCAhIYHLL7+c3t7e/mNuu+02du/ezWuvvcaLL77Im2++yac//elo/QpD2qmuL8AVV1xxzN/z3//+92Ne1/U9vtWrV7NkyRLWr1/Pa6+9hs/n47LLLqO7u7v/mFO9HwQCAa6++mq8Xi9vv/02f/nLX3j88cf55je/acavNKQM5PoC3H333cf8/f7kJz/pf03X98QKCgr40Y9+xObNm9m0aROXXHIJ1113Hbt37wb0tyujm8Z54aNxXmRpnBc5GudFlsZ5kTVsx3mGjAjf+ta3jJkzZx73tba2NsPhcBjPPPNM/3NlZWUGYKxbty5KEQ5fgLF06dL+n4PBoJGbm2v89Kc/7X+ura3NcDqdxt///nfDMAxjz549BmBs3Lix/5jly5cbFovFqK2tjVrsw8H7r69hGMYdd9xhXHfddSc8R9d34JqamgzAWL16tWEYA3s/WLZsmWG1Wo2Ghob+Y373u98ZycnJhsfjie4vMMS9//oahmFcdNFFxhe+8IUTnqPre3rS0tKMRx99VH+7MqppnBc5GudFlsZ5kaVxXmRpnBd5w2Gcp5lmI0hFRQX5+fmMGzeO2267jerqagA2b96Mz+dj8eLF/cdOnjyZoqIi1q1bZ1a4w9bBgwdpaGg45nqmpKQwf/78/uu5bt06UlNTmTdvXv8xixcvxmq1smHDhqjHPBytWrWK7OxsJk2axGc/+1mOHDnS/5qu78C1t7cDkJ6eDgzs/WDdunVMnz6dnJyc/mMuv/xyOjo6+r8JkpD3X98+f/vb38jMzGTatGncf//99PT09L+m6zswgUCAp556iu7ubhYsWKC/XRn1NM6LDo3zokPjvPDQOC+yNM6LnOE0zrNHrGWJqvnz5/P4448zadIk6uvr+c53vsMFF1zArl27aGhoICYmhtTU1GPOycnJoaGhwZyAh7G+a/bef6x9P/e91tDQQHZ29jGv2+120tPTdc0H4IorruDGG2+kpKSEyspKHnjgAa688krWrVuHzWbT9R2gYDDIF7/4RRYuXMi0adMABvR+0NDQcNy/777XJOR41xfg1ltvpbi4mPz8fHbs2MHXvvY1ysvLefbZZwFd31PZuXMnCxYsoLe3l8TERJYuXcpZZ53Ftm3b9Lcro5bGedGjcV7kaZwXHhrnRZbGeZExHMd5SpqNEFdeeWX/4xkzZjB//nyKi4v5xz/+QVxcnImRiZy+j33sY/2Pp0+fzowZMxg/fjyrVq3i0ksvNTGy4WXJkiXs2rXrmLo3Ej4nur7vrbkyffp08vLyuPTSS6msrGT8+PHRDnPYmTRpEtu2baO9vZ1//vOf3HHHHaxevdrssERMpXGejCQa54WHxnmRpXFeZAzHcZ6WZ45QqampTJw4kf3795Obm4vX66Wtre2YYxobG8nNzTUnwGGs75q9fyeP917P3Nxcmpqajnnd7/fT0tKia34Gxo0bR2ZmJvv37wd0fQfi3nvv5cUXX2TlypUUFBT0Pz+Q94Pc3Nzj/n33vSYnvr7HM3/+fIBj/n51fU8sJiaGCRMmMHfuXB566CFmzpzJr371K/3tiryHxnmRo3Fe9Gmcd/o0zossjfMiZziO85Q0G6G6urqorKwkLy+PuXPn4nA4WLFiRf/r5eXlVFdXs2DBAhOjHJ5KSkrIzc095np2dHSwYcOG/uu5YMEC2tra2Lx5c/8xb7zxBsFgsP+NVQbu8OHDHDlyhLy8PEDX92QMw+Dee+9l6dKlvPHGG5SUlBzz+kDeDxYsWMDOnTuPGbC+9tprJCcnc9ZZZ0XnFxmiTnV9j2fbtm0Ax/z96voOXDAYxOPx6G9X5D00zoscjfOiT+O8gdM4L7I0zou+YTHOi9gWAxJVX/7yl41Vq1YZBw8eNNauXWssXrzYyMzMNJqamgzDMIzPfOYzRlFRkfHGG28YmzZtMhYsWGAsWLDA5KiHrs7OTmPr1q3G1q1bDcD4+c9/bmzdutWoqqoyDMMwfvSjHxmpqanG888/b+zYscO47rrrjJKSEsPtdve3ccUVVxizZ882NmzYYLz11ltGaWmpccstt5j1Kw0pJ7u+nZ2dxle+8hVj3bp1xsGDB43XX3/dmDNnjlFaWmr09vb2t6Hre3yf/exnjZSUFGPVqlVGfX19/62np6f/mFO9H/j9fmPatGnGZZddZmzbts14+eWXjaysLOP+++8341caUk51fffv329897vfNTZt2mQcPHjQeP75541x48YZF154YX8bur4n9vWvf91YvXq1cfDgQWPHjh3G17/+dcNisRivvvqqYRj625XRS+O88NI4L7I0zoscjfMiS+O8yBqu4zwlzUaIm2++2cjLyzNiYmKMMWPGGDfffLOxf//+/tfdbrdxzz33GGlpaUZ8fLxxww03GPX19SZGPLStXLnSAD5wu+OOOwzDCG1H/uCDDxo5OTmG0+k0Lr30UqO8vPyYNo4cOWLccsstRmJiopGcnGx84hOfMDo7O034bYaek13fnp4e47LLLjOysrIMh8NhFBcXG3ffffcxWwsbhq7viRzvugLGn//85/5jBvJ+cOjQIePKK6804uLijMzMTOPLX/6y4fP5ovzbDD2nur7V1dXGhRdeaKSnpxtOp9OYMGGC8dWvftVob28/ph1d3+P75Cc/aRQXFxsxMTFGVlaWcemll/YPpAxDf7syemmcF14a50WWxnmRo3FeZGmcF1nDdZxnMQzDCP/8NRERERERERERkeFLNc1ERERERERERETeR0kzERERERERERGR91HSTERERERERERE5H2UNBMREREREREREXkfJc1ERERERERERETeR0kzERERERERERGR91HSTERERERERERE5H2UNBOREe3OO+/k+uuvNzsMEREREQkzjfNEJNKUNBORqFq0aBFf/OIXo3aeiIiIiESHxnkiMtIoaSYiEkU+n8/sEEREREQkAjTOExl5lDQTkai58847Wb16Nb/61a+wWCxYLBYOHToEwOrVqznnnHNwOp3k5eXx9a9/Hb/ff9LzAoEAd911FyUlJcTFxTFp0iR+9atfnVZMVVVVXHPNNaSlpZGQkMDUqVNZtmxZ/+u7d+/mwx/+MMnJySQlJXHBBRdQWVkJQDAY5Lvf/S4FBQU4nU5mzZrFyy+/3H/uoUOHsFgsPP3001x00UXExsbyt7/9DYBHH32UKVOmEBsby+TJk/ntb387mEsrIiIiYiqN8zTOExmJ7GYHICKjx69+9Sv27dvHtGnT+O53vwtAVlYWtbW1XHXVVdx555389a9/Ze/evdx9993Exsby7W9/+4TnBYNBCgoKeOaZZ8jIyODtt9/m05/+NHl5eXz0ox8dUExLlizB6/Xy5ptvkpCQwJ49e0hMTASgtraWCy+8kEWLFvHGG2+QnJzM2rVr+wd5v/rVr/jZz37GH/7wB2bPns1jjz3Gtddey+7duyktLe3v4+tf/zo/+9nPmD17dv+A6pvf/Cb/+7//y+zZs9m6dSt33303CQkJ3HHHHeG85CIiIiJRoXGexnkiI5IhIhJFF110kfGFL3zhmOceeOABY9KkSUYwGOx/7uGHHzYSExONQCBwwvOOZ8mSJcZNN93U//Mdd9xhXHfddSc8fvr06ca3v/3t4752//33GyUlJYbX6z3u6/n5+cYPfvCDY547++yzjXvuuccwDMM4ePCgARi//OUvjzlm/PjxxpNPPnnMc9/73veMBQsWnDBOERERkaFO4zyN80RGGs00ExHTlZWVsWDBAiwWS/9zCxcupKuri8OHD1NUVHTCcx9++GEee+wxqqurcbvdeL1eZs2aNeC+P//5z/PZz36WV199lcWLF3PTTTcxY8YMALZt28YFF1yAw+H4wHkdHR3U1dWxcOHCY55fuHAh27dvP+a5efPm9T/u7u6msrKSu+66i7vvvrv/eb/fT0pKyoDjFhERERkONM7TOE9kOFNNMxEZtp566im+8pWvcNddd/Hqq6+ybds2PvGJT+D1egfcxqc+9SkOHDjAf/7nf7Jz507mzZvHb37zGwDi4uLCEmdCQkL/466uLgAeeeQRtm3b1n/btWsX69evD0t/IiIiIsOdxnkiMhQoaSYiURUTE0MgEDjmuSlTprBu3ToMw+h/bu3atSQlJVFQUHDC89auXct5553HPffcw+zZs5kwYUJ/8dbTUVhYyGc+8xmeffZZvvzlL/PII48AMGPGDNasWXPcnZCSk5PJz89n7dq1H4jprLPOOmFfOTk55Ofnc+DAASZMmHDMraSk5LRjFxERERkqNM7TOE9kpFHSTESiauzYsWzYsIFDhw7hcrkIBoPcc8891NTU8LnPfY69e/fy/PPP861vfYv77rsPq9V6wvNKS0vZtGkTr7zy/9u5Q5bIojAAw98GRxREDYJgNJnGIkzR6G+wCFZhwCkyUwRNYjH4BwyDwWKVSdoVdTDdEZk/MMkkDMO3YVlZ7oLLWlbc56mXw7mc9PFy7+lEr9eLvb29uLm5+av3aTQa0el0ot/vx93dXVxdXcXS0lJERNTr9Xh5eYmNjY24vb2Np6enaLfbURRFRETs7u7G0dFRnJ+fR1EU0Wq14uHhIXZ2dt7d8+DgIA4PD+Pk5CR6vV48Pj7G6elpHB8ff+BEAQA+B3OeOQ++nH99qRrwfymKImu1Wk5MTGREZL/fz8zM6+vrXFlZyUqlkvPz89lsNnM4HL677vX1Nbe2tnJ6ejpnZmZye3s7W61WVqvVt3V/uiC2Xq/n4uJijo+P59zcXG5ubuZgMHh7unb20AAAAL9JREFU3u12c319PScnJ3NqaipXV1fz+fk5MzNHo1Hu7+/nwsJCjo2NZbVazcvLy7e1Py+Ivb+//23fs7OzXF5ezkqlkrOzs7m2tpYXFxcfO1QAgE/AnPeDOQ++jm+Zv3wnCwAAAAD4PRMAAAAAykQzAAAAACgRzQAAAACgRDQDAAAAgBLRDAAAAABKRDMAAAAAKBHNAAAAAKBENAMAAACAEtEMAAAAAEpEMwAAAAAoEc0AAAAAoEQ0AwAAAICS713Hiq/H6H8kAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, axs = plt.subplots(1, 2, figsize=(15, 7))\n",
+ "plt.subplot(121)\n",
+ "sns.histplot(data=df,x='total score',bins=30,kde=True,color='g')\n",
+ "plt.subplot(122)\n",
+ "sns.histplot(data=df,x='total score',kde=True,hue='gender')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3d200b76",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ "- Female students tend to perform well then male students."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "15522737",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAINCAYAAAAp7s0nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iV9f3/8ec5Odl7h5DFTkBQhgMXigpStbbQ2vJDq1W/ta0LnLWOuiqOqriqrVWwVYujrmpdIKAgIILssGLgMLL3PCfJOb8/TnI0sjLOyX3OyetxXbnOnTPu+xUgfM79Pp/7/TE5nU4nIiIiIiIiIiIiIiLSI2ajA4iIiIiIiIiIiIiI+DMV2kVEREREREREREREekGFdhERERERERERERGRXlChXURERERERERERESkF1RoFxERERERERERERHpBRXaRURERERERERERER6QYV2EREREREREREREZFeUKFdRERERERERERERKQXLEYH8DaHw8GBAweIjo7GZDIZHUdERPoxp9NJXV0d6enpmM36rLu3NMaLiIgv0TjvWRrnRUTEV3R1jA/4QvuBAwfIzMw0OoaIiIjb3r17ycjIMDqG39MYLyIivkjjvGdonBcREV9ztDE+4Avt0dHRgOsPIiYmxuA0IiLSn9XW1pKZmekem6R3NMaLiIgv0TjvWRrnRUTEV3R1jA/4QnvHJWYxMTEanEVExCfo8mfP0BgvIiK+SOO8Z2icFxERX3O0MV6N40REREREREREREREekGFdhERERERERERERGRXlChXURERERERERERESkFwzt0d7W1sbdd9/Nyy+/THFxMenp6Vx22WXccccd7p43TqeTP/3pTzz//PNUV1dzyimn8OyzzzJs2DCP5XA6nbS2ttLW1uaxfUrgCAoKwmKxqNeiiIgf0hgvR6IxXkRERKR/0HmBHImnzgsMLbQ/9NBDPPvss7z00kuMGjWKr7/+ml//+tfExsZy3XXXAfDwww/z5JNP8tJLLzFo0CDuvPNOpk6dytatWwkLC+t1BrvdTlFREY2Njb3elwSuiIgIBgwYQEhIiNFRRESkizTGS1dojBcREREJbDovkK7wxHmBoYX2L7/8kgsvvJDzzjsPgJycHP7973/z1VdfAa5Pm+bNm8cdd9zBhRdeCMA///lPUlNTeeedd/jlL3/Zq+M7HA4KCwsJCgoiPT2dkJAQzWiSTpxOJ3a7nbKyMgoLCxk2bBhmszouiYj4Oo3xcjQa40VEREQCn84L5Gg8eV5gaKH95JNP5u9//zs7duxg+PDhbNiwgeXLl/PYY48BUFhYSHFxMWeffbb7NbGxsZx44omsXLnykIV2m82GzWZzf19bW3vY49vtdhwOB5mZmURERHjwJ5NAEh4eTnBwMHv27MFut3vkSgoRkUB39913c88993S6b8SIEWzbtg2A5uZmbrzxRhYuXIjNZmPq1Kn89a9/JTU11SPH1xgvXaExXkSkZ4we50VEukrnBdIVnjovMLTQ/oc//IHa2lpyc3MJCgqira2NP//5z8yaNQuA4uJigIMG49TUVPdjPzR37tyDBvyj0ewlORr9GxER6b5Ro0axaNEi9/cWy3dvO+bMmcMHH3zAG2+8QWxsLNdccw3Tp09nxYoVHs2g/7/laPRvRESkZ3xhnBcR6Sq955Oj8cS/EUML7a+//jqvvPIKr776KqNGjWL9+vXMnj2b9PR0Lr300h7t87bbbuOGG25wf19bW0tmZqanIouIiEgXWSwW0tLSDrq/pqaGF154gVdffZXJkycDMH/+fPLy8li1ahUnnXRSX0cVERGRbtI4LyIi0pmhH+fcfPPN/OEPf+CXv/wlo0eP5pJLLmHOnDnMnTsXwD1ol5SUdHpdSUnJIQd0gNDQUGJiYjp9iYiISN/buXMn6enpDB48mFmzZmG1WgFYu3YtLS0tnVrD5ebmkpWVxcqVKw+7P5vNRm1tbacvERERMYbGeRERkc4MLbQ3NjYeNC0/KCgIh8MBwKBBg0hLS2Px4sXux2tra1m9ejUTJ07s06z+4owzzmD27NkBezwREfEPJ554IgsWLOCjjz7i2WefpbCwkNNOO426ujqKi4sJCQkhLi6u02uO1BoOXO3hYmNj3V/97Yo1jfEiIuIrNM6LiBhH5wW+y9DWMRdccAF//vOfycrKYtSoUXzzzTc89thjXH755QCYTCZmz57N/fffz7Bhwxg0aBB33nkn6enp/OQnPzEyuoiIiBzBtGnT3NtjxozhxBNPJDs7m9dff53w8PAe7VPt4URERHyDxnkREZGDGVpof+qpp7jzzjv5/e9/T2lpKenp6Vx11VXcdddd7ufccsstNDQ08Jvf/Ibq6mpOPfVUPvroox6v/ioiIiJ9Ly4ujuHDh7Nr1y7OOecc7HY71dXVnWa7Hak1HLjaw4WGhvZBWhEREekOjfMiIiIGt46Jjo5m3rx57Nmzh6amJgoKCrj//vsJCQlxP8dkMnHvvfdSXFxMc3MzixYtYvjw4Qam9h8mk4l33nmn031xcXEsWLAAgN27d2MymXjrrbc488wziYiI4Nhjjz2ob96KFSs444wziIiIID4+nqlTp1JVVeV+3OFwcMstt5CQkEBaWhp33323l38yERHxN/X19RQUFDBgwADGjx9PcHBwp9Zw27dvx2q1qjVcF2mMFxERX6JxXkTEGDov8C2GFtrFN9x+++3cdNNNrF+/nuHDhzNz5kxaW1sBWL9+PWeddRYjR45k5cqVLF++nAsuuIC2tjb361966SUiIyNZvXo1Dz/8MPfeey+ffvqpUT+OiIj4gJtuuolly5axe/duvvzyS376058SFBTEzJkziY2N5YorruCGG25gyZIlrF27ll//+tdMnDiRk046yejoAUVjvIiIeIPGeRER/6Lzgr5haOsY8Q033XQT5513HgD33HMPo0aNYteuXeTm5vLwww8zYcIE/vrXv7qfP2rUqE6vHzNmDH/6058AGDZsGE8//TSLFy/mnHPO6bsfQkREfMq+ffuYOXMmFRUVJCcnc+qpp7Jq1SqSk5MBePzxxzGbzcyYMQObzcbUqVM7jTXiGRrjRUTEGzTOi4j4F50X9A0V2oUxY8a4twcMGABAaWkpubm5rF+/np///Oddfn3HPkpLSz0fVERE/MbChQuP+HhYWBjPPPMMzzzzTB8l6p80xouIiDdonBcR8S86L+gbah0TwEwmE06ns9N9LS0tBz0vODi402vA1XsJ6NKK8d9/fcc+Ol4vIiIinqcxXkREREREdF7gWzSjPYAlJydTVFTk/n7nzp00NjZ2ax9jxoxh8eLF3HPPPZ6OJ9KnrFYr5eXlPX69zWYjNDS0x69PSkoiKyurx68XEfk+jfEivqm37zc66H2DiIgYyVPj2dFovOs9nRf4FhXaA9jkyZN5+umnmThxIm1tbdx6660HfQJ1NLfddhujR4/m97//Pb/97W8JCQlhyZIl/PznPycpKclLyUU8y2q1kpuXR1M3B5vOTIDzqM86nPCICLbl5+tNhIh4hMZ4Ed/jmfcbLnrfICIiRrFareTl5dLY2OT1Y0VEhJOfv03jXS/ovMC3qNAewB599FF+/etfc9ppp5Gens4TTzzB2rVru7WP4cOH88knn/DHP/6RE044gfDwcE488URmzpzppdQinldeXk5TYyOzbn2E1Kwh3X59/lfL+PClJzjvqtsZMWZ8t19fYi3glYdupry8XG8gRMQjNMaL+J7evt/ooPcNIiJipPLychobm3j5jxeRl5XstePkW8u4+IHXNd71ks4LfIsK7QFm6dKl7u309HQ+/vjjTo9XV1e7t3Nycg7q4xQXF3fQfZMmTWLFihVHPV6Hd955p1uZRfpKatYQMoaNOvoTf6DEWgBAYnp2j14vIuIJGuNF/ENP32+IiIj4krysZMYNH2h0DDkEnRf4Li2GKiIiIiIiIiIiIiLSCyq0i4iIiIiIiIiIiIj0ggrtIiIiIiIiIiIiIiK9oEK7iIiIiIiIiIiIiEgvqNAuIiIiIiIiIiIiItILKrSLiIiIiIiIiIiIiPSCCu0iIiIiIiIiIiIiIr2gQruIiIiIiIiIiIiISC9YjA7gi6xWK+Xl5X12vKSkJLKysvrseJ50xhlncNxxxzFv3jy/2reIiPRfGue7RmO8iIiIiAQynReIp6nQ/gNWq5XcvDyaGhv77JjhERFsy8/3yC/bZZddRnV1Ne+8807vg4mIiAQYfx7nNcaLiIiIiHiGP5wXOJ1OrrrqKt58802qqqr45ptvOO6447wb0gt85TwmJyeH2bNnM3v2bK8dQ4X2HygvL6epsZFZtz5CatYQrx+vxFrAKw/dTHl5eb/8VMvpdNLW1obFon+KIiLifRrn+47GeBERERHxVf5wXvDRRx+xYMECli5dyuDBg0lKSvJqxj179pCbm0tZWRlRUVFePVag0pnPYaRmDSFj2CijYxzWm2++yT333MOuXbuIiIhg7NixjB07lpdeegkAk8kEwJIlSzjjjDO49dZbefvtt9m3bx9paWnMmjWLu+66i+DgYADuvvtu3nnnHW688UbuvPNOqqqqmDZtGs8//zzR0dEANDQ08Lvf/Y633nqL6OhobrrppoNy/etf/+KJJ55g+/btREZGMnnyZObNm0dKSgoAS5cu5cwzz+R///sfd9xxB5s2beKTTz7h+OOPP+q+RUREPMWXx3mN8SIiIiIifcOXzwsKCgoYMGAAJ5988iEft9vthISEeOx47777LmeeeeYhi+yePlag0mKofqioqIiZM2dy+eWXk5+fz9KlS5k+fTp/+tOfuOiiizj33HMpKiqiqKjI/csYHR3NggUL2Lp1K0888QTPP/88jz/+eKf9FhQU8M477/D+++/z/vvvs2zZMh588EH34zfffDPLli3j3Xff5ZNPPmHp0qWsW7eu0z5aWlq477772LBhA++88w67d+/msssuO+hn+MMf/sCDDz5Ifn4+Y8aM6dK+RUREAp3GeBERERERueyyy7j22muxWq2YTCZycnI444wzuOaaa5g9ezZJSUlMnToVgM2bNzNt2jSioqJITU3lkksu6dR73uFwMHfuXAYNGkR4eDjHHnssb7755kHHfPfdd/nxj3/sPv5PfvIT/vznP5Oens6IESMA2Lt3LxdddBFxcXEkJCRw4YUXsnv3bvc+2trauOGGG4iLiyMxMZFbbrkFp9PZ6Tg5OTkHrdV03HHHcffdd7u/r66u5qqrriI1NZWwsDCOOeYY3n//fffjy5cv57TTTiM8PJzMzEyuu+46Ghoa3I+XlpZywQUXEB4ezqBBg3jllVe69xfQQ5rR7oeKiopobW1l+vTpZGdnAzB69GgAwsPDsdlspKWldXrNHXfc4d7OycnhpptuYuHChdxyyy3u+x0OBwsWLHDPbrvkkktYvHgxf/7zn6mvr+eFF17g5Zdf5qyzzgLgpZdeIiMjo9NxLr/8cvf24MGDefLJJzn++OOpr6/v9InYvffeyznnnAPQ5X2LiIgEOo3xIiIiIiLyxBNPMGTIEP7+97+zZs0agoKC+PnPf85LL73E7373O1asWAG4CtKTJ0/myiuv5PHHH6epqYlbb72Viy66iM8++wyAuXPn8vLLL/Pcc88xbNgwPv/8cy6++GKSk5OZNGmSez/Lly/nX//6lzvD4sWLiYmJ4dNPPwVcE2+mTp3KxIkT+eKLL7BYLNx///2ce+65bNy4kZCQEB599FEWLFjAiy++SF5eHo8++ihvv/02kydP7vLP7nA4mDZtGnV1dbz88ssMGTKErVu3EhQUBLgmEZ177rncf//9vPjii5SVlXHNNddwzTXXMH/+fMD1QcGBAwdYsmQJwcHBXHfddZSWlvb+L+YoVGj3Q8ceeyxnnXUWo0ePZurUqUyZMoWf/exnxMfHH/Y1r732Gk8++SQFBQXU19fT2tpKTExMp+fk5OS4T8ABBgwY4P5HWFBQgN1u58QTT3Q/npCQ4P5Eq8PatWu5++672bBhA1VVVTgcDsC1yMTIkSPdz5swYYJ7u6v7FhERCXQa40W6x2q1dpqx1VNJSUn9bh0FERERX5Cfn+/V/cfFxXl1/94SGxtLdHQ0QUFBnSbaDBs2jIcfftj9/f3338/YsWN54IEH3Pe9+OKLZGZmsmPHDrKzs3nggQdYtGgREydOBFyTZpYvX87f/vY3d6H9f//7H2PGjCE9Pd29n8jISP7xj3+4W8a8/PLLOBwO/vGPf7jbWc6fP5+4uDiWLl3KlClTmDdvHrfddhvTp08H4LnnnuPjjz/u1s++aNEivvrqK/Lz8xk+fLg7c4e5c+cya9Ys96Kmw4YN48knn2TSpEk8++yzWK1WPvzwQ7766iuOP/54AF544QXy8vK6laMnVGj3Q0FBQXz66ad8+eWXfPLJJzz11FPcfvvtrF69+pDPX7lyJbNmzeKee+5h6tSpxMbGsnDhQh599NFOz+vo5drBZDK5T6K7oqGhgalTpzJ16lReeeUVkpOTsVqtTJ06Fbvd3um5kZGRXd6viIhIf6ExXqTrrFYruXl5NDU29npf4RERbMvPV7FdRESkjxRV1mECLr74Yq8eJzd3BK+//oZXj9GXxo8f3+n7DRs2sGTJkkP2VS8oKKClpYXGxkb3Facd7HY7Y8eOdX///bYxHUaPHt2pL/uGDRvYtWtXpwk8AM3NzRQUFFBTU0NRUVGnSTYWi4UJEyYc1D7mSNavX09GRoa7yP5DGzZsYOPGjZ3awTidThwOB4WFhezYsQOLxdLpzyo3N7dPPnRRod1PmUwmTjnlFE455RTuuususrOzefvttwkJCaGtra3Tc7/88kuys7O5/fbb3fft2bOnW8cbMmQIwcHBrF692n0CUlVVxY4dO9yffm3bto2KigoefPBBMjMzAfj66689sm8REZH+QmO8SNeUl5fT1NjIrFsfITVrSI/3U2It4JWHbqa8vFyFdhERkT5SXd+ME3j691OYOGaYV46Rby3j9ldWd2uCia/74aSW+vp6LrjgAh566KGDnjtgwAA2b94MwAcffMDAgQM7PR4aGgq4iu4fffQRf/zjH496rPHjxx+y33lycnKXfwaz2XxQ4b2lpcW9HR4efsTX19fXc9VVV3Hdddcd9FhWVhY7duzochZPU6HdD61evZrFixczZcoUUlJSWL16NWVlZeTl5dHc3MzHH3/M9u3bSUxMJDY2lmHDhmG1Wlm4cCHHH388H3zwAW+//Xa3jhkVFcUVV1zBzTffTGJiIikpKdx+++2Yzd+tp5uVlUVISAhPPfUUv/3tb9m8eTP33XefR/YtIiLSH2iMF+m+1KwhZAwbZXQMERER6YGh6fGMGz7w6E+UQxo3bhz/+c9/yMnJwWI5uMw7cuRIQkNDsVqth53osnTpUuLj4zn22GOPeqzXXnuNlJSUg1pVdhgwYACrV6/m9NNPB6C1tZW1a9cybtw493OSk5MpKipyf19bW0thYaH7+zFjxrBv3z527NhxyFnt48aNY+vWrQwdOvSQGXJzc93H7Wgds337dqqrq4/483mCCu2HUWIt8NnjxMTE8PnnnzNv3jxqa2vJzs7m0UcfZdq0aUyYMIGlS5cyYcIE6uvrWbJkCT/+8Y+ZM2cO11xzDTabjfPOO48777yz02q+XfHII4+4PymLjo7mxhtvpKamxv14cnIyCxYs4I9//CNPPvkk48aN4y9/+ctBl570ZN8iIiKe5KvjvMZ4EREREZG+46vnBV119dVX8/zzzzNz5kxuueUWEhIS2LVrFwsXLuQf//gH0dHR3HTTTcyZMweHw8Gpp55KTU0NK1asICYmhksvvZT33nuvS+/rZ82axSOPPMKFF17IvffeS0ZGBnv27OGtt97illtuISMjg+uvv54HH3yQYcOGkZuby2OPPXZQgXvy5MksWLCACy64gLi4OO666y73QqcAkyZN4vTTT2fGjBk89thjDB06lG3btmEymTj33HO59dZbOemkk7jmmmu48soriYyMZOvWrXz66ac8/fTTjBgxgnPPPZerrrqKZ599FovFwuzZs486U94TVGj/gaSkJMIjInjloZv77JjhEREkJSV1+fl5eXl89NFHh3wsOTmZTz755KD7H3744U6LJQDuRQMA7r777oNOymfPnt3pOVFRUfzrX//qtALxzTd3/nOaOXMmM2fO7HTf9y8HOeOMMw7Zl6kr+xYREektXx/nNcaLiIiIiHifr58XdFV6ejorVqzg1ltvZcqUKdhsNrKzszn33HPdV5Hed999JCcnM3fuXL799lvi4uIYN26cu1XMe++9x4svvnjUY0VERPD5559z6623Mn36dOrq6hg4cCBnnXWWe4b7jTfeSFFREZdeeilms5nLL7+cn/70p50m2tx2220UFhZy/vnnExsby3333ddpRjvAf/7zH2666SZmzpxJQ0MDQ4cO5cEHHwRcM96XLVvG7bffzmmnnYbT6WTIkCH84he/cL9+/vz5XHnllUyaNInU1FTuv/9+7rzzzt79YXeBCu0/kJWVxbb8fMrLy/vsmElJSeoHKSIi0gc0zouIiIiIiD+cF/xwcszSpUsP+bxhw4bx1ltvHXY/JpOJ66+/nuuvv/6gx9atW0dtbe1BbWUWLFhwyH2lpaXx0ksvHfZYFouFefPmMW/evMM+JyYmhoULF3a679JLL+30fUJCwhGL/8cff/whJyF9P+f777/f6b5LLrnksM/3FBXaDyErK0snxCIiIgFK47yIiIiIiOi8wNVD/amnniI4ONjoKAFBhXYRERERERERERGRfuaEE07ghBNOMDpGwDAbHUBERERERERERERExJ+p0C4iIiIiIiIiIiIi0gtqHSMi0k2N9lbyi+oorWumurGFsOAg4iOCGZIcRUZ8OCaTyeiIIiIiIiIiIiLSh1RoFxHpojaniWU7yti8v4ZWh7PTY9ZK2LCvhpToUE4fnszAuHCDUoqIiIg3OBxOvtlbzaL8EprsbWTEh3P68GSGp0YbHU1EREREfIAK7SIiXWCJG8A3zUk07K0GICU6lGGpUcSFh9Dc2kZJTTPbiusorbPxn3X7OHlIIuOz4jW7XUREJABsOVDD9QvXs6u0vtP95v/lc8lJ2dwwZYRByURERETEV6jQLiJyFA2Ekvarx2hwBhMeHMQ5I1PJSYzoVEQ/Jj2Wk4ck8fnOMrYV17FiVwXVjS2clZtiYHIRERHprYVfWbnrvS3YWx1Eh1o4Ky+F1Ngw8ovq+HxHGS+t3MOKggrunBhpdFQRERERMZAK7YdgtVopLy/vs+MlJSWRlZXVZ8cTka6rbWphC5kEhQcTbbZz0QkjiAo79H+d4SFBTBmZSnpsOEu2l7LlQC0hFjODnId8uogYROO8iHTVO9/s5w9vbQLg7LwUHvnZscRHhrgfX7GrnBtf38Cu0nr+vNyGKTjUqKgiIiLSTTov6JozzjiD4447jnnz5vnVvo2gQvsPWK1W8vJyaWxs6rNjRkSEk5+/rVu/bE6nk6uuuoo333yTqqoqvvnmG4477jjvhfSSyy67jOrqat555x1Dc+Tk5DB79mxmz55taA7xLS1tDt7dcAA7wdjL9zA6M+SwRfYOJpOJ0RmxmM2wKL+Ub6zVOOLNfZRYRI7GH8Z5jfGepTFeemrFrnJufnMDAFecOog7zss7qCXcKUOT+NcVJ/Cz51ayo6KFxGnXGxFVREREuskfzgsOx1feZ8vBVGj/gfLychobm3j5jxeRl5Xs9ePlW8u4+IHXKS8v79Yv2kcffcSCBQtYunQpgwcPJikpyYspYc+ePeTm5lJWVkZUVJRXjyXiK77YWU5lg50QWtj3+p8IvumBLr92VHoszS0Olu8qZ2NVECGpQ7yYVES6yh/GeY3xIsYrrWvm6lfX0dLm5PwxA7j9RwcX2TsMS43mxcsm8PPnVhKZdzpFTS1k9HFeERER6R5/OC8IFE6nk7a2NiyWwC9DB/5P2EN5WcmMGz7Q6BiHVVBQwIABAzj55JMP+bjdbickJOSQj/XEu+++y5lnnnnIE3BPH0vEFxSWN7Bpfw0AwznAzrruX042LiuOopomCsoaSPrxLTS1ODwdU0R6yJfHeY3xIsZyOp3c/vZmqhtbyBsQw6MXHYvZfOTFzcdnJ/Dj4ZG8s72B9ZUWjmtzEBykK9pERER8nS+fF7z55pvcc8897Nq1i4iICMaOHcvYsWN56aWXANyTAJYsWcIZZ5zBrbfeyttvv82+fftIS0tj1qxZ3HXXXQQHBwNw9913884773DjjTdy5513UlVVxbRp03j++eeJjo4GoKGhgd/97ne89dZbREdHc9NNNx2U61//+hdPPPEE27dvJzIyksmTJzNv3jxSUlxr1C1dupQzzzyT//3vf9xxxx1s2rSJTz75hOOPP/6o+/Z3evfnhy677DKuvfZarFYrJpOJnJwczjjjDK655hpmz55NUlISU6dOBWDz5s1MmzaNqKgoUlNTueSSSzr1n3I4HMydO5dBgwYRHh7Osccey5tvvnnQMd99911+/OMfu4//k5/8hD//+c+kp6czYsQIAPbu3ctFF11EXFwcCQkJXHjhhezevdu9j7a2Nm644Qbi4uJITEzklltuwens3Lw6JyfnoL5Mxx13HHfffbf7++rqaq666ipSU1MJCwvjmGOO4f3333c/vnz5ck477TTCw8PJzMzkuuuuo6Ghwf14aWkpF1xwAeHh4QwaNIhXXnmle38BEvDsrQ4W55cAcFxmHHE09mg/JpOJs/NSCQ9yEpwwkH9vrvdkTBEJQBrjNcaL8d5df4BPt5YQHGTi0Z8fS6glqEuvu2hUFK01JTS2mfiqsNLLKUVERCSQFRUVMXPmTC6//HLy8/NZunQp06dP509/+hMXXXQR5557LkVFRRQVFbkn6ERHR7NgwQK2bt3KE088wfPPP8/jjz/eab8FBQW88847vP/++7z//vssW7aMBx980P34zTffzLJly3j33Xf55JNPWLp0KevWreu0j5aWFu677z42bNjAO++8w+7du7nssssO+hn+8Ic/8OCDD5Kfn8+YMWO6tG9/p0K7H3riiSe49957ycjIoKioiDVr1gDw0ksvERISwooVK3juueeorq5m8uTJjB07lq+//pqPPvqIkpISLrroIve+5s6dyz//+U+ee+45tmzZwpw5c7j44otZtmyZ+znV1dUsX77cfRIOsHjxYrZv386nn37K+++/T0tLC1OnTiU6OpovvviCFStWEBUVxbnnnovdbgfg0UcfZcGCBbz44ossX76cyspK3n777W797A6Hg2nTprFixQpefvlltm7dyoMPPkhQkOsEqKCggHPPPZcZM2awceNGXnvtNZYvX84111zj3sdll13G3r17WbJkCW+++SZ//etfKS0t7f5fhASsr/dU0mBvIzY8mFOGJPZqX2HBQYxPaAXgf7sayC+q9UREEQlQGuM1xoux6m2t3P/BVgCumzyMkekxXX5tmMVM5eLnAdiwr5rmljavZBQREfFrbS3QWEEUDYR27bPsfqmoqIjW1lamT59OTk4Oo0eP5ve//z1RUVGEh4cTGhpKWloaaWlp7itQ77jjDk4++WRycnK44IILuOmmm3j99dc77dfhcLBgwQKOOeYYTjvtNC655BIWL14MQH19PS+88AJ/+ctfOOussxg9ejQvvfQSra2tnfZx+eWXM23aNAYPHsxJJ53Ek08+yYcffkh9fefJhffeey/nnHMOQ4YMISQkpEv79ndqHeOHYmNjiY6OJigoiLS0NPf9w4YN4+GHH3Z/f//99zN27FgeeOC7vtIvvvgimZmZ7Nixg+zsbB544AEWLVrExIkTARg8eDDLly/nb3/7G5MmTQLgf//7H2PGjCE9Pd29n8jISP7xj3+4f5lffvllHA4H//jHP9yXrsyfP5+4uDiWLl3KlClTmDdvHrfddhvTp08H4LnnnuPjjz/u1s++aNEivvrqK/Lz8xk+fLg7c4e5c+cya9Ys94Jnw4YN48knn2TSpEk8++yzWK1WPvzwQ7766iuOP/54AF544QXy8vK6lUMCV21zC+us1QCcOjQJiwcu+04Nd9KwbTmRuady17ubef2qiYft8yoi/ZvGeI3xYqy/LyugvN7OoKRIfntG99dXadq5ithgBzUtZjbsrebEwb37wF5ERCQg2GqheBOUbIEm11VfFwZD8x0x1LasgL3NkDoaQiIMDuo7jj32WHdBeurUqUyZMoWf/exnxMfHH/Y1r732Gk8++SQFBQXU19fT2tpKTEznSQM5OTnuNjEAAwYMcE9MKSgowG63c+KJJ7ofT0hIcF/l2mHt2rXcfffdbNiwgaqqKhwOV5tcq9XKyJEj3c+bMGGCe7ur+/Z3KrQHkPHjx3f6fsOGDSxZsuSQPVcLCgpoaWmhsbGRc845p9NjdrudsWPHur///iXlHUaPHt2pZ+uGDRvYtWtXp19WgObmZgoKCqipqaGoqKjTL5TFYmHChAkHXVp+JOvXrycjI8N9Av5DGzZsYOPGjZ0uFXc6nTgcDgoLC9mxYwcWi6XTn1Vubi5xcXFdziCB7ctdFbQ5nAyMC2dIcqTH9lv12T9IGHUaa3ZX8f7GIi44Nv3oLxIRaacxXmO8eF9lUxvPf1EIwK3njuhxj/URMQ6+qjCzfl8147Lj1atdRET6L0cb7F0N1i/B8b2Zy0EhtLa2YjE5iKEWvl0Ce76E7JNh4AQwa6p7UFAQn376KV9++SWffPIJTz31FLfffjurV68+5PNXrlzJrFmzuOeee5g6dSqxsbEsXLiQRx99tNPzOvq1dzCZTO5CeVc0NDQwdepUpk6dyiuvvEJycjJWq5WpU6e6r3btEBnpuZqKv1ChPYD88B9wfX09F1xwAQ899NBBzx0wYACbN28G4IMPPmDgwM4LP4SGhgKuE/KPPvqIP/7xj0c91vjx4w/ZCzU5ueurN5vN5oNOyltaWtzb4eHhR3x9fX09V111Fdddd91Bj2VlZbFjx44uZ5H+p6rRzvaSOgBOH5bk0VnnbXXl/DQ3koVb6pm3aAc/Gj2AoKMsrCYi0kFjvMZ48b7Xt9TT1NLG+Ox4po5KO/oLDmNghIPYxmBqmlrYvL+GsVmHn3kmIiISsGy1sPk/UO9a/4yYgTDgOEgcCsHhvLboG2568k0W3XwSoyLKXc/7dgmU5cPIn0JYrKHxfYHJZOKUU07hlFNO4a677iI7O5u3336bkJAQ2to6t6j78ssvyc7O5vbbb3fft2fPnm4db8iQIQQHB7N69WqysrIAqKqqYseOHe4rYrdt20ZFRQUPPvggmZmZAHz99dce2XcgMLTQnpOTc8i/9N///vc888wzNDc3c+ONN7Jw4UJsNhtTp07lr3/9K6mpqQak9T/jxo3jP//5Dzk5OVgsB/9Vjxw5ktDQUKxW62H/US9dupT4+HiOPfbYox7rtddeIyUl5aDLUjoMGDCA1atXc/rppwPQ2trK2rVrGTdunPs5ycnJFBUVub+vra2lsLDQ/f2YMWPYt28fO3bsOOSMt3HjxrF161aGDh16yAy5ubnu43ZcVr59+3aqq6uP+PNJ//D17ioABiVFkhIT5vH9nz88ko8KbRSUNfDu+v1MH5fh8WOISP+gMf5gGuOlN4KiEvlst2vx8z9My+3Vh+1mE4zLimPJ9jI276/luMw4tYwTEZH+pa4YNr8J9noIDochZ0PKSOg0HpoorneyLyiLUePOh5JNUPCZ67XrFsDI6RCXadRPYLjVq1ezePFipkyZQkpKCqtXr6asrIy8vDyam5v5+OOP2b59O4mJicTGxjJs2DCsVisLFy7k+OOP54MPPuj2mklRUVFcccUV3HzzzSQmJpKSksLtt9+O2fzd1XlZWVmEhITw1FNP8dvf/pbNmzdz3333eWTfgcDQQvuaNWs6fQKzefNmzjnnHH7+858DMGfOHD744APeeOMNYmNjueaaa5g+fTorVqzwerZ8a5nXj+Ht41x99dU8//zzzJw5k1tuuYWEhAR27drFwoUL+cc//kF0dDQ33XQTc+bMweFwcOqpp1JTU8OKFSuIiYnh0ksv5b333jvokvJDmTVrFo888ggXXnihexG3PXv28NZbb3HLLbeQkZHB9ddfz4MPPsiwYcPIzc3lscceO+jkd/LkySxYsIALLriAuLg47rrrLvciaACTJk3i9NNPZ8aMGTz22GMMHTqUbdu2YTKZOPfcc7n11ls56aSTuOaaa7jyyiuJjIxk69atfPrppzz99NOMGDGCc889l6uuuopnn30Wi8XC7NmzjzqLTgJfXXML24pdC5Uen+OdmWcRwWZ+c/pgHv5oO08s3skFx6brcnIRg/j7OK8xXmO8eFb0hB/T6oATchI4Pieh1/sbkRbNFzvLqWy0U1JrIy3W8x/gi4iI+KT6Utj4b2i1QUQSjP750Wenm0yQNgbismDL267Z7Zteg2N+BvE5Xo3rq+cFMTExfP7558ybN4/a2lqys7N59NFHmTZtGhMmTGDp0qVMmDCB+vp6lixZwo9//GPmzJnDNddcg81m47zzzuPOO+/k7rvv7tZxH3nkEffVs9HR0dx4443U1NS4H09OTmbBggX88Y9/5Mknn2TcuHH85S9/6dJ5xdH2HQgMLbT/8HLjBx98kCFDhjBp0iRqamp44YUXePXVV5k8eTLgWngrLy+PVatWcdJJJ3klU1JSEhER4Vz8wOtHf7KHRESEk5SU5PH9pqens2LFCm699VamTJmCzWYjOzubc8891/2J0X333UdycjJz587l22+/JS4ujnHjxrkvI3/vvfd48cUXu/AzRPD5559z6623Mn36dOrq6hg4cCBnnXWWe/bbjTfeSFFREZdeeilms5nLL7+cn/70p51+qW677TYKCws5//zziY2N5b777us02w3gP//5DzfddBMzZ86koaGBoUOH8uCDDwKu2XDLli3j9ttv57TTTsPpdDJkyBB+8YtfuF8/f/58rrzySiZNmkRqair3338/d955Z+/+sMXvrbNW43BCRlw4A2K9V5S57OQcXlxeyJ6KRt7feICfjtWsdpG+FCjjvMZ4jfHiOXYHRB83DYDf9WAB1EMJtQQxNCWKbcV1bDlQo0K7iIj0D03VsOl1V5E9ZqCryG7pxhgYFgfHXQxb34bKb12z4r1UbPf184K8vDw++uijQz6WnJzMJ598ctD9Dz/8MA8//HCn+2bPnu3evvvuuw8qvM+ePbvTc6KiovjXv/7Fv/71L/d9N998c6fXzJw5k5kzZ3a67/stIs8444xDrtXUlX37O5OzO6tUeZHdbic9PZ0bbriBP/7xj3z22WecddZZVFVVdVrEKjs7m9mzZzNnzpxD7sdms2Gz2dzf19bWkpmZSU1NzUGXOzc3N1NYWMigQYMIC/vuF99qtVJeXu7ZH/AIkpKS3P2JfMm6deuYPHkyZWVlBy2W0N8c7t+K+Id169Yxfvx4bnjmLTKGjTrocXurgxeWF2Jvc/CT49LJTuzcn3jt4vd45aGb+dU9f+e4id3vHbZv5xYeu3q6u43C05/t5C+f7GBUegzvX3uqLifvR2pra4mNjT3kmCTdd6Q/zyP9v61xXmP892mM919HG9+7atHX+WypsZAda2HpH6b0eFz+YZ59VY38Z91+QoLMXHnaoC5fxfbD9w3iPzTOe5b+PEWM0TGerX3uasYNH3j0F3Ros8O6f0JjOUQmw7GzIPjw761eWbSeix94nY/u/wVTT/5BK0NHq2tme2UBBIXC2Itd++zuz7JjP9Pnvs+7777LiBEjdF4gR3Sk84Kujkk+sxjqO++8Q3V1NZdddhkAxcXFhISEdCqyA6SmplJcXHzY/cydO5d77rmnV1mysrL0Dx9Xf9Wnnnqq35+AS+DbXlKHvc1BXEQwWQkRXj/erBOzeXrJLrYcqGXltxWcPMTzV7SIyOFpnNcYL9LB4XDybb2rhdFPciM9+uH3wLhwYsNdi6LuKq0nb4AKhSIiEqCcTtjxsavIHhIFoy86YpH9qMwWGPVT2LAQavfBpjdg3K9c+/YgnReIp/lMc+AXXniBadOmkZ6e3qv93HbbbdTU1Li/9u7d66GE/c8JJ5zAJZdcYnQMEa9yOp1s2u9qbTB6YGyfzC6PjwzhZ+NdLWNe+KLwKM8WEfE8jfEiLt+WN9DUZqKtoZqTMzzbOs5kMpGbFg3AjpI6j+5bRETEpxRvgNItgAnyfgyh0b3fp9kCx8yA8Hiw1cLWd8Hp6P1+RbzIJwrte/bsYdGiRVx55ZXu+9LS0rDb7QctpFVSUkJaWtph9xUaGkpMTEynLxGRwymptVFWZyPIbGJkH840u/yUQZhMsHhbKd+W1ffZcUVEROQ7HR+212/8lOAgz3/YPizFNfNub2UTttY2j+9fRETEcE3VsGuxa3vQJNeCpp4SHA7H/ByCQqBmLxR+7rl9i3iBTxTa58+fT0pKCuedd577vvHjxxMcHMzixYvd923fvh2r1crEiRONiCkiAajjBHt4ShRhwUF9dtzByVGcMdzVY+61NbryRkREpK9VNdqxVjYCTurWf+iVYyREhhAfEUyb00lheYNXjiEiImIYpxN2fAiOFojNhMwTPX+MiAQY8SPX9t5VUFHg+WOIeIjhhXaHw8H8+fO59NJLsVi+axkfGxvLFVdcwQ033MCSJUtYu3Ytv/71r5k4cSInnXSSRzP4yHqw4sP0byQwtbQ52FnqupR71MDYPj/+zBNcn/S/sXafZrmJeIn+/5aj0b+R/mtz+4ftaWFO2mpLvXIMk8nE0PZZ7btKdQWbiIgEmOKNUL3H1eZlxI/AW61Yk3MhvX2B8B3/g5bGLr+0472e3vPJ0Xji34jhhfZFixZhtVq5/PLLD3rs8ccf5/zzz2fGjBmcfvrppKWl8dZbb3ns2B0LgDU2dv0XVPqnjn8jWjQusHxb1kBLm5OYMAvpsb1YqKWHJuemkBoTSmWDnU+2lPT58UUCmcZ46SqN8f2Tw+FkW7Hrw/ZBUd79sHtosqvQvqeikZY29ZYVEZEA0dIE3y51beec5uql7k2Dz4SIJLA3wI6PXLPpu6CiogKHw6HzAjkqT5wXWI7+FO+aMmXKYT8xCAsL45lnnuGZZ57xyrGDgoKIi4ujtNQ1gyUiIqJPFkIU/+F0OmlsbKS0tJS4uDiCgvqutYh437biWgBy02IM+d23BJn5xYRMnvxsF//+ysoFx/ZuMWgR+Y7GeDkajfH9257KRhrtbYQHB5EWbvfqsZKjQ4kJs1Db3Mqeikb3DHcRERG/tvsLaG1yFb8zjvf+8YKCIfd8+OafUL4DSrdC6qijvqyhoQGHw6HzAjksT54XGF5oN1rHwqodv3AihxIXF3fERXjF/zTaW9lT6fq0ckSaB1ZE76GLjs/kqSW7+LKgAmtFI1mJEYZlEQk0GuOlKzTG90/bilwfto9IjcZsavLqsUwmE0OSo/hmbzWF5Q0qtIuIiP+rL4UD37i2h54Npj5qmBGdBlknw57lULAYEga7Fkztgu9PwhE5FE+cF/T7QrvJZGLAgAGkpKTQ0tJidBzxQcHBwZrlFoB2ltTjdEJKdCgJkSGG5ciIj+CUIUks31XO29/s5/qzhxmWRSTQaIyXo9EY3z/ZWtooaF+YNG9ANPYS10l3fn5+r/Z7pNdnJ0bwzd5q9lQ24HQ6NZNORET827dLASckjYD4nL49dtZEKNsGjeXw7ZLvFko9Ap0XyNF46ryg3xfaOwQFBelES6Qf2dG+CKqRs9k7/HTswPZC+z6uO2uoTr5FPExjvIh8387SetocThIjQ0iODiU/vwyAiy++2CP7r68/eNHTgXHhWMwmGmxtlNfbSY4O9cixRERE+lz1Hqj61jWLffAZfX98cxAMnwrrX3Etxpp6DMRldemlOi8Qb1OhXUT6nQZbKweqmwEY5gOXb597TBp3vLOZ3RWNfLO3mnFZXl5ERkREpB/bXuL6sD03LRqTyURTvauNzHlX3c6IMeN7vN/8r5bx4UtP0NzcfNBjliAzGfHh7K5oZE9lgwrtIiLin5xO+HaZa3vAcd5fAPVwYjNdxy9a71oYdcLlYFaJU4ynf4Ui0u98W+a6XDw1JpTosJ6vJu0pkaEWpo5K5Z31B3h73X4V2kVERLykwdbK/ipXT/ZhqZ2vaktMzyZj2NEXVTucEmvBER/PTox0FdorGpmQndDj44iIiBimYifUHQBzMGSfbGyWwWe48jRVgnUl5JxmbB4RoI9WKxAR8R27ylyXdA9NNn42e4efjssA4L8bD9DS5jA4jYiISGAqKKvHievD9tjwvv2wPad9wfMD1U3YWzXWi4iIn3E6Yc8K1/bACRBi8Pm0JQyGnuPatq6Exgpj84igQruI9DPNLW3sq2oEYIgPtI3pcOrQJJKiQqlubGHFrnKj44iIiASknSWuD9uHpfT9Gi1xESHEhgfjcMLe9vciIiIifqOyAOpLXLPZM483Oo1L0ghIGAxOBxQsNjqNiArtItK/fFvegMMJiVEhxEeEGB3HLchsYtoxaQB8sLHI4DQiIiKBp8HWyr7q9rYxBn3YnpXgmtW+r7LJkOOLiIj0SKfZ7OMgOMLYPB1MJhhytmth1spvoWKX0Ymkn1OhXUT6lW99sG1Mh/PGDADg4y3FuqRcRETEwzpax6XFhBHTx21jOmTEhwOwt1oz2kVExI9U7Ya6IteCoxknGJ2ms4gEGNg+w75gMThajc0j/ZoK7SLSbzicYK10ndgOSoo0OM3Bjs9JIDk6lNrmVrWPERER8bCOxdCHpBj3HqCj0F5Rb6fRrkKAiIj4ib2rXLcDjoMQ3zuXJvtkV66mKtj3tdFppB9ToV1E+o0ym4mWNicRIUGkRIcaHecgQWYTP2pvH/O+2seIiIh4jK31e2u0JBl3VVtEiIXESFfruv1Vah8jIiJ+oK4YqvcAJsjwkd7sP2QJhUFnuLatX4Kt3sg00o+p0C4i/UZxk+u/vJzESEwmk8FpDu28MekAfLJV7WNEREQ8ZXd5Iw4nxEcEEx9p7BotHbPa96nQLiIi/mDvatdtykgIizU2y5GkHgPR6dBmh8KlRqeRfkqFdhHpN9yF9iQfWbjlEMZnx5MUFUJdcytrdlcaHUdERCQgfFvumtk22AfWaMmIb18QtVqFdhER8XHN1VC2zbWd6WO92X/IZIKhZ7u2SzZD7X5j80i/pEK7iPQLlvh06ltNmE2QleC7hfYgs4nJuSkAfLq1xOA0IiIi/q/N4WR3eXvbmGTj+8oObJ/RXtlgp8GmPu0iIuLD9q8DnBCXA1GpRqc5uph0SBvt2t71KTidxuaRfkeFdhHpF8KHTABgYFw4oZYgg9Mc2dl5rjcwn24twak3BiIiIr2yv7oJe5uDiJAg0mLCjI5DeHAQSVHtfdo1q11ERHyUydkKxRtc32RMMDZMdwyaBEEhUFdMYlOB0Wmkn1GhXUT6hfCccQBkJxo/k+1oThuWTKjFzP7qJrYV1xkdR0RExK8VljcAvrVGy8A416z2oupmg5OIiIgcWkJTIbTaICwOEgYbHafrQqIg+xQA0uu+ISbU4DzSr6jQLiIBr6XNSWjWMYBvt43pEB4SxGnDkgBYpPYxIiIivbKnor3Q7kNrtKS3F9oP1GhGu4iI+KaUhvbe7OnjwORn5cOBEyA8gWBHM3dNUqVd+o6f/aaIiHTftgo75uAwQs1O96Xavs7dPiZfhXYREZGeqmlqoaqxxefWaBkQ62phU1Znw97qMDiNiIhIZ6dnBxHeWg3mYEgbY3Sc7jMHuRdGve6EEELrrAYHkv5ChXYRCXgbim0ApIY5fOaS8aM5Ky8Vkwk27quhuEaXlYuIiPTE7va2MQNifWuNluiwYKLDLDiB4lqN8yIi4luuOb59glrqKAg2fn2THkkYTE3oQIKDTGRsfloLo0qfUKFdRALehhI7ACnh/jOwJkeHclxmHACLt2lWu4iISE/s7mgbk+g7s9k7uNvHaEFUERHxIcFNpfw0z+L6Jn2csWF6aV/MBGytTmLL1sCOj4yOI/2ACu0iEtAqG+x8W9UCQEqYf12a7W4foz7tIiIi3dba5mBflauI7YuLoae3t49RoV1ERHxJ8u73sJhN1IWkQlSK0XF6xWaJ4fFVrol3fHSba3FXES9SoV1EAtqKXeU4AXtpIeG+c8V4l0wZ6Sq0f7mrggZbq8FpRERE/Mv+6iZaHU6iQi0+uUZLx4z24tpmHA7/uepOREQCWKuNxD3vA1AWkWtwGM/48xc27KGJUFUIK58xOo4EOBXaRSSgfVlQAUDzng0GJ+m+oSlRZCdGYG9z8MXOMqPjiIiI+BVrZSPgWgTVF9doSYwMIdRipqXNSVm9ZtiJiIgPyP8vwfYa9tY4qA7LMDqNR9Tb4cDIq1zffP4XqD1gbCAJaCq0i0hAW1lQDvhnod1kMrnbx3yi9jEiIiLdsrfS1ZIlK8H3+rODa5xPjXG1j9GCqCIi4hPWLgDgH9/YwRQ4JcPKjLMh4wRoaYBFdxsdRwJY4PzWiIj8QFFNE7srGjGboHnvFqPj9EhHoX3Z9jJdVi5+7cEHH8RkMjF79mz3fc3NzVx99dUkJiYSFRXFjBkzKCnRh0oi0nuN9lb3LPHMhHCD0xxeWnuhvaRGhXbxXxrjRQJERQHs/gInJuZ/02J0Gs8ymWDaQ4AJNr4G1tVGJ5IApUK7iASsle1tY4bEB+O0NxqcpmfGZ8cTFWqhosHOlgO1RscR6ZE1a9bwt7/9jTFjxnS6f86cOfz3v//ljTfeYNmyZRw4cIDp06cblFJEAknHbPakqBAiQiwGpzm8tFjNaBf/pjFeJICs+ycAtSknsLc2ACd5DRwHYy92bf/vRmjTOmjieb77rlNEpJc6+rMfkxLCIoOz9FSIxczJQxL5ZGsJ/166npaR0T3aT1JSEllZWR5OJ3J09fX1zJo1i+eff57777/ffX9NTQ0vvPACr776KpMnTwZg/vz55OXlsWrVKk466SSjIotIAPh+f3ZflhoTCkBVYwu2ljZCg/1s5Xbp1zTGiwSQthZY/yoA5dnnAZ8am8dbzr4b8v8LxZvgq7/DxN8bnUgCjArtIhKQnE6ne0b76JRQg9P0zujkID4BXvxwNXMvubVH+wiPiGBbfr6K7dLnrr76as477zzOPvvsTifha9eupaWlhbPPPtt9X25uLllZWaxcuVIn4SLSY06n028K7REhFmLCLNQ2t1Jc20x2YqTRkUS6TGO8SADZ/iE0lEJkCjWpE41O4z2RSXDOPfDf62HJn2HkhRA70OhUEkBUaBeRgLS3son91U0EB5nITQo2Ok6vDIty9ccLyxzJNU+9RUg3m36VWAt45aGbKS8vV6Fd+tTChQtZt24da9asOeix4uJiQkJCiIuL63R/amoqxcXFh9yfzWbDZrO5v6+tVTslETlYdVML9bZWgkwm0uN8tz97h7TYMGqb6ymptanQLn7D02M8aJwXMdS6l1y3Y2eBOcBLhWN/5Zq9v3c1fHQr/OJloxNJAAnw3x4R6a9WfeuazX5sRhxhFv9ejiIl0kJLxV6CEzNpi88iI6Vn7WNE+tLevXu5/vrr+fTTTwkLC/PIPufOncs999zjkX2JSODaX+Xqz54WG0ZwkO+/B0iLCWNHSb36tIvf8MYYDxrnRQxTbYVdi13b434Fu6sNjeN1ZjOc/zg8d5qrjcz2j2DEuUankgDh++88RUR64KvdlQCcMCjB4CSe0fTtWgD2VPjnoq7S/6xdu5bS0lLGjRuHxWLBYrGwbNkynnzySSwWC6mpqdjtdqqrqzu9rqSkhLS0tEPu87bbbqOmpsb9tXfv3j74SUTE3+yrdhXaB/rBbHaA1Jj2BVFrmnE6A3DxOQk43hjjQeO8iGG+eRlwwqDTIWGw0Wn6RuoomHi1a/t/N4O9wdg8EjBUaBeRgLSmvdB+fKAU2gvXAa5Cu07CxR+cddZZbNq0ifXr17u/JkyYwKxZs9zbwcHBLF682P2a7du3Y7VamTjx0H0hQ0NDiYmJ6fQlIvJ9TqfTPaN9YLx/FNpTokMxm6CppY265laj44gclTfGeNA4L2IIR1t7oR0Yd6mxWfraGX+A2EyoscKyh41OIwFCrWNEJOCU1jazp6IRkwnGZ8eza+s+oyP1mm3vZswmJ/W2Viob7CRG+fcCrxL4oqOjOeaYYzrdFxkZSWJiovv+K664ghtuuIGEhARiYmK49tprmThxohZJE5Eeq21upd7WitkEA2I919LCmyxBZpKiQimts1Fc24xvL98qojFeJKB8uxRq90NYHORdYHSavhUSCT96BP79S1j5NIz5BaSONDqV+DnNaBeRgNPRNiYvLYaYMP9eCLWDs9VOcqhrJrvax0igePzxxzn//POZMWMGp59+Omlpabz11ltGxxIRP7a/vW1Maox/9Gfv4G4foz7tEiA0xov4ifWvum5H/xws/XAy14hpkHs+OFrh/TngcBidSPycZrSLSMD5qjCw+rN3SA1zUNJsZndlA+Oy442OI9JtS5cu7fR9WFgYzzzzDM8884wxgUQk4HS0jUn3k/7sHdJiw9i0v4aSmmYGxxqdRqT7NMaL+KGmatj2vmv7uP9naBRDTXsICpbA3lXwzT9h/GVGJxI/5j/TPEREuihQC+1p4a5P1w9UNdPSpk/aRUREfqhjRnuGvxXa22e0l9bZcGgpFhER6Qtb3obWZkjOg/SxRqcxTmwGnPlH1/Ynd0FdsbF5xK+p0C4iAaWmqYXtJXUAHJ8TWIX2KAvEhFloczrZ1z5jT0RERFzqm1upaWrBBAyI84/+7B3iI4IJsZhpdTipbTEZHUdERPqDjrYxx/0/MPXzsefE38KA48BWAx/eYnQa8WNqHSMiAWXtnkqcThiUFElytG/1mMvPz+/V60wmyE6MZNP+GvZUNDAoKdKT8URERPzavmrXGibJ0aGEWoIMTtM9JpOJ1JhQ9lY2UWnr58UOERHxvvKdsO8rMAXBmIuMTmO8IAv8+Cn4+xmw9V3Ifx/yzjc6lfghFdpFJKB8VVgFwPE5vtPDvLayDICLL764V/upr68na2A2m/bXYK3UgqgiIiLf19E2ZmC8f7WN6ZAWE+YqtNtVaBcRES/rmM0+9GyITjM2i68YMAZOuQ6WPw7/uwkGnQZhWjhFukeFdhEJKGt2u/qz+1LbmKb6WgDOu+p2RowZ3+3X53+1jA9feoLm5mby4sMxAVWNLdQ1txAdFuzhtCIiIv6pYyHUgX7Wn71DR592FdpFRMSrHG2wYaFruz8vgnook251zWiv/BYW3QPnP2Z0IvEzKrSLSMBobmlj475qwDcXQk1MzyZj2Khuv67EWuDeDg0OIjUmjOLaZvZWNjEyXYV2ERGRRnsrVY0tgP8W2lPbC+11LSZMIf75M4iIiB8oXAZ1ByAsDkZMMzqNbwkOhwuegJcugK9fgNE/h+yJRqcSP6LFUEUkYKzfW01Lm5PUmFCyEiKMjuM1mQmuk29rldrHiIiIwHez2ZOiQggL9q/+7B0iQy1Eh1kAEyGpQ42OIyIigaqjbczon4PFt9Y18wmDToexl7i2/3sdtNqMzSN+RYV2EQkYXxV+1zbGFMCrpnd8iLC3shGn02lwGhEREeO5+7P76Wz2DintC7mHDlChXUREvMBW51roE+DYmcZm8WVT7oPIFCjfAV88anQa8SMqtItIwOjoz+6LbWM8KS02DIvZRKO9jYoGu9FxREREDBcohfaO9jEhacMMTiIiIgFp2wfQ2gQJQ2DgOKPT+K7wePjRw67tLx6Dkq3G5hG/oUK7iASE1jYH6/ZUAb61EKo3WMxmBsa3t4+pVPsYERHp3+wOKK93ffCcrkK7iIjI4W16w3U75iII4KvAPWLkT2DEj8DR4moh42gzOpH4AcML7fv37+fiiy8mMTGR8PBwRo8ezddff+1+3Ol0ctdddzFgwADCw8M5++yz2blzp4GJRcQX5RfV0WBvIybMwojUaKPjeF1W/HftY0RERPqzSpurUBAbHkxkqMXgNL3T0TomOH4AdTaHwWlERCSg1JdBwRLX9uifG5vFH5hM8KO/QEg07FsDa14wOpH4AUML7VVVVZxyyikEBwfz4YcfsnXrVh599FHi4+Pdz3n44Yd58sknee6551i9ejWRkZFMnTqV5uZmA5OLiK9ZZ3XNZh+XHY/ZHPifzGe292nfX91Em0N92kVEpP+qtLlOaQbEhhmcpPfCgoOItLjG9YKqFoPTiIhIQNnyNjjbIH0cJA4xOo1/iB0IZ//Jtb34HqjZZ2we8XmGFtofeughMjMzmT9/PieccAKDBg1iypQpDBni+oV3Op3MmzePO+64gwsvvJAxY8bwz3/+kwMHDvDOO+8YGV1EfMza9rYx47Lij/LMwJAUFUJ4cBAtbU6Ka/TBo4iI9F8VdtcH7GkBUGgHiA9xzWTfValCu4iIeNCm1123Yy4yNoe/mXAFZJ4I9nr44EZwaqKbHJ6hhfb33nuPCRMm8POf/5yUlBTGjh3L888/7368sLCQ4uJizj77bPd9sbGxnHjiiaxcufKQ+7TZbNTW1nb6EpHA1zGjfXx2/yi0m0wmMhPUp11ERPo7E1XtrWMCYUY7QHxIx4x2LXguIiIeUlnoan9iMsOo6Uan8S9mM1zwJJiDYcdHsOUtoxOJDzO00P7tt9/y7LPPMmzYMD7++GN+97vfcd111/HSSy8BUFxcDEBqamqn16Wmprof+6G5c+cSGxvr/srMzPTuDyEihiutbWZfVRNmExybGWd0nD6T1d4+Zm+VCu0iItI/BSdl0uI0ERxkIiky1Og4HtFRaNeMdhER8ZhNb7puB02C6NQjP1cOlpILp9/k2v7wVmisNDaP+CxDC+0Oh4Nx48bxwAMPMHbsWH7zm9/wf//3fzz33HM93udtt91GTU2N+2vv3r0eTCwivqhjNvvw1Gii/HwRtO7o6NNeXNuMrVUroIuISP8Tmp4LQGp0WMCs0RIX4sTpdFDR5KC0Tu3hRESkl5zO79rGaBHUnjt1DiTnQkMZfHKn0WnERxlaaB8wYAAjR47sdF9eXh5WqxWAtLQ0AEpKSjo9p6SkxP3YD4WGhhITE9PpS0QCW0d/9v7SNqZDTFgwcRHBOJ2wr6rJ6DgiIiJ9LnSgq9AeKP3ZAYLN0FLhmiy0aV+NwWlERMTvFW+E8h0QFAp5Fxidxn9ZQl0tZDDB+pehYInRicQHGVpoP+WUU9i+fXun+3bs2EF2djYAgwYNIi0tjcWLF7sfr62tZfXq1UycOLFPs4qI71pnrQb6z0Ko35cV394+Rn3aRUSkHwpJHwEETn/2DvaiXQBsVKFdRER6a9MbrtsR50KYJqP2StaJcPyVru33Z4Nd5+HSmaGF9jlz5rBq1SoeeOABdu3axauvvsrf//53rr76asC12N/s2bO5//77ee+999i0aRO/+tWvSE9P5yc/+YmR0UXER9ha29yzvfrbjHaArERXoV0LooqISH/TYHcQkuSaoBNIM9oB7MU7Adi0X4V2ERHpBUcbbPqPa3v0RcZmCRRn3QUxA6FqNyx70Og04mMMbWZ8/PHH8/bbb3Pbbbdx7733MmjQIObNm8esWbPcz7nllltoaGjgN7/5DdXV1Zx66ql89NFHhIUF1ptpEemZLQdqsbc5SIgMIbu96NyfZMSFYwKqGluoa24hOizY6EgiIiJ9Ykf7YqGRFicRIYG1RoutvdC+cV81TqcTkykw+s+LiEjvWa1WysvLu/TcqPL1DK87QGtwFJvqk3CuW3fU1+Tn5/c2YmALi4HzHoV//xK+fBpGTYf044xOJT7C8Hek559/Pueff/5hHzeZTNx7773ce++9fZhKRPzFuvb+7OOy4vvlSWhocBCpMWEU1zazt7KJkekqtIuISP+wvdwOQGKIw+AkntdSWkiQCcrr7RTVNJMeF250JBER8QFWq5W8vFwaG7u2RtffLwhj+LgQ5q+u5Dd3dK8Fc119fU8i9g8jpsGon8KWt+G/18H/LQWzoU1DxEcYXmgXEemNddb2Qnt2nLFBDJSZEE5xbTPWykZGpqvnnoiI9A87KlyF9oRQp8FJPM/Zaicr1kJhdSsb91Wr0C4iIgCUl5fT2NjEy3+8iLys5CM+1+RsY3TJm+C0M+ns81h7XlqXjvG/r3Zw54uf0tzc7InIgWvaw7BrMRRtgI2vwXEzjU4kPkCFdhHxW06nk7XtM9rH98OFUDtkJUSwZncV1spGXV4uIiL9gsPhdLeOCcRCO8CQ+OD2QnsN5x4zwOg4IiLiQ/Kykhk3fOCRn1S+A4rtEBLN8GPGgqlrM67zrWUeSNgPRKXAaTfAorvhs/th1E8gWB+M93e6rkFE/NaBmmZKam1YzCbGZMQZHccwabFhWMwmmlraqGiwGx1HRETE6wrK6mlsceKwNxMbHJiF9qEJIYAWRBURkR4q2eK6TcnrcpFduunE30JMBtTug1XPGp1GfIB+00TEb3X0Z88bEEN4SJDBaYxjMZsZGO/65Nxa2WhwGhEREe/raB1nL96JOUAv5BqS4Fp3ZeO+GpzOwPwwQUREvKTVBhW7XNspI43NEsiCw+GsO13byx+Hhq4tUiuBS4V2EfFb7rYx2f23bUyHrIQIQIV2ERHpH9btqQbAdmCbsUG8KCvGQkiQmZqmFo3vIiLSPeXbwdkGEYkQlWp0msA2+iJIGwO2Wlj2sNFpxGAqtIuI3/qmfTbb2Kw4Y4P4gMx4V6F9f1UTbQ7NehMRkcD2zV7XewDb/sAttAcHmchrX+R8wz61jxERkW4o3eq6TRkJWsPLu8xmmHK/a/vrF6B8l7F5xFAqtIuIX2puaWPLgVpAM9oBkqJCCA8OotXhpLhGq8OLiEjgqre1srO0HgBb0XaD03jXmIGxAGzaV21sEBER8R/2eqja49pOGWVslv5i8CQYNgUcrbD4HqPTiIEsRgcQEemJjftqaHU4SYkOZWCcVvY2mUxkJoSzo6Qea2Wju2e7iIhIoNm8vwanExLDzexpqDY6jleNyXAV2jdqRruIiHRVaT7ghOh0CI8zOo1PyM/P9/oxBhzzWwbs/BTy34PiTZA22uvHFN+jQruI+KWORdDGZ8dj0qVwgKtPe0ehfeKQRKPjiIiIeMXG9tndQxOCWWdsFK8bkxEHuD5caHM4CQrUlV9FRMRzOtrGpGo2e1FlHSbg4osv9vqxIiLCKf3rj4ks/BCWPQS/eNnrxxTfo0K7iPiljoVQx2WpbUyHzPYFUUtqm7G1thFqCTI4kYiIiOd19CsfmhBicBLvG5IcSXhwEA32NgrL6xmaEm10JBER8WWNlVBXBJggOdfoNIarrm/GCTz9+ylMHDPMa8fJt5Zx8QOvsyfnIkYWfgT5/9Ws9n5KhXYR8TtOp9O9EOq47Dhjw/iQmLBg4iKCqW5sYV9VE0OSo4yOJCIi4nHfn9Ee6CxBZo4ZGMOa3VVs3FejQruIiBxZx2z2+EEQEmlsFh8yND2eccMHev04zdE5cMx02PwfWPYw/OJfXj+m+BYthioifsda2Uh5vZ2QIDOj0mONjuNTstpntVsrGg1OIiIi4nlVDXb2VjYBMDQ+8AvtAKMHxgHq0y4iIkfhdH6vbcxIY7P0Z6ff7LrN/y+U7zQ2i/Q5FdpFxO909GcfNTCGsGC1R/k+d6G9SoV2EREJPBv3u4rNg5IiiQzpH6cyx2Z2LIhabWwQERHxbfXF0FQJZgskeq9NihxFSh6M+BHghBVPGJ1G+lj/eHcqIgGloz/7ePVnP0hGfDgmE1Q3tlDb3GJ0HBEREY/auLcagDEZ/eeKttEDXT/rlgO1tLQ5DE4jIiI+q6R9NnviMLCEGpulvztltut2w0KoPWBoFOlbKrSLiN9Zt6cagHHZKrT/UKgliLSYMMDVYkdERCSQdCyE2lF87g9yEiOJDrVga3Wws6Te6DgiIuKLnA4oy3dtp6htjOGyToSsieBogVXPGp1G+pAK7SLiVxpsrWwrrgVgvArth5TZ3j5mr/q0i4hIgOlon3JsZpyhOfqS2WxidPsM/k37q40NIyIivqnaCvZ6sIRBwmCj0wjAKde7bte9BPYGY7NIn1GhXUT8yoa91TicMDAunNT2mdvSWUef9r1VTTidToPTiIiIeEZJbTOldTbMJhiVHmN0nD7VUWjfoAVRRUTkUEq3uG6Tc8Gsdcx8wrCpED8Immtgw7+NTiN9RIV2EfErHQuhjs2KMzaID0uLCSMkyExTSxtldTaj44iIiHjEhvb+7MNTo4kIsRgbpo8dmxEHwCYV2kVE5IccrVC2w7WttjG+w2yGE69yba/+Gzi0zkp/oEK7iPgV90KoahtzWEFmEwPjwwH1aRcRkcCxsb3I3J8WQu3Q0ZN+W3EtttY2g9OIiIhPqdgFbTYIjYHYTKPTyPcdNwtCoqF8B3y7xOg00gdUaBcRv+FwOPmmfTbbuCwV2o+ko32MCu0iIhIoNrT3Zx/TPru7P8mIDyc+IpiWNifbiuqMjiMiIr6kdKvrNmUkmEzGZpHOwmJg7CzX9lfPG5tF+oQK7SLiN74tb6C6sYWwYDMj+1lv1u7qKLQfqGmmTVeoiYiIn3M6nWza75rRfmw/LLSbTCb3Bwwb96t9jIiItGtthooC17baxvimCVe4bnd+DDX7jM0iXqdCu4j4jY7+7GMGxhEcpP++jiQ+IpioUAttDiflNs1qEBER/2atbKS6sYWQIDMj0qKNjmOIjpY5G9uv7hMREaFsOzjbIDIZolKMTiOHkjwcsk8FpwPW/cvoNOJlqlSJiN9Y196ffZz6sx+VyWQiM8HVp720Wf/Vi4iIf+voz56XHkOIpX+Oax0z2jdpRruIiHT4ftsY8V0Tfu26XfdPaGs1Not4Vf98lyoifqljRvu4rDhjg/iJjvYxJc2a0S4iIv5tY3t/9mP74UKoHTpmtO8oqaPRrpN0EZF+z1YH1Xtc2yl5xmaRI8u7ACISoe4A7PzE6DTiRSq0i4hfqGlqYWdpPaAZ7V3VUWivaTFjjui/hQkREfF/HTPaRw/sv+NZakwYKdGhOJyw9UCt0XFERMRopfmu25gMCIszNIochSUUjvt/ru31rxibRbzKYnQAEZGuWL+3GqcTshMjSIoKNTqOX4gIsZAUFUJ5vZ2w7GONjiMiItIjDofTXVge0w8XQv2+MRlxLMovYeO+GibkJBgdR0REjFS6xXWbqrYxviI/P/+wj4WFjGUk4Nz+IZtWfkZraFy395+UlERWVlbPA4rXqdAuIn5hycbdAOREOVm3bl23XnukwS7QZSVEUF5vJzxnrNFRREREemRPZSN1tlZCLWaGJEcaHcdQYzJi2wvt1UZHERERA4W21kB9CZjMkJxrdJx+r6iyDhNw8cUXH/F5q6+M5ISB8MKcaTy52t7t40REhJOfv03Fdh+mQruI+Dyr1crf3/qUkKxjeevvf+Gfv/+wR/upr6/3cDLfl5UQwTprNWE5x+F0Oo2OIyIi0m2b2xf/zBsQgyWof3e+7OjTvlELooqI9GsJTYWujfhBEBxhbBihur4ZJ/D076cwccywwz4vqWE71H7F3PMHcOmvz+/WMfKtZVz8wOuUl5er0O7DVGgXEZ9XUlqGJXUoABdd+hvi/u//uvX6/K+W8eFLT9Dc3OyNeD5tYFw4ZpxYYpLZX9fGeKMDiYiIdNPmA66i8jEDYwxOYryOHvXfljVQ19xCdFiwwYlERMQI8U27XRspahvjS4amxzNu+MDDP6ElAVauJaK1inHpFohK7btw0idUaBcRn7evthVzaCQWk5OReXmYzaZuvb7EWuClZL7PEmQmMdRJmc3EhhIbPzY6kIiISDdt2e/qz35Mev9dCLVDYlQoA+PC2V/dxKb9NZw8JMnoSCIi0sdOGBhEWFsdmIMh6fCzp8UHBYdD4lAo3w4lW1RoD0D9+9pLEfEL2ytaAIgPcXa7yC6QGuYAYGOJzeAkIiIi3eN0Otm0v2NGuwrtAMdmuv4cNu1T+xgRkf7o/41unzObNAyCQowNI92XOsp1W5YPau8acFRoFxGft73CtUhIYqgGoZ5ICXf9uW0utdPS5jA4jYiISNftq2qipqmF4CATw1OjjY7jE0YPjANggxZEFRHpfxxt/HJUe9uwlFHGZpGeSRgMQaFgq4OavUanEQ9T6xgR6RNWq5Xy8vIevXbTgXogiIRQFYl7Ii7YSVtjDU0RsXxjreaEQQlGRxIREemSLe392UekRRNi0RwhgLFZcQCs3VOF0+nEZNLVfiIi/UV0+TpSo8y0mEMJjs8xOo70hNkCySOgeCOUboU4LWwaSFRoFxGvs1qt5Obl0dTY2O3XmsNjyLzuVQBCW+o9Ha1fMJmgufAbIkedwbIdpSq0i4iI39is/uwHOTYjDovZREmtjf3VTWTERxgdSURE+kjCvkUAVIdlk2wOMjiN9FjKSFehvWw7DD0H9HcZMFRoFxGvKy8vp6mxkVm3PkJq1pBuvfZAo4mV5WAv34MjIthLCQNfU+Ha9kJ7GTdPzTU6joiISJdsbp/RPkr92d3CQ4IYlR7Dhn01rN1TpUK7iEh/0dJEXNEXAFSGDyLZ4DjSC3FZEBwJLQ1QtRsSu1cnEd+lQruI9JnUrCFkDOteH7ndu8qhvArb/m2QNdpLyQJfU+E3gGtmYFmdjeToUIMTiYiIHJnT6WRz+0Koo1Vo72Rcdry70H7hcQONjiMiIn1h+/8IamuisMpBQ5rK7H7NZHa1jzmwDsq3qdAeQNToUER8WlF1EwC2/fkGJ/FvjsZqBse7Plv9YmeZwWlERESOrqTWRnm9nSCzidw0LYT6fROyXW3g1u6pMjiJiIj0mY2vA/DKphZXf1Dxb8ntV5qX7wRHm7FZxGNUaBcRn9XmcFJSZwPAtm+rwWn839g01yz2ZTtUaBcREd/XMZt9WEoUYcHqXfp947PjAcgvqqXe1mpwGhER8bqGctjl6s/+8sYWg8OIR8RmQHAEtDZDtdXoNOIhKrSLiM8qq7PR5nBioZXWqgNGx/F7Y9PCAPh8RxltDqfBaURERI7M3Z9dC6EeJC02jIFx4TicsGFvtdFxRETE2za/BY5WGuJGsL3CYXQa8QSTGZJGuLbLtxmbRTxGhXYR8VkHalxtY2JoMjhJYBieGEx0qIWqxhb3LEERERFftXl/LQDHDIwxOIlv6pjV/vVutY8REQl4G18DoDLjbIODiEcldxTad4BTH6AEAhXaRcRnFVU3Ayq0e4rFbOLUYUkALN2u9jEiIuLbtBDqkXUU2tdaVWgXEQloFQWw/2swBVGVPtnoNOJJsZlgCYeWJqjea3Qa8QAV2kXEJzmdTveM9mgaDU4TOCYNd61Ov2xHqcFJREREDq+szkZxbTMmE+QN0Iz2Q+kotH+zp0ot4UREAln7IqgMmUxrWIKxWcSzzEGQOMS1XbHL2CziESq0i4hPqm1updHehtkEUTQbHSdgnN5eaF+/t5rqRrvBaURERA5tS3t/9sFJkUSGWgxO45ty06KJCAmiztbKztI6o+OIiIg3OJ3utjGM+YWxWcQ7Eoe6bitVaA8EKrSLiE8qap/NnhIdRhCapeUp6XHhDE+NwuGE5bvKjY4jIiJySFsOdPRnV9uYw7EEmRmbFQeoT7uISMDatwaqCiE4EnJ/ZHQa8Yb4Qa6FUZuqoLHC6DTSSyq0i4hPOtDen31AbJjBSQKPu32M+rSLiIiP6ujPfky6Cu1HMj7L1T5m3R4V2kVEAlLHbPa8CyAk0tgs4h2WUIjLcm2rfYzfM7TQfvfdd2MymTp95ebmuh9vbm7m6quvJjExkaioKGbMmEFJSYmBiUWkr3TMaFeh3fMmDU8BYNmOMpxOXS0gIiK+Z1NHoV0z2o9ofI6rV+/XKrSLiASeVjtsfsu1PeYiY7OId3W0j1Gh3e8ZPqN91KhRFBUVub+WL1/ufmzOnDn897//5Y033mDZsmUcOHCA6dOnG5hWRPqCrbWNinpX//ABceEGpwk8E3LiCQ8OorTOxrZi9XQVERHfUt1oZ1+V6wP3kelaCPVIxmbFYTKBtbKR0jqtaSMiElB2LYKmSohKhcFnGJ1GvCmhvdBesw9aNJ77M8ML7RaLhbS0NPdXUlISADU1Nbzwwgs89thjTJ48mfHjxzN//ny+/PJLVq1aZXBqEfGm4ppmnEBMmIUoLYDmcWHBQUwckgi4ZrWLiIj4ko7+7NmJEcSGBxucxrfFhAUzIjUaUPsYEZGA09E2ZvTPwRxkbBbxrvA4iEgCnFBZYHQa6QXDC+07d+4kPT2dwYMHM2vWLKxWKwBr166lpaWFs88+2/3c3NxcsrKyWLlypVFxRaQPFNV09GfXbHZvOWOE+rSLiIhvUn/27hmX7erTvkYLooqIBI7mGtj+oWtbbWP6h472MSq0+zVDC+0nnngiCxYs4KOPPuLZZ5+lsLCQ0047jbq6OoqLiwkJCSEuLq7Ta1JTUykuLj7sPm02G7W1tZ2+RMS/uAvtcerP7i0dC6J+vaeSelurwWlERES+09GffdRAtY3pihMHufq0r/q2wuAkIiLiMVvfgzYbJOdC2hij00hf+H6h3dFmbBbpMUN7MkybNs29PWbMGE488USys7N5/fXXCQ/v2UzWuXPncs8993gqooj0MYfTSXF7oT1dM9q9JjsxkpzECHZXNPLlrnKmjEozOpKIiAjwXeuY0VoItUsmDna1g9taVEtNYwuxEWq3IyLi9zraxoz5BZhMxmaRvhGTDsHh0NIEtfshLsvoRNIDhreO+b64uDiGDx/Orl27SEtLw263U11d3ek5JSUlpKUdviB02223UVNT4/7au3evl1OLiCdV1NuxtzkIDjKRGBlidJyA1jGrXX3aRUTEV9Q1t1BY3gDAKLWO6ZKUmDAGJ0fidMLqQs1qFxHxe1V7YPcXgMnVn136B5MZEoa4tit2GZtFesynVhmsr6+noKCASy65hPHjxxMcHMzixYuZMWMGANu3b8dqtTJx4sTD7iM0NJTQ0NC+iiwiHlZU0wRAWmwYZrM+ufemSSOSeWnlHpZuL8PpdGLSTAkRETHY1vbZ7APjwkno5x+45+fnd/m5Q6OdfFsG767KJ8l2wH1/UlISWVmaESci4lc2/Nt1O+h0iMs0Nov0rcShULLZVWgfMtnoNNIDhhbab7rpJi644AKys7M5cOAAf/rTnwgKCmLmzJnExsZyxRVXcMMNN5CQkEBMTAzXXnstEydO5KSTTjIytoh4kRZC7TsTBycRajGzv7qJnaX1DE+NNjqSiIj0c5vbC+2j0vtvf/baSteVZhdffHGXXxORexrJF97K28s389crr3PfHx4Rwbb8fBXbRUT8hcMB37zi2h57ibFZpO/FD3LNbG+qhKYqCI83OpF0k6GF9n379jFz5kwqKipITk7m1FNPZdWqVSQnu9oZPP7445jNZmbMmIHNZmPq1Kn89a9/NTKyiHhZkbs/uxZC9bbwkCAmDklk6fYyPttWqkK7iIgYbnP7QqjH9OP+7E31rg8bzrvqdkaMGd+l1zS3wQf7ISR1MFc/+RahQVBiLeCVh26mvLxchXYREX+x+wuosUJoLOSdb3Qa6WuWUIgZCDV7oapQhXY/ZGihfeHChUd8PCwsjGeeeYZnnnmmjxKJiJEabK3UNLUArtYx4n2Tc1Nchfb8Un47aYjRcUREpJ/rKLRrIVRITM8mY9ioLj8/oWoPlY12nAnZZKREeTGZiIh4zTcvu25Hz3AtjCn9T/wgV6G9shDSxxmdRrrJpxZDFZH+rWM2e2JUCKGWIIPT9A9njkgBYK21iprGFoPTiIhIf9Zob6WgrB6AUQP7b+uYnspIcBVk9lY2GpxERER6pLkG8t9zbR/X9fZhEmDiB7luq63gdBibRbpNhXYR8RkH2hdCHaDZ7H0mMyGC4alRtDmcLNtZZnQcERHpx/KL6nA4ISU6lJRovRforqyECAD2qNAuIuKfNv8HWpshOQ8GaiZzvxWdCpYwaLNBbZHRaaSbVGgXEZ9xoNpVaB+ohVD71Jm5rlntn+WXGJxEAsmzzz7LmDFjiImJISYmhokTJ/Lhhx+6H29ububqq68mMTGRqKgoZsyYQUmJ/g2K9GdbDqg/e29kxIdjMkFNU4u7FZ+It2icF/EC9yKos8BkMjaLGMdkhrhs13ZVobFZpNtUaBcRn2BvdVBaZwMgPU6F9r50Vm4qAMt2lNHmcBqcRgJFRkYGDz74IGvXruXrr79m8uTJXHjhhWzZsgWAOXPm8N///pc33niDZcuWceDAAaZPn25wahEx0qZ97YX2dLWN6YlQSxADYlxXAlgrNKtdvEvjvIiHlW6D/V+D2QJjfmF0GjFaQnv7mKrdhsaQ7jN0MVQRkQ7Ftc04nRAVaiEmPNjoOP3KuKw4YsODqWpsYf3eKsZnJxgdSQLABRdc0On7P//5zzz77LOsWrWKjIwMXnjhBV599VUmT54MwPz588nLy2PVqlWcdNJJRkQWEYNtPlALwCjNaO+xrMQIDtQ0s6eygXjNWxAv0jgv4mHr2xdBHTYVolKMzSLGi89x3dbuh1YbWEINjSNdpxntIuIT9ne0jdFs9j5nCTJz+vBkABbnlxqcRgJRW1sbCxcupKGhgYkTJ7J27VpaWlo4++yz3c/Jzc0lKyuLlStXHnY/NpuN2traTl8iEhiaW9rYWVIHwGgV2nssOyESgL1VTegiNekrGudFeqnVBuv/7doeO8vYLOIbwuIgPB5wQvUeo9NIN6jQLiI+oaM/e3qcFj8zwlkdfdq3qdAunrNp0yaioqIIDQ3lt7/9LW+//TYjR46kuLiYkJAQ4uLiOj0/NTWV4uLiw+5v7ty5xMbGur8yMzO9/BOISF/ZUVJHq8NJQmSIFkXvhZSYUEItZuytDqrs6u8r3qVxXsRD8v8LjeUQne6a0S4CEK/2Mf5IhXYRMVybw0lxTTOgGe1GmTQ8GbMJthXXuT/0EOmtESNGsH79elavXs3vfvc7Lr30UrZu3drj/d12223U1NS4v/bu3evBtCJipE37Xf3ZR6XHYNICcD1mNpnISogAoLhJp3riXRrnRTzk6xddt+MvhSB1eJZ2He1jVGj3K/oNFhHDldY10+pwEhZsJiEyxOg4/VJ8ZAhjs+JZu6eKz7aVcvFJ2UZHkgAQEhLC0KFDARg/fjxr1qzhiSee4Be/+AV2u53q6upOs91KSkpIS0s77P5CQ0MJDVV/QpFAtHm/q0XEMWob02s5SZHsLK2nqEkfWIh3aZwX8YDSbbBnBZiCYNyvjE4jviQuCzBBUyU01xidRrpI0xxExHAHql2z2dNjwzWLzUCT29vHLFH7GPESh8OBzWZj/PjxBAcHs3jxYvdj27dvx2q1MnHiRAMTiohRNrfPaFd/9t7LSXTNaK9pMRMUnWRwGulPNM6L9MDa+a7bEdMgJt3YLOJbLGHf/ZvQrHa/oRntImI4LYTaN/Lz84/4+ABnCwBf7Cxl5VdrCbV896FHUlISWVlZXs0ngeW2225j2rRpZGVlUVdXx6uvvsrSpUv5+OOPiY2N5YorruCGG24gISGBmJgYrr32WiZOnMhJJ51kdHQR6WP2Vgfbi7UQqqdEhFgYEBtGUU0z4UOONzqOBCiN8yIeYG/4bhHUCZcbm0V8U3wO1O6HqkKw6MNzf6BCu4gYyul0fm8hVBXavaG2sgyAiy+++KjPHfi7+RCTzOSZv6X526/d94dHRLAtP1/Fdumy0tJSfvWrX1FUVERsbCxjxozh448/5pxzzgHg8ccfx2w2M2PGDGw2G1OnTuWvf/2rwalFxAg7SuqwtzmIDQ8mI17vBTxhUFKkq9A+9ASjo0iA0jgv4gGb3wJbjWvRy8FnGp1GfFH8IFdroardkDTB6DTSBSq0i4ihKhrs2FodWMwmkqPVk9EbmupdfW/Pu+p2RowZf8TnrqsMorAeJv76TsYmtAFQYi3glYdupry8XIV26bIXXnjhiI+HhYXxzDPP8Mwzz/RRIhHxVR1tY44ZqIVQPWVQUiRfFlQQnn0sza0Oo+NIANI4L+IBX7f/Hk34NZjV2VkOISYdgkKgtZnw1iqj00gXqNAuIobqaBszIDaMILNOrr0pMT2bjGGjjvgce3k9hRuKKGsNZeDQHBU8RETE6za5C+1qG+MpiZEhRAQ5aSSEDSV2TjY6kIiIdLZ/HRz4xlVEPW6W0WnEV5nMEJMBVd8SZS8xOo10gT4yExFDqW2Mb8mMjyDIbKKuuZWKBrvRcUREpB/YfMB15dUx6Sq0e4rJZCI9wjWTfdW+ZoPTiIjIQTpms4+8ECLVe1uOIM51VXm0TYV2f6BCu4gYxtWf3XXyp4VQfUNwkJnM9v64u8sbDE4jIiKBrqXNQX6Rq9CuhVA9a2B7oX3NgWZsrW0GpxEREbf6Utj4umv7+P8zNov4vvZCe5S9BF1v7vtUaBcRw9Q2t1Jva8VsgrTYMKPjSLucpEgACitUaBcREe/aWVKPvdVBdJiF7MQIo+MElMQQJ611FTS2OFmxq9zoOCIi0mHNP6DNDhnHQ9aJRqcRXxedBkEhWJx2RqeqjOvr9DckIobpaBuTEh1GcJD+O/IVgxJdhfai6maaWzQDTkREvGfzgfb+7OmxWhfEw0wmaNy+AoAPNhYbnEZERABoaXIV2gEmXm1sFvEPJjPEZgBwZo6W2vR1qmyJiGE6FkJV2xjfEhMeTGJUCE5gt2a1i4iIF212L4QaY3CSwNRRaP90azH2VofBaUREhI2vQWMFxGZB7gVGpxF/EetqH3NGTpDBQeRoVGgXEcN8txCq2sb4mo5Z7YXq0y4iIl60yV1oV392b7DtzycuzExtcyvLd5UZHUdEpH9zOGDlM67tk34LQZqdLF3U3qf99GwLOPXBuS9ToV1EDNFob6WqsQWAdM1o9zmD2vu076loxOE0OIyIiASkVi2E6n1OB6dkuiY0vLVuv8FhRET6uV2LoHwHhMbA2EuMTiP+JDqNNpOFhHAT4bXfGp1GjkCFdhExxIHqZgASI0MIC9blT74mLTaMsGAztlYHFTb1zBUREc8rKGugucVBVKiFnPYrqcTzJmW7JjR8urWE2uYWg9OIiPRjK5923Y77FYSpZZp0g8lMfUgKAFHl643NIkekQruIGGK/u22MZrP7IrPJ5C56FDdpqBAREc/raBszMj0Gs1kf6nrLkPhghiRHYmt18NEmLYoqImKI4k1QuAxMQXDiVUanET9UF5IGQHTFemODyBGpIZSIGOKAFkL1eYOSItlWXEeRCu0iIuJBVquV8vJyPvvGVWhPDbaxbt26bu8nPz/f09ECkslkYvq4DB75eDtvfbOPi47PNDqSiEj/s/xx1+3IC939tkW6oz4kFYCoig3gaAOzOgP4IhXaRaTP2VsdlNXZAC2E6suyEyIwm6Cu1YQlLs3oOCIiEgCsViu5eXk0NTaSOushwjJGMf/Re3h669Ie77O+vt5zAQPUhcel88jH21n1bSX7qhrJiI8wOpKISP9Rth02v+XaPu0GY7OI32oMTqDW5iSGeijZDAOONTqSHIIK7SLS54pqmnACMWEWosOCjY4jhxEaHER6XDj7qpoIH3K80XFERCQAlJeX09TYyP+79RFWmXJpc8LM31xHTPB13d5X/lfL+PClJ2hubvZC0sCSER/ByUMS+bKggtfX7OWGKSOMjiQi0n98/gjghNzzIW200WnEX5nMfLGnlfOGB8Pu5Sq0+ygV2kWkz+2rUtsYfzEoKVKFdhER8biIAUNoKzIRHGQiN28kZlP3e7SXWAu8kCxwzTwhiy8LKnjt671cd9YwLEFqDSci4nXlO2Hzf1zbp99sbBbxe0v3tLkK7YVfwMSrjY4jh9Cjd1eDBw+moqLioPurq6sZPHhwr0OJSGDrKLTrsmXfNyjJtSBqWNZomlocBqeRvqAxXkT6QrXddRqSFBXaoyK7dN/UUWkkRoZQUmvjs22lRscRg2icF+ljnz8CTgcMnwbpxxmdRvzcst2trg3rSnDo/NwX9ajQvnv3btra2g6632azsX///l6HEpHAZW91UFLnusQ7I14z2n1dfEQIkRYnpqBgNpTYjI4jfUBjvIj0hSq7q7ieGq21WvpKiMXMz8ZnAPDvr6wGpxGjaJwX6UPlu2DTG67tM241NosEhG+KHbQFhUFzNZRvNzqOHEK3Wse899577u2PP/6Y2NhY9/dtbW0sXryYnJwcj4UTkcBzoKYJp9PVnz0mXP3Z/cGAcAe76oL4+oAK7YFMY7yI9KXq9kJ7SkyowUn6l1+ekMXfPv+WpTvKsFY0kpWoqwv7C43zIgb44lHXbPZhUyF9rNFpJAC0OqAhfiQx5etcs9pT8oyOJD/QrUL7T37yEwBMJhOXXnppp8eCg4PJycnh0Ucf9Vg4EQk8ahvjfzoK7WuLbDgcTsxmXeIfiDTGi0jfMX1XaI9Wob0vDUqK5LRhSXyxs5yXVu7mzvNHGh1J+ojGeZE+VlEAG19zbU/SbHbxnIaE0a5C+56VMOFyo+PID3Sr0O5o7/8zaNAg1qxZQ1JSkldCiUjg2lfVCKhtjD9JCnXisDVSQwQb99dwXGac0ZHECzTGi0hfsSSk0+o0YTGbiI8IMTpOv3P5qYP4Ymc5r63Zy+yzhxEdpisM+wON8yJ97LP7wNkGQ8+BjPFGp5EAUp842rVhXWVsEDmkbhXaOxQWFno6h4j0Ay0OKK1ztR9Rod1/mE3QVLiOyNxT+Sy/RIX2AKcxXkS8LSR1KADJ0aG6SsoAk4YlMzg5km/LGnhz7T5+fcogoyNJH9I4L+I9VquV8vJyIiq3krvlbZyY2DbwFzStW+exY+Tn53tsX+KfGuJHgikIaqxQsw9iM4yOJN/To0I7wOLFi1m8eDGlpaXuT8c7vPjii70OJiKBp9xmwumE2PBgzZ7yM00FX7kK7dtLuWHKCKPjiJdpjBcRbwpJGwKobYxRzGYTvz5lEHe+s5n5K3ZzyUnZWILMRseSPqRxXsTzrFYruXl5NDU28sWvIyDLwvxvbFxxz0VeOV5RZZ1X9iu+z2EJhwFj4MA3rlnto39mdCT5nh4V2u+55x7uvfdeJkyYwIABAzCZNBNFRI6urNl1EqfZ7P6n6du1mIDN+2sprmkmLTbM6EjiJRrjRcTbQr83o12MMWPcQB79ZDvWykY+2FTEhccNNDqS9BGN8yLeUV5eTlNjI4/fdgWnhryBnRD2nv04N0yN9+hxtm9cywd/+zPV9c0e3a/4mayJ7YX2lSq0+5geFdqfe+45FixYwCWXXOLpPCISwMpsrjfyKrT7H0djDcMSg9lR0cKS7aXMPCHL6EjiJRrjRcSbHE7n92a060Nbo0SEWLjilEE8+ukOnv5sFxeMSVcbn35C47yI91jMMCv8c2iDdRkXE5N9KjEePkZ5ebmH9yh+KeskWPVX9Wn3QT26RtBut3PyySd7OouIBDBTaCTV9o5Ce4TBaaQnJgxwzTxcnF9qcBLxJo3xIuJNJfVtmEMjMZucJEZqIVQjXXpKDtFhFnaW1vPRlmKj40gf0Tgv4j1XjQ8mua2EhuAEvh74K6PjSCDLmui6LdkCTdWGRpHOelRov/LKK3n11Vc9nUVEAlhYxijARFxEMFGhPV4eQgw0Pt0183DFrnKaW9oMTiPeojFeRLxpV1ULAHHBTs2gNlhMWDC/PjkHgKc+24XT6TQ2kPQJjfMi3hHUUs+fJrkmJq3K/A0tlkiDE0lAi0qBhCGAE/Z+ZXQa+Z4eVbuam5v5+9//zqJFixgzZgzBwZ0XNXzsscc8Ek5EAkdY9hgAMuLUNsZf5cRaGBAbRlFNMyu/reDMESlGRxIv0BgvIt60s8JVaI8PUVHXF1x+6iBeWF5IflEti/NLOXtkqtGRxMs0zot4R/rWv5McaaY4KJ1NaRcaHUf6g6yJUFng6tM+fIrRaaRdjwrtGzdu5LjjjgNg8+bNnR7TYioiciihmccAahvjz0wmE5NzU3hltZXP8ktVaA9QGuNFxJt2VdkBiA9Vod0XxEWEcMnEHJ5bVsBTn+3krLwU/V8f4DTOi3jBnpUk7/kvAP+J/hVOk67glj6QdRKsf1l92n1Mj377lyxZ4ukcIhLA6u0OQlIHA1oI1d+5C+3bSrnX6dQJWQDSGC8i3tLa5uDb9tYxCSEOg9NIhytPG8SCLwvZsK+Gz3eWM2l4stGRxIs0zot4WKsd3p8NwD/W2fn23FwyjE0k/UV2+3ob+9dCqw0socbmEaCHhXYRke7YVGrDZDITbXESqf7sfu3kIUmEWszsr25ie0kduWkxRkcSERE/saOkHnsbOGwNRFmCj/4C6RNJUaH8vxOyeXFFIU8u3snpw5L0QbqISFeteALKttESEs8tn+7hggnlBEUVee1wVdXVXtu3+JmEwRCZDA1lcOAb1wx3MVyPKl5nnnnmEd98ffbZZz0OJCKBZ0Ox6zLxlDDNXvN34SFBnDI0ic+2lbI4v1SF9gCkMV5EvGXjvmoAbEW7MA3LMzaMdHLVpMG8snoPa/dUsWxHGWeoPVzA0jgv4kHlu+DzRwDYnPH/qGqey1tvvUVQVILXDtlWXwlAY2Oj144hfsJkchXX8//r6tOuQrtP6FGhvaOnW4eWlhbWr1/P5s2bufTSSz2RS0QCyIYSGwCp4Sq0B4LJuSl8tq2Uz7aVcvWZQ42OIx6mMV5EvGVDe6HdXrQDUKHdl6TGhPGridk8/0Uhj36yg0nDkzWrPUBpnBfxEKfT1TKmzQZDzmKraSQAZ44dTO6IYV477JpvNrN0A9jsNq8dQ/xI1sT2Qrv6tPuKHhXaH3/88UPef/fdd1NfX9+rQCISWKwVjZQ0tOFsayVJC58FhMm5rllu66xVVDbYSYgMMTiReJLGeBHxlg17awCwFe8wOIkcym8nDeHV1VY27a/h4y0lnHtMmtGRxAs0zot4yPpXYfcXYAmH8x+D/60AID4qjAGJ3rvqNzpCfbjle7Imum6tq8DhALPZ2DyCR/8GLr74Yl588UVP7lJE/NwXu8oAsB3YRrD+zw8I6XHh5A2IwemEpdtLjY4jfURjvIj0RnNLG9tL6gCwF+00OI0cSmJUKJefOgiAxz7dTptDEyT6E43zIt3QUA6f3O7aPvM2iM8xNI70Y2ljIDgSmquhbJvRaQQPF9pXrlxJWFhYj1774IMPYjKZmD17tvu+5uZmrr76ahITE4mKimLGjBmUlJR4KK2I9IXlO8sBaN693tgg4lFntc9qX7xNhfb+ojdjvIjIlgM1tDmcxIWZaasrNzqOHMaVpw0mJszCjpJ63t94wOg40oc0zot0w8d/hKYqSB0NJ/3e6DTSnwVZIGOCa9u60tgsAvSwdcz06dM7fe90OikqKuLrr7/mzjvv7Pb+1qxZw9/+9jfGjBnT6f45c+bwwQcf8MYbbxAbG8s111zD9OnTWbFiRU9ii0gfa3M4WbHLdTLdtPsb4CJjA4nHTM5L4eklu/h8exktbQ6Cg3S5QqDw9BgvIgLftY0ZmhDMBoOzyOHFhgfzm9MH85dPdvD4pzv40egBGuMDjMZ5kV4q+Aw2vgaY4IInICjY6ETS32VNhMJlrvYxx19hdJp+r0eF9tjY2E7fm81mRowYwb333suUKVO6ta/6+npmzZrF888/z/333+++v6amhhdeeIFXX32VyZMnAzB//nzy8vJYtWoVJ52k1XRFfN3GfdXUNrcSEWzSZeIB5tiMOBIjQ6hosLNmdyUnD0kyOpJ4iCfHeBGRDh0LoQ5LUEHC1/36lEG8uGI3uysaeWvdPn5xfJbRkcSDNM6L9IK9Ed6f49o+8SrIGG9sHhGA7I4+7ZrR7gt6VGifP3++xwJcffXVnHfeeZx99tmdCu1r166lpaWFs88+231fbm4uWVlZrFy58rCFdpvNhs323erLtbW1HssqIt3T0TZmdEoI+U6HwWmkt/Lz8zt9f0xSEMsa4PXPNxNWc+QFf5KSksjK0om6P/DkGC8i0mHjvo4Z7VpA29dFhlr4/RlDuP+DfJ5cvIufjB1IqCXI6FjiIRrnRXrh84ehajfEDITJdxidRsRl4AQwBUHNXqjeC3GZRifq13pUaO+wdu1ad+Fl1KhRjB07tluvX7hwIevWrWPNmjUHPVZcXExISAhxcXGd7k9NTaW4uPiw+5w7dy733HNPt3KIiHd80d425tjUUF43OIv0XG2la0Hbiy++uNP9EXmTSP7xzbz+xWaeuPzaI+4jPCKCbfn5Krb7kd6O8SIiHWoaWygsbwBgaLxmtPe1H35Q3hWjQp0khJvZX93EI//5kh8Ni8RmsxEaGtrrPPrw3TdonJf+xmq1Ul7e8zVCwmsKyF3xJCagYMRvqdnS+YrtwsLCXiYU6aHQKBgwBg58A3tXq9BusB4V2ktLS/nlL3/J0qVL3YXw6upqzjzzTBYuXEhycvJR97F3716uv/56Pv30U48uunLbbbdxww03uL+vra0lM1P/yET6WoOtlW+sVYCr0C7+q6nedWXQeVfdzogx310eaWuD9/c7CUkZxO+eeIvww4woJdYCXnnoZsrLy3Vi7Qc8McaLiHzfxv3VAGQnRhAdqn7ffeVwH5R3VdRx00icejXPfbGbuy7+P5ytdsDZ61z68N1YGuelP7JareTl5dLY2NSj15tNsOLyCEwZFv6ztYWf3XP9YZ/b0tLa05giPZd1sqvQvudLGP0zo9P0az0qtF977bXU1dWxZcsW8vLyANi6dSuXXnop1113Hf/+97+Puo+1a9dSWlrKuHHj3Pe1tbXx+eef8/TTT/Pxxx9jt9uprq7uNKu9pKSEtLS0w+43NDTUIzMtRKR3VhdW0NLmJDMhnLQoXW4cCBLTs8kYNqrTfal1VkpqbdhjMxiWHnuYV4o/8cQYLyLyfR1tY8ZkxOGJQq10zeE+KO8qhxM+PuCkMSqBCf83lzXP3tDjfXXQh+/G0zgv/VF5eTmNjU28/MeLyMvq/odJSQ3byar9ijZTMMPPmMHasyIOes4//vc1z763mrY2FdrFAFknwqpnXDPaxVA9KrR/9NFHLFq0yD0wA4wcOZJnnnmmywuonHXWWWzatKnTfb/+9a/Jzc3l1ltvJTMzk+DgYBYvXsyMGTMA2L59O1arlYkTJ/Yktoj0oc93uC7LO3VoMiZTi8FpxFuyEyMpqbWxp6KRUSq0BwRPjPEiIt+3fm81AMdmxALVRkbplw71QXlXnRJVy6f5JVTGDMYUEt6rfYlv0Dgv/VleVjLjhg/s3otsdbBmPQBBQ85g9MBhh3xa+lc7eplOpBcy29exLNkCzTUQpnNzo/So0O5wOAgOPri/YnBwMA5H1xY8jI6O5phjjul0X2RkJImJie77r7jiCm644QYSEhKIiYnh2muvZeLEiYddCFVEfMfy9v7spw1LgpYig9OIt+QkRvBVYSXWykYcDidms8noSNJLnhjjRUS+b+O+agCOzYyDymojo0g35aZF8/WeSqoaIWbChUbHEQ/QOC/STbs+hTY7RKdDutYyEB8VnQrxOa7FevetgaFnG52o3+pRk8TJkydz/fXXc+DAAfd9+/fvZ86cOZx11lkeC/f4449z/vnnM2PGDE4//XTS0tJ46623PLZ/EfGO/dVN7Cqtx2yCk4ckGh1HvCg1Jowwixlbq4Pi2maj44gH9NUYLyL9Q1FNEyW1NoLMJkalxxgdR7rJbDZx0mDXe7mYE35Ki1MfqPs7jfMi3VC+w/VlMsPwc123Ir6qY1a7Ve1jjNSj/yWefvppamtrycnJYciQIQwZMoRBgwZRW1vLU0891eMwS5cuZd68ee7vw8LCeOaZZ6isrKShoYG33nrriP3ZRcQ3fLatFIBxWfHERYQYnEa8yWwykZXo6lG4p6LR4DTiCd4a40Wkf1q3pxpwzYyOCOnRxbRisGEpUUTQjDk0kn0tUUbHkV7SOC/SRW122LXItZ1xAkSlGJtH5GiyTnTd7l1lbI5+rkfvdjMzM1m3bh2LFi1i27ZtAOTl5XH22bo0QUTgs/wSACbn6c1If5CdGMmOknp2VzQwUVcw+D2N8SLiSeusVYDrw3fxTyaTiSzK2UYGB1ojsbc6CLFoVqe/0jgv0kV7vgRbLYTGQPYpRqcRObqOGe371kJbKwRpgoMRuvUO6bPPPmPkyJHU1tZiMpk455xzuPbaa7n22ms5/vjjGTVqFF988YW3soqIH2i0t7KioAKAs/NSDU4jfSE7wTWjvbTORqO91eA00lMa40XEG9yF9uw4Y4NIryRSR0vFPloxs/lAjdFxpAc0zot0Q2MF7PvKtT30HAg6eF0DEZ+TnOtaBLWlAUo2GZ2m3+pWoX3evHn83//9HzExB/dXjI2N5aqrruKxxx7zWDgR8T8rdlVgb3WQER/OsBRdXtwfRIZaSI4OBdQ+xp9pjBcRT7O1trFlfy2gGe3+zgTUrnkbgG+s1bQ5nMYGkm7TOC/SRU4n7PwEnA5IGAJJw4xOJNI1ZjNktrePsap9jFG6VWjfsGED55577mEfnzJlCmvXru11KBHxX59tc7WNOSs3BZNJC2b1Fx2z2lVo918a40XE0zbvr8Xe5iAxMoSs9nFC/Ff95s8IoY16Wys7SuqMjiPdpHFepIvKtkH1HjAFuWazi/gTFdoN161Ce0lJCcHBh79kxmKxUFZW1utQIuKfnE4ni/NdC6FOVtuYfiUnMRKAPZUNOJya5eaPNMaLiKd90942ZmxWnD58DwRtLQwMbgBg7Z4qnBrv/YrGeZEuaLVBwWLXdtZECI8zNI5It2W192nfu9p1dYb0uW4V2gcOHMjmzZsP+/jGjRsZMGBAr0OJiH/acqCW0jobESFBnDgoweg40ofSYsMICTLT3OKgtNZmdBzpAY3xIuJp31irARirtjEBI93SQEiQmYoGO7t1FZtf0Tgv0gXWlWCvh7C47wqWIv4kfRyYLVBXBNVWo9P0S90qtP/oRz/izjvvpLm5+aDHmpqa+NOf/sT555/vsXAi4l86ZrOfOjSJsOAgg9NIXwoym8hMCAdgT0WDwWmkJzTG/3/27js+jvrO//hrtvdV78W9d2Mbmw6mQyAhgRQSSEi5BLgkXK6Q9rvkLpdL7i6dkLtcAskRAiGhh+YCGHDBvcq2bMuWrL4q2/vO74+RDQYX9dGuPs/HQw+ttTOzb8Bodj/zmc9XCDHcTi6EKoX2nGFSVOZUajO+tx7r0TmNGAg5zwtxDrEAHN+sPZ58hVasFCLbWBxQPl973LRJ3yzj1IB+c3zzm9/kySefZNq0adxzzz1Mnz4dgP379/PAAw+QTqf5xje+MSJBhRBj38n57DNLdE4i9DCh0MnhzjDHuiMsm1SodxwxQHKOF0IMp1Z/lFZ/DKNBYX61V+84YhgtrM5nR1Mvzb1RWv1Ryr12vSOJfpDzvBDncOxNUNPgrYbCKXqnEWLwqs+H5q3anPZ5t+qdZtwZUKG9tLSU9evX88UvfpH777//5Fw+RVG4+uqreeCBBygtlbnMQoxHHcEYO4/7AbhshhTax6PaQm2huzZ/jFgyLXc1ZBk5xwshhtO2Y70AzChz47BIV2AucdlMTC9zU9caZGeTXwrtWULO80KcRbgT2nZrjyddCrKuiMhmNctg4wPS0a6TAb/rra2t5YUXXqCnp4dDhw6hqipTp04lP19uCRViPHttv7Z40vwqLyVum85phB7cNjOFTgtd4QSN3RGmlbr1jiQGSM7xQojhImNjctuCqjzqWoPUdwS5KF6E0yoXU7KBnOeFOIOG1wEViqaBp1LvNEIMTXXf+gLteyHmB5vcWTiaBv2OKD8/nyVLlgxnFiFEFlvTNzbm8hnSCTOe1RY6+hZIC0uhPYvJOV4IMVQnC+21efoGESOixGOj3Guj1R9jT4ufZRNlZFw2kfO8EO/S2wRdhwAFJl6idxohhs5dCvkToacBmjbD1JV6JxpXpPVACDFk0USadQd9gMxnH+9qC51sa+zlWFcEVVVR5LZLIYTQXWNjIz6fb8jHKSoqoqam5pzbxVNp9jYHgDN3tPt8Poyu1iHl6e3tHdL+YmjmVXlp9cfY3eznvNoCjAY55wshsoyqwpFXtcfl88Ex+hcNA0kDTVELHXEzXQkTwZSBWNpAStV+p5oMKnZDBpcpQ545Ra+9Bkv5NJKM/JjO+pZuig82j9jxG9pkUe3BqKurO+c2tc6pFPY00Lr5aVqDBQN+jf6+5xPvJ4V2IcSQvX6wk2gyTVW+ndkVHr3jCB1V5NkwGRQiiTS+UIJit1XvSEIIMa41NjYyc+YMIpHokI/lcNipq9t/zg9ee5oDJNIZCp0WagocpzzX2qoV15988kmMroF/8Hu3REcDAJFIZEjHEYMzpcTFuoM+wvE0R3whppbInWxCiCzTVQ/BFjCYofbCUXvZUMrAvqCdg0EbXcmzl+USGYVExoA/Bc0xC3jmUP6pH/EzNcNrG2NcWhTk0qIA87xRjMN0vdPnDwNw7y9XAauG56Bn0dEbHvHXyAWt3UEU4Pbbbz/ntp9bZOZ/brRT9/JDXPGJBwb8Wv19zyfeTwrtQoghe2mP9qH5mtll0sE8zpkMBirz7RzritDUHZFCuxBC6Mzn8xGJRHnk67cys6Z40Mepa+zk9n/7Ez6f75wfurb3jY1ZWJP/vvcFJ7rQL1s4iRnTpw46D8DG9UneqId4IjGk44jBMRkMzK7wsOVYD3ubA1JoF0JkF1WFY29pjyvPA6trxF+yJ2Hk7R4nB0I2VLTzo4JKmS1JuTVJsTWF25TGYcxgMmgLFqcyCpG0gVDKSFfCyP72CL0pC0ZnHjv9Dnb6Hfz0cCn55hRXlgT4QHkvywtCQyq6B6PaeXXlzR9h3uyZQ/7nPpMtu+pY99wT+CPxEXuNXNIbiqECv/jSVSyfd/b3ULZkL/ie45JJVrY+eAcohn6/zkDe84n3k0K7EGJI4qk0a+o6ALh2brnOacRYUFPg4FhXhMbuCItqZXEtIYQYC2bWFLNo2ugs8Naf+ez5LhvlhUO7C85jtwxpfzF0Jwrtx7ojBKJJPHaz3pGEEKJ/ug9DqF3rZq8e2TULYmmF9d0u9gTsJwvs5bYEc9xRJjnj2IzqWffPJw0kAYgf2MpzD/+S7939ISYvu5LXfW7e6HLTkzTxp+YC/tRcQJElyQ1lfm4s72WRN8Jge+EKioqpqq0d3M79UN889LF249GUivxzv6dTK2D9KxhTcRZVmMAttZrRIoV2IcSQvHXIRzCeotRjZWF13lm3Hew8VpnBml1OjAlo7o2SSmd0TiOEEGI0qarKtmO9wJnns4vckeewUJ1vp6knyt6WAMsny6KoQogsoKpwbL32uGIRmB1n334I6kNWXu30EM1oHcUTHXGW5YcotaWGdFyPGuS2qh5uq+ohlYHNvU6ea83jxXYvvoSZhxuLeLixiCp7glsqevhIZTdV9uRw/COJbKAo4KnSLij5j0uhfRRJoV0IMSQv7m4DtLExhjMsgjXUeawygzW7FDotOC1Gwok0rf4YMkxICCHGj+M9UdoCMcxGhflVeXrHEaNgTqWXpp4o+1oDLJtYcMb3g0IIMWb0HuubzW6C6qUj8hLJDLzq81AXtANQYE5xWXFgRIrdJgMsLwizvCDMd2Y282aXm2db83ilw8PxqIWfHi7lZ4dLuKAwxK2V3VxVEjhnF73IAZ5KrdAeaAZG9q4N8Q4ptAshBi2eSvPyXq3QfraxMUOdxyozWLOLoihUFzjY3xaksTvCyN1sKIQQYqzZ1NANwLyqPOwWo85pxGiYVOzEZjYQiqdo7I4wocipdyQhhDi7po3a9/L5YBn+31mBpIHn2vLwJcyAypK8MMsKwsO2WOnZmA1wWXGQy4qDRNMKr7R7+VNzPm91u3mzS/vymlLcXNHLrZXdzPbERj6U0Ie3SvvuP67dxSHr6Y0KKbQLIQbt9QOdBGIpyjw2lkw4d6f6YOexygzW7FPz7kK7TA4QQohx4+2GLoB+vS8QucFkMDC91M3O437q2gJSaBdCjG2hdug5CihQNfxdviGTl8eOFxLNGLAb01xX6tdtZIvdqHJTRS83VfTSFDHzREsBf27OpyVm4XeNRfyusYjZ7ii3VXVzU3kvXnNal5xihLjLtUVQEyGI+cGep3eicaH/y84KIcR7PLuzBYAb5pVjlNuExbtU981p7wjGicv7NSGEGDfe7utoXzZRCu3jyYwyrZHiSGeYRErWZxFCjGFNb2vfi2eALW9YD22bsJA6zzKiGQMlliQfqxo7c9GrHUnum9LOGxfv53eLj3B9WS8WJcPeoJ1v11Wy7LWZ/P2eKnb67XpHFcPFaAZXmfY4cFzfLOOIdLQLIfqtsbERn09bGTyazPDK3nYAptuCbNu27Yz7NTQ0DMvrBwOBk/PeB0IWUx19LquJQqeFrnCCzphc0xVCiPGgIxDjaFcERYHFE+R2pvGk1GMlz2GmN5LkUGeIWeUDv4NRCCFGmjkdho592h+qlw3rsRstEyj58JfIKCZq7HGuL/NjMYzcHPSmzgDbDjYPal83cJcdPlJtZl2ogjXBKo4lPTzRXMATzQV4XB/BORfS0pub/byV2noE/mYonaN3mnFBCu1CiH5pbGxk5swZRCJRAJyzLqXoxq+R7G7m1itv6NcxksnBraweS2ot0Vu2bGH7/iMD3l8WU9VHdYGDrnCC9pjc7SCEEOPB20e1bvZZ5R48NrPOacRoUhSFGWVuNh7pZn9bQArtQogxqTh8AFAhrwbcZcN23Nd9LlZ7rkdRTBTEW/nAJMOIzWOPhIIA/PCJTfzwiU3Ddlxr5QxcC67DOeMiAvYKiq77MtszCTK+JAvyIrhNcrdSVvJUAZulo30USaFdCNEvPp+PSCTKI1+/lZk1xfxr22K2ReETkyJ89Fd3n3Xf/31hCw8+u4l0enCF9kRKK7TPn1zCiiULB7y/LKaqj5oCBzuaeumQjnYhhBgXToyNkfns49OMMg8bj3TT1B0lFEvhsslHTSHE2GEzQVHkkPaHyvOG7bhbex18fvsEMoqB8IG3WFIUwKgsGrbjv1ciri1eev41N7Fi8fxhP35c3c2aw2ECeVMhr4xtfgs7/A6mumIsyotQYh3cZ3qhkxMLooY7IRUDk03fPOOAvPsRQgzIzJpiKmtq2dFQDMAX56SZ6Kw86z4Vbx8cltd22syymGoWqcq3Y1AgklYw5ZXrHUcIIcQIk/ns45vXbqbca6PVH+NAe5DFshq6EGIM+egcMyY1DlYPFE4ZlmMeDlu5a9sE4hkD1fEG3nz2PzB85vPDcuxz8RQUUVVbOyLH3rX7JfY//kNWfOZ+lJrFHI9aORCycyBkZ4IjzvKCkBTcs4XFqa1FEOuFQAsUTNI7Uc6TNkMhxIA92ZJPBoXz8sJMdJ6jSzwVw2OMMzlfId8QwaiOjcVgxMgzGw2Ue7XFdGwTFugbRgghxIjqjSQ40K7dzr5ECu3j1owyNwD72wI6JxFCiHdRVe5d2td8VbEIlKGXwroTRu7cOoHepIn53giXB16ATC4Vn1VcsXZuqejlo1VdTHNFUVA5GrHyx+OFPN/mpSth1Duk6I8TXe1+GR8zGqSjXQgxIKoKf27ROpQ+Utl96pOZFHQfgd5j2tXSSBekE/xtBfzt37qBJ6HlSRKKhZjBid9YQI+phG5zKd2mErpMZYSMeaDITO9cUVPgoLk3in3CwEf+CCGEyB5bjvagqjC52EmRy6p3HKGTaaVuXj/YiS+UwBeKy98FIcSY4OzZx/RyIxmMGMqHPm4lmYEv7ailKWqlxh7nNwsb+NWhXCqyn6rUmuLa0gDLC8Js7HZyIGTjcNjG4bCVOe4oKwpD2I0jt/CrGCJPFbTvkTnto0QK7UKIATkYz+Nw2IbNkOG6Mr/2w1gAmjZC+15Ix9+3T0pViCQyOC0GjIqKRU1gSSfwpHuoThw+ZduYYqPLXI7PXE6XSfvuNsps9WxVU+Bgw5EubLXzSGfkzZcQQuSqEwuhLpVu9nHNZjYyscjJ4c4w+9uCXDhFCu1CCP0VHXsegB57LYVm+5CP970DFWzsceE0pvnfRUcpsqaHfMxskGdOc01pgCX5YTZ0uzgctrEn6OBQ2MYFhSFmu6PSMzcWeftG/QZaIJMGg9yJMJKk0C6EGJC1Ie2X9HVlftxKDA69AS1bQe1bhdzihqKp2u1JrlKwevj3P77Jt367its++0UuPm82tkwIRzpMXrqT/GQHBakOClLt5Kc6sakxKhMNVCYaTr7mrfOheaKLVuM6FH8n3SatA77bVELM6NLjX4PopxKPFbOikrS5ONSTZInegYQQQoyITQ1SaBeaGWUeDneGOdAWZMXkQgxSdRFC6CnaS37LqwD4HFMpHOLhnmv18nBjEQA/ntfENNf7G81yXaElzQ1lfpqjEV71uelKmFnT6WFPwM6VJX4KLePjwkPWcBSByQqpOIQ6wCPrp40kKbQLIfpNsdh5I1QBwEe8dbD59xDvm8HprYGa5ZA/4YyjX1QU4gY7cYMdv6mYViac8rxRTZGf6qAw2UpRspWiVCuFyVa86R4qPQYqaYdQ+yn7RA3Ok0X3nhMFeHMJAWMh6jDM3hNDY1AUim0qLVGFnW1xPqZ3ICGEEMMuHE+xp1m7y23pxKGWMES2m1DkwGIyEIqnaO2NUZk/9O5RIYQYtN1PYEjH2dORJlFWPKRDHQlb+Ke92rzruye1c1XJ+F6PotKe5ONV3ez0O9jY7aQ9buaPxwu5qDDIPI90t48ZiqKNj+k+rI2PkUL7iJJCuxCi35yzLiWmmphs6eX8Iw+Aomqrtk+7ZlhWr04rJnzmCnzmCg686+cv//V5/Fuf5bYbLubiSU7yU1oXvDfdjT0Tfl8HPEBcsdFqqaXFMhGfo5c18ttON6W2DC1RA7vaZQSQEELkou2NvaQzKpV5dirzpKg63pkMBiYXOalrC1LfEZRCuxBCP6oKWx8G4H+2Jrlz/uArv4mMwj07awmnjSzLD/HVye3n3mkcMCiwMC/CVFeM1R0ejkWtvObzcDRiZWVxAKcpo3dEAdrEge7D2oKoVXKf+UiS0pMQol9UVcW98DoAPpF5FsWkQslsmHY1GC0j+tqRjImNx9N4ApNQ81ac/LkpkyA/1Ul+qr1v/EyH9jjZiVWNMSF+gAnxA6yohW/8g5vd/InuDguHCi8lZZQPfaOlxKa9uTrQlSAUT+GyyqlHCCFyydsNXYCMjRHvmFLqoq4tyKHOEJdMK0aRtkYhhB5ad0D7HjIGM4/sCnDnEA71i8Ml7AvayTen+Nm8Rkxy8/QpXKYMN5X3stNv581uN0cjVv5wvIDrS/1U2pN6xxOeE3Pam7ULUHJeHjFS7RBC9MvBrjiWkonYiHOL8Q2YdLl2JVTHX9Apg4VOSyWdlspTfq6oaYqSrVQkjlKRaKAosI8ic4xlHIT6b5M4bKeu5Dp2lN9Kt2Ponfji7FxmSPa2QV4Zm450ccXMUr0jCSGEGEYb++azL5kghXahqSlwYDEaCMfTtPpjVMidDkIIPex8HAB/2QX0xJ4d/GH8dh5oKAHge7OaKbWlhiVerlEUWJAXpcqe5KUOD10JM0+25HNFcYBZnpje8cY3dzkoBkiEIOYHe57eiXKWXIMTQvTL61t2AHCDcSPemZdB9dIxexVUVYx0WqrY6bqQFws+yZ2HVjL/VyF+F1iKz1SGJRNlfttfuGP7bazcfi/q0fW0trae8au3t1fvf6SsFzu6HYA36n06JxFCCDGcIokU2xt7ALhgisxnFxqTwcCkYicA9R0hndMIIcaldAr2/BmArqqrBn2YWFrh73ZXk1YVbizr5boy/3AlzFlF1hS3VXYzxRkjg8KqTi9v+FxkVL2TjWNGM7jKtMeB4/pmyXHS0S6EOKf2V/+H1QGta3xlXjuUztE50cDEkhl2tWe4Z62JL7sWc2F+F1+oPsr1xW3MjWxkbmQjj7RU851DM+hMWN+3f6JDm/8eiURGO3rOiB3dgXvBtbx5SArtQgiRS95u6CaZ1uaz1xQ49I4jxpCpJS72twU51BHi4qlFMj5GCDG6Dq+FcCc4igiUDH4m9X8dKuNQ2EaxJcl3ZzYPY8DcZjbAdaV+NvakeLvHxTa/k56kiWtLezFLy68+vJUQbAF/c9bVdLKJFNqFEGdXv4rfr95Mipsp8u+lZKJb70QDlkilAZg/uYQVSxYC8AZwINPBlanXmJ/Zy+0VTdxS0cFfTVfztnHRKd36G9cneaMe4glZzHOwYsd2ogCHOkK0B2KUemx6RxJCCDEM3uq7gHrhFCmkilOdGB8TiqdoC8Qo98r4GCHEKNqljY1hzi1gGFzp6+0eB/97tAiAf599nHxLerjSjQuKAssLwhRaUrzS4aUhYuWZ1nw+UN6LxSDt7aPOUwVslo72ESbXkYQQZ+ZvJvqXL/GH9BUA7Fv7tL55hshpM1Ne6Dn5ZSyewtryz/LH4i/TZq7GTpwPp57lSzzG5DxObuexj+xir+NBJhZiYr72Bnf9YelqHw++//3vs2TJEtxuNyUlJdx8880cOHDglG1isRh33303hYWFuFwubrnlFtrb23VKLIQYjDcPaQuhXjC1SOckYqwxGQ1MLOobH9Mu42NyjZznxZgWD8L+v2qP5982uENkFP5pTzUqCrdWdnNFSXAYA44v01xxPlTeg8WQoTlm4amWPGJpuTg/6rxV2vdwJ6RkZv5IkUK7EOL00in4y108GZpDL25KHAai9Zv0TjUi2iwTeKz4K6zzfIAUJibE93N7x39SHa/XO1pOmVeijeV5q68oI3Lb66+/zt13383GjRtZtWoVyWSSq666inA4fHKbr371qzz33HM88cQTvP7667S0tPChD31Ix9RCiIHwheLUtQYAWDFZ5rOL95ta6gK0Oe2qKt2LuUTO82JM2/cspKJQOBUqFg3qEP97tIgjEStFliTfnN4yzAHHnwp7kg+V92AzZGiLW/hLSz4pRRraRpXFCfZ87bFfxiCNFBkdI8Q40tjYiM/Xv27isoP/R+mxjfx3+scAnOcNs1nNjGQ8XamKga3uy2iwzeL67t9RlGrlQ74HWee9iTXIB8PhkBdvB1y8uq+FrVtTAxoxUFRURE1NzciFE8PupZdeOuXPDz/8MCUlJWzdupWLL74Yv9/Pb37zGx599FEuv/xyAB566CFmzpzJxo0bOf/88/WILYQYgPWHtQunM8s9FLnev8aJELUFDsxGhVA8RXsgrnccMYzkPC/GtF2Pad/n33bKSND+Oh418/PDpQB8Y3orHnPufg4eTaW2FLdU9PBUax6+hJlgwTIMdo/escYXTyVEeyDQDIWT9U6Tk6TQLsQ40djYyMyZM4hEoufcdlaxge1fcPICy2lUS0hHA/zq7z8DQDCU27f+dptL+WPxV7jc/2dmRzZzqf9pomU1vCR3tg1aoLsTgO/eewfVX36MrqiZ86/8AKme/neG2B0O9tfVSbE9i/n9fgAKCgoA2Lp1K8lkkpUrV57cZsaMGdTU1LBhw4bTfgCPx+PE4+8UagKBwAinFkK8V11d3cnHz2zuBWCqO822bdv6tX9DQ8NIxBJj1InxMQfbQ9R3BJmodyAxYuQ8L8YMfzM0vKE9nnvroA7x3f0VxDIGluWHuLm8d/iyCYqsKT5c0cOTLfmEcFPy4X8mwWq9Y40f3ipo3wN+mdM+UqTQLsQ44fP5iESiPPL1W5lZU3zmDdUM07tewpzo4hfJWwD4eHk77k9exLd+u4pYLPdneaUMFl7J+xg+UwUXBZ7l2vxGHvuwnUdJ6R0tK0VD2oek6+76Gu1OI51xuP4ff8lkd/86Q9obD/OHH/w9Pp9PCu1ZKpPJ8JWvfIULLriAOXO0Fe7b2tqwWCzk5eWdsm1paSltbW2nPc73v/99vvOd74x0XCHEabR2a7Npb7/99pM/q/yb32LylvDrf/07ft7Qv0L7CZG4nFPHi6kl7r5Ce4gJZ3kLKrKXnOfFmLL7T4AKtRdAfu2Ad3+1080rHV6Misq/zGoeTEO8OId8S5qbK3r44zEP1oppPJWy86V0Lzaj3Ek+4jx9c9qDLZBJg8Gob54cJIV2IcaZmTXFLJpWeeYNmrdCWxevsZgDmUocxjT/tDDBC8H80Qs5FigK29yX4jcVcq3vYT48y8yk1J94K30dKaNd73RZqbCiFndZMZ1HugiavFRNrdA7khgld999N3v27OHNN98c0nHuv/9+7rvvvpN/DgQCVFdXDzWeEKIfekPahfbrv/ANps9bTCgJL7daUFD5/H3fxNTPlZ/eXvM8bz75W+LJMxfaDWoasxrHpCZQoG+Am0IGI3GDjYwiH2GySW2hA5NBIRhL4U9KxSoXyXlejCm7/qR9nzfwbvZYWuH/1WmfUT5T62OaS0ZejZRCS5qJPZs56FpIk7Wae3d5eHD+sX6/nxCD5CgEk01bDDXUAZ5yvRPlHHmXKoR4RyICR9ehqvATw6cA+HhVN/mWtM7B9HPYPpd/blrK18s3sMhyhNK99/L0rJ+QMLn0jpaVqgvsbDgCx3uiZFQVg7SI5Lx77rmH559/nnXr1lFVVXXy52VlZSQSCXp7e0/pdmtvb6esrOy0x7JarVitMgdaCD0VVtRSNXU2u473QmsnFXkOJkyvOud+JzTtXs+SCgOXOY+wItCOO9WDMxPAmQ7iyASxZKKYOPv7jqRiJq7YuXmiyuc/agfry3iaw/TYa2l3zSRqKRjiP6UYTmajgdpCB4c7w7REpIKSa+Q8L8aUjv3QsQ8MZph184B3//XRYhqjVkqtSb48uX3484lTOFJ+Op78Fyo/+i+s6vBy/74qfjj7uNxFMJIURZvT3n0YAsel0D4CpNAuhHjH0XWQivOa5RJ2BIuxGTJ8YWKn3ql0tzNSzMr/i7DqM4VUBnfy4T1f4s9zfinF9kEodduwGA3EUxk6g3FKPTa9I4kRoqoq9957L0899RSvvfYaEyeeOpl38eLFmM1m1qxZwy23aGOqDhw4QGNjI8uXL9cjshBiAJq6tTVfagocZ9xGUVMUh+upCOyiIriT8sAuvlraDp9zAeshePbXyGBABbTP22rfn8CsJjGrSVw2mDjdDGyGo5tP7hewlNLhmkmzZwEN+RfQY68d1GJ4YvhMKnZphfao/HfIFXKeF2NS3bPa98mXgz1vQLt2xE082KDNt/r69FZcJlkAdTTEG3dzY/QFnnXcyBPNBUxwxLl7ktQgRpS3Siu0+49D1RK90+QcKbQLITShdmjdgarCjzK3AXBHjY9iq8xQBdh4PM1XOj7IT8r/Smm4jmt33s1vyr5D0nDurpve3t6RD5glDAaFynw7Db4wTd0RKbTnsLvvvptHH32UZ555BrfbfXIeq9frxW634/V6ueuuu7jvvvsoKCjA4/Fw7733snz58tMukCaEGDsyqkpTTwTQ7lR6N2MmQU3vJqZ2rWVS9xvYU/737d8SzOAzl0PBJAKmAsIGDyGjh4jRQ1yxkzBYSCrW942IUdQMFjWGNRPFmolxcOsbdOx6jZVXXsG8CgeFkcMURI/iSbTj6W5nSvdrXHL0J/itFRzNX87BwpUc9y4CRbqqR9vEIicK4E8aMHlL9Y4jhoGc58WYtO8Z7fusmwa8608PlxJJG5nvjfCBst7hzSXOakq6gX+e2cK36yr5j/pyJjoSXFf2/vcPYph4+kYJB46DqkozwjCTQrsQQnPkNQBWu29ity8PhzHN56WbHYBYUruF/fENxzhYPp/nFm9gUmwfl2z5Ep/YuYSkevYP7ImOBgAikciIZ80G1ScK7T1RzpugdxoxUh588EEALr300lN+/tBDD3HnnXcC8OMf/xiDwcAtt9xCPB7n6quv5pe//OUoJxVCDFRnME48lcFiNFDq1i6Ylgb3Mq/tL0ztWos1HT65bczoptUzlxb3PFrc83li7Xae+NV/cuOdV3LZ5MUDel1VMRBXHMQNWhf9tnAJf92apOXiy7lshlZUMafClIQPUBbcS61/E5X+bXjjLcxv+wvz2/6C31rBvpIb2FdyPQGbrBUyWuxmI5V5do73RrFPXaZ3HDEM5Dwvxpyuw9C+BwwmmH7tgHY9FLLy2HFt7Ng3prdI3VEHn6rp4kjYysONRXx1dzUVtgQL8qJ6x8pN7nKt6SARhph/wHd/iLPTtdD+4IMP8uCDD3L06FEAZs+ezbe//W2uvVb7pRiLxfi7v/s7HnvssVNOzKWl0gUhxLDqOQY9DWQw8qPo9QDcWdNF4Tiezf5uiZT272H+5BLOX7KQP2Sm8tnE/3FVUSerrzzGo+YPo56lO27j+iRv1EM8kRityGPaiTEDLb1RUpkMJoN0FuYiVVXPuY3NZuOBBx7ggQceGIVEQojh0titXTiuyrcz0b+BZU2/pTK48+TzQUsJhwovo77wMlo8C1AV48nnIuq+Ec2WNDlp9i6i2buIrVWfxJyOUO3fwqSudUzrWo033sLypv9hedP/cKjgUt6uunNE84h3TCp2crw3imOqjA3JBXKeF2POiW72iReDY2Brdfz7wTLSqsKVJX6W5ktzlF6+NaOFYxELr/o8fHb7BJ45/xCV9qTesXKP0QyuMgi2aF3tUmgfVroW2quqqvj3f/93pk6diqqq/O53v+Omm25i+/btzJ49m69+9av89a9/5YknnsDr9XLPPffwoQ99iLfeekvP2ELkFlWFhtcAeMX7YeraXbiMaT43QbrZ38tpM1Ne6CHOXJ6PfZqbun7D/MxeFKOHNXkfOeMtVx67ZZSTjm0FTgsOi5FIIk2bP0ZV/pnn+wohhBh7jnVpRYibYk/zoX0PAZBSzNQXrWRX2S20uOeOmfEsSaODIwUXc6TgYl6b9DWmdL3K7I7nqPFvZkr3a0zpfo255ok0TzCe+2BiSCYXu1hX78NaNYtAXGYfCyGG2SDHxmzqdrK604tRUfnHqW0jEEz0l1GBn89v5MObJrM/ZOfz2yfwl2WHsBnPfWFPDJC3Siu0+49D6Ry90+QUXQvtN9544yl//t73vseDDz7Ixo0bqaqq4je/+Q2PPvool19+OaDdhjZz5kw2btwoc92EGC5dhyDYSkax8OPQSgA+U+sjX7rZz+qYbSYvFtzO9d2/Z15kA72mIra6L9c7VlZQFIXqfAcH2oM0dkek0C6EEFnElInT2hsGDHww8VeSJiu7ym5ha8XthK3Fesc7q5TRxv6Sa9lfci0FkQbOa/4dMzteYq6xgVfvcLI18SBrjznotFQN6viyJsvZeexmvOYM/qSRLS0xLtU7kBBiTGhsbMTn8w3pGJZIG3Nad6BiYHeihtS2bac8X1dXd9r9VBX+7WA5AB+t6maKKz6kHGLoXKYMv1l0lBs3TGVv0M79e6v40dwmGecz3LyVcBwINOudJOeMmRnt6XSaJ554gnA4zPLly9m6dSvJZJKVK1ee3GbGjBnU1NSwYcOGMxba4/E48fg7vxwDgcCIZxcim9Q1vqtTXVWZ3vUaTuAPxps4EHLiMCQ5L7WLbQdPXQS1oa0HgPqWbooPDuyXcYsvN/8/rLcv4HWvn0v9T3Nx4DkCpgLq7Qv0jpUVqgvsHGgP0tQdhcl6pxFCCNEfl00wsjK9hjV8linKcUKlS3io9kuErSV6RxuwbsdEXpn6z2ys/jwVb/0/rjBvZ7HpMPMa7+bXxyfwgyNT8acGdkearMlybhWODH6/gbdbYnpHEUKMAY2NjcycOYNIZGizuO9bbuG/rrLxakOCK1ZcccbtgqHQKX9+od3LTr8DpzHNVya3DymDGD6V9iS/mH+MT26dxFOt+czzRvh0bZfesXKLp6+pINwJqRiYbPrmySG6F9p3797N8uXLicViuFwunnrqKWbNmsWOHTuwWCzk5eWdsn1paenJFc1P5/vf/z7f+c53Rji1ENmntbUVgNv/7U8nf3bNFBMvfsKBP67wjdYlGPKh5fXHuWT9Y2c8zr2/XAWsGlSGaCJ17o2yzHbXJXhTXSwMv8E13Y8SLM6jzTJB71hjXnXfnPb2YIx4Ko3VJLfsCyHEmKVmmGM4xOpPOfhacjoAFSXFvDztn/XNNQwCtgqe6r2Iv33iTR6+cxoXuFv4Uk0Dn6pp5ynzDew2zu73sWRNlnOrsKvU+WFHW5xoIo3dIud/IcYzn89HJBLlka/fysyawd8VNc33IiR9TJm/gq2/mv6+5194+yDf+u0qYrF3LvKlVfjxIW39v89N6KTYmnufVbPZisIwX5/Wyr8cqOBfD1Qw0x3j/ILwuXcU/WNxgj0foj3gb4ZC6X4bLroX2qdPn86OHTvw+/38+c9/5o477uD1118f9PHuv/9+7rvvvpN/DgQCVFdXD0dUIbLaiduZr7/1dqZPnQSo/K3xcaCNnxo+iSG/CgtJPnXpDMyXfft9+7+6bj3b31jN+dfcxIrF8wf02if2jadycxzN696b8aa7mBTbx01dv+Gx4i/jNxXpHWtM89jMeO1m/NEkzT1RJhW79I4khBDidNIJqHuO+cZDpFUDqzKLASiunKRzsOF1qDvDD7ov544JTi71P01hqp1PJv/EftMi1uZ9iLjBec5jyJos5+Y1q6T87eAt5Y36Tq6aXaZ3JCHEGDCzpphF0yoHt3M8AK3a6JmaWUupsb7/c8Upd3X3eb41j0NhG15TirsmDG10jRgZn6n1sTtg5+nWfO7eWctz59dTIYujDh9PpVZoDxyXQvsw0r3QbrFYmDJlCgCLFy9m8+bN/PSnP+W2224jkUjQ29t7Sld7e3s7ZWVnfkNmtVqxWq0jHVuIrFVYUkJVbS2V8UPU+toIq3b+jHZ73bLCGBPzTn9hypWnzbXzFBRRVVs7oNc8sW+uUhUDL+R/io/4fk5pspkPdP2Wx4q/TNIgv4vOpqbAwe5mP03dUmgXQogxKRGGPU9AsI20qvDh16sJnu/AYjJQ7rXrnW5ENNpm8Ij1aywLvsLS4GpmRLdRFT/EqvyPctQ2U+94WU9RIFK/Ec95N/HKvnYptAshhq7zoPbdUwWnKbKfTioDPz2sdbN/fmInbpMs0DwWKQp8f/ZxDoZs7AvauWdXDY8vOYx5bKy3nv28VdC+R1sQVQybMffXM5PJEI/HWbx4MWazmTVr1px87sCBAzQ2NrJ8+XIdEwqRGxaHtDtHfmr6FIG0GacxzTyPzBQdrKTByjOFnyNscFOUauXqnke11XXEGVXna0Waph75eyeEEGNOPAQ7H4VgG5jsrEkv5bXMAgBqCxwYDbm7KllGMbHBcx2PF3+ZblMJrkyAD3b9DysCL6CoUowZqsjBjQCsqWsnlZZ/n0KIIfId0L4Xv39kzJk83ZrPkYiVAnOKO2pk9vdYZjeq/GrBMdymNNt6nfxHfbnekXLHiTntwVbI5Ob0AT3oWmi///77WbduHUePHmX37t3cf//9vPbaa3ziE5/A6/Vy1113cd999/Hqq6+ydetWPv3pT7N8+fIzLoQqhOifvGQHk2J7iaoWHo2uAGBpfhjTmLv0ll3CRi/PFXyGNEamxnaxJLRa70hjWlXfnPaucIJwXGYiCiHEmJHoK7JHusDihoW306nmY5+8BICJReceo5IL2iy1/KH479jhvBCAZcFV3Nz1a6wZmRE7FPHje3FZFHoiSbYc69E7jhAimyWj73TjFk3r3y4Z+NlhbRHvL0zsxCXd7GNejSPBf8xpAuB/jhazqsOjc6Ic4SgEkx0yKa2xQgwLXctqHR0dfOpTn2L69OlcccUVbN68mZdffpkrr7wSgB//+MfccMMN3HLLLVx88cWUlZXx5JNP6hlZiJywKLwOBZUfK7cTypjxmNLM9gxtpXehabVOYG3ehwG4IPAiE2N7dU40dtnNRkrc2ngd6WoXQogxIhWDXX+CaDdYPbDg4+AoxK/asZROBlRqCx16pxw1KYOFV/Nu4cX820kqZibE9/OJjh9RnGjWO1r2UjMsqbAB8Mredp3DCCGyWvdhQAVnCdi8/drlyZZ8GqNWiixJPlkts9mzxTWlAT5Tq83a/7vdVTRFzTonygGKoo2PAfA36pslh+haaP/Nb37D0aNHicfjdHR0sHr16pNFdgCbzcYDDzxAd3c34XCYJ5988qzz2YUQ5+ZUYsyKvE1QtfNI4hIAluWHMObuHeCjbo/zfHY6L0BB5druR6i0hPSONGZV52vFmqZuudAjhBC6y6Rgz18g3AFmJ8z/GNjzATigah/E3IYkDovuyzyNuv2OxTxW/GV6jYV4093c5vsZE2K5vQbNSFpa2Vdo39eGKqP2hBCD1XVI+144pV+bp1QDP+ubzf43EztxmOT3Tzb5p2ltzPdGCKRM3LOjlkRGihhDllejffc36Zsjh4y/d8lCjHOX2fZjVpP8UP0EkYyZfHOKGe6Y3rFyzmvemylKtlCZaOCbVZv5o0XvRGNTdYGdrY09NHZHUFUVRZE3S0IIoQtVhYMvax+0jFaYd+vJIju8U2gvNI699wzBQIDW1tZB7x8IBvu1nc9cyaMl93Fd9++ZED/ATV3/y6q8W9nnXDbo1x6vFpRasZkNHO+JUtcaZFaFjAEQQgxQJg3dR7THhVP7tcuzvlKabRbyjDFmx3az7eDwjY1p8QWG7Vji9CwGlQfmH+P69VPZGXDwbwfK+eeZLXrHym7eau27/zioGVBknvBQSaFdiHHEYoQrbXvpUV38X/IyAM4vCJHD65npJqOYeL7gTj7e8SOqrX7+74N2fot0TLxXRZ4do6IQiqfojSbJd8gVCSGE0EXzZmjfDSgw62ZwlZ58KpZWOIx2V2nBGCq0x5Lawl1btmxh+/4jgz5OoqMBgFTq3OuFxA0Onin8HFf2PMas6Bau7n0MV9rP2+4rz7mveIfVpHDR1GJW7WvnlX1tUmgXQgxcbyOkE2Bxgvvskw98/jAoBp6PzMJsgyOrHmHF5qdHJFY0IWtPjaQqe5IfzW3iru0TebixiGX5Ia4tk4scg+Yq0Ros0nEItYNbFpsdKim0CzGO3DbbTJ4hyndTdxBTzRRZkkx1xvWOlbMiRg/PFX6GD7f/lJtmmAnG3qSTm/WONaaYjQbKvDaae6M0dUek0C6EEHrobYTDr2qPJ18BBRNPeXpTj5MkZlLBLlz2sVNASKS0Qvv8ySWsWLJw0MdZuzbM1npIZ9L92j6jGHk5/+OEjF6WhtZwQfBFnJkga8kbdIbx6KpZpVqhfW87X1nZv0UMhRDipK567XvhFG3W9FkEowkcMy7EXFCBhSSfvnIBpqvmDWucV9etZ/sbq4mn+ncuEYN3RUmQL0zo4L+PlvAPe6uZ7amnxpHQO1Z2UgzanPbuw9r7QSm0D5kU2oUYL1SV+5Zb6FLdPJK6AoDlBaFzvScRQ9RuqeGXbXP5SsVOPmZdx5O9Wzied57escaUmgJHX6E9yryqPL3jCCHE+JKIQN2zgAqlc6By8fs2eaVDW2AuengzSunwFiaGg9Nmprxw8B3RDtsgLvIqCm95byBk9HKZ/ykWhN/kb8pq+eugU4w/V8wsxaDAvtYATd0RqgvGzyK7QoghUtV35rMXnHs+uwp4z/8IAIvy40woqB72SK48WbdjNH1tahtbe51s6XVy764a/rz0EGaZejI4eTVaod3fBNUyDm+o5K+hEONEUewIC8qM/Dp1HQlMlFiTTJSrvqNitb+Gh7YnMCoq1x38Bo6ErG7/btUFdgCO90RkQTQhhBhNqgoHnodECByFMPWq93UFplV4uV0rYkcOrtcj5Zi203URr+R9FBWF6/OP8YvrbCgyKq5fCpwWlkwoAGDVvnad0wghskq4E+IBMJggf8I5N2+yTMRSMhGDmmK+NzLy+cSIMxvgJ/Ma8ZhS7PQ7+NGhs48PEmdxck57kzanXQyJFNqFGCem+t8kqNr5ffoqAJbkhaWbfRTd/UKMo+linMlurj34LRRVbik8odRtw2I0EEtl6AzKKCMhhBg1rdu1heQMJph5Exjf39m9pceJL2HGRpzYsV06hBz79jmX8kreR8mo8KUlFr5ge0k+qPbTVbO1wsgr+9p0TiKEyConutnzJ4DRfNZNVRV2OJYAUBo7hs0oF0NzRZU9yb/PbgbgVw3FvNXl0jlRlnKXae8BU3HtIpYYEim0CzEeRLqpDW3l0fQVRLCTb04xWWazj6poCn4QvYWEwU6NfwvnN/5a70hjhsGgUJmvdbU39kiHiRBCjIpozztz2Sdeqi2GdRovtmtjY2YqxyEzduazjzX7nEv5SesCMqrKdZatXNrwI626I87qqlnaortvN3TTE5Y7LYUQ/fTu+eznsLHHSYe5HDWVoCzaMMLBxGi7rszPx6q6UFH46u5quhJGvSNlH8UAnkrtcW+TvllygBTahRgPdv6RZEbhV4lrAVgs3ey6aM4UsXrK1wFYdvy31PRs1DnR2FHdV2hv6o7qnEQIIcYBVYX9f4VMErw1p53LDpBR4eUObWzMbOXYaCbMSmv91dz5dIyMCgtbH2fp8d/qHWnMqy5wMLPcQ0aFNfs79I4jhMgGiRAEW7XH/ZjP/ssj2oXk0K5XsKhyQS8XfXtGC1OcMTriZv5+T7Vc5x6MvBrtu79R3xw5QArtQuQ6VYUtD/Fk+iJ6DPlYMzFmuGN6pxq3DhRfw67SD6Ggcu3Bb+GMy4dK4OQCaC29UVIZud1eCCFGVOsOCBzXbhOecd375rKfsMPvoDVmwWlMM4WW0c2Ypf5vV5Jfx64G4ILGXzGn7SmdE419J7raX9kr42OEEP3QdVj77i4H69lHhez223mjy42iZvBvenIUwgk92I0qP5/fiMWQYW2nh4cbC/WOlH1OmdMuVyqGwqR3ACHECDv6JinfYX6V/hIAVclGjIpX51Dj22uT7qMstIeS8EGuP/gNnpjzIKpy7l/HPb29tLa2Dvj1ent7B5FydBU6LTgsRiKJNG3+GFX5Dr0jCSFEbkqE4Mhr2uMJF4Mt74ybvtQ3Nuby4iDmTu0i6GDPRScEgsFB75stHuuazpQ5Xq7o/RNXHP53WkIqe53L+71/Npy3h9NVs0v56Zp61tV3Ek2ksVv6d9t/Y2MjPt/QF5gvKiqipqZmyMcRQoySE/PZ+zE25tdHiwCYFD/I0YA0OOWyme4Y35zeyrfrKvn+gXKW5oeZ7XmnwbC+pZvig80j9voNbT0jduxR4S7X1uxJRrGl/HqnyWpSaBci1235LS9mltKolpKO+ClXWwAptOspbbDy/PR/5xM7P0llYAfLmn7LxprPn3H7aFQbp/Lq2rWse3vHgF8v0aHNIoxExu78c0VRqM53cKA9SFN3VArtQggxUg6tgXRcW/iqctEZN1NVeLFdGxtzXWkvBw+FgcGfi044cU5KpXJv3nssqS10vmXLFm7Zn89PZ1ZzR2UTt7X8gA9uX8aG3v512GXDeXs4zSr3UJlnp7k3yhv1nScXSD2bxsZGZsycSXQY/h3ZHQ7219VJsV2IbJBJQ2/fKLOCyWfdtDlq5q/teQDMjW5j7QhHE/r7ZHUX63wuVnd6uXdXDc+fX4/Pr71/ufeXq4BVI56hozc84q8xIgxGbU577zFciXa902Q1KbQLkctCnaj7nuNXqX8GILj1OYyLKvTNJADw26tZM/l+rjv4TZY1/YbGvGW0eOafdtt4XFu49rzplSxZOGfAr7VxfZI36iGeGNszCasL7FqhvSfCcuR2PyGEGHb+JuisAxSYeo22+NUZ7A3aaIpasRkyXFIUZGtUO4dcMLuKeXNnDzrC2rVhttZDOpMe9DHGqkRK+2eaP7mEFUsWUqcuZk/yT8xhP0+ct5OfWz5PjyH/nMfJlvP2cFEUhatml/LQW0d5ZV97vwrtPp+PaCTCJ/7xPyitOXux7WzaGw/zhx/8PT6fTwrtQmQDfxOkE2B2gqv0rJs+3FhEWlVYXhCiqLNzlAIKPSkK/Mec41y73s6RsI3v7K/E3ff+ZeXNH2He7Jkj9tpbdtWx7rkn8EfiI/YaI85bLYX2YSCFdiFy2Y5H2JyexF51ImZFJbjtr7Doc3qnEn0OFF/NhJ71zOp8gWsOfotHFjxKwnTmOYNuh5XyQs+AX8djtwwl5qg5Mae9LRAjnkpjNcmK8UIIMWxUFQ6v0R6Xz9c62s/ixb6xMZcVB3CY3pnV6XVYBnUuOsFhy45z0lA4beaT/45ezXyaIt8vKEs28bnMYzxe+GUSBttZ98+W8/ZwumpWGQ+9dZQ1de2k0hlMxv4tJVZaM5mqqYO/8COEyDLdR7TvBRPPuL4IQDBl4LHjBQB8bkIn6w+MRjgxFuRb0vx4XhMf3zyJx5sLuMw6FVhFQVExVbW1I/a69c1DH2Wmu7waOAZuKbQPiSyGKkSuUlXY+jseTl0DwIL8BJlY7s9FzTavTvp7/NYKvPFWLj/yA73j6MpjM+O1m1FVaO6J6h1HCCFySkG0AYJt2gKoEy4667ba2Bit0H5NaWA04uWslMHCs4WfIWTwUJRq49ru/0NRZdHv91oyIZ98h5meSJItx7J8zq0QYuT0aKO1KJh01s0eP15AMGVksjPGpUXyGXi8WV4Q5u5J2kz+t1xXYHQX65woS3gqwGDCnIkxo0jKxYMl/+aEyFWNG2jp9vNy5jwAzi/M4luYcljC5OLFaf9CBiMzO19iRseLekfSVXWBHYAmKbQLIcSwsZugIrhd+0PNCrA4z7p9fdjKkbANiyHD5cVSaB+qsDGPZwvvIoWZSfF9XBh4Xu9IY47JaOCKmdoYiFf2SiedEOI0YgEIdwIK5E8842bJDDx0TFsE9bO1PgxnbnwXOewrk9tZ6A2TMFgpuuE+1HPvIgwmbU47cPlEubt8sKTQLkSu2v4HHkldSRojyycVUmaT7qmxqtUzj43VdwFw+ZEf4Iq36ZxIPzV9i6A2dY+PBeCEEGI0/N0KC5ZMBKweqDrvnNs/05oHwMWFQdwmef8wHNotNbyc/zEAzgu9yozIFp0TjT1XzdIK7S/vbUNVpSQihHiPnr6xMZ4KMNvPuNkL7Xk0xywUWlJ8sELukBmvTAb48dwmTGoCW81cWm1nvjgj3iVPG69z+QSZND5YUmgXIhfFQ8T3PMdj6csAuGPFBH3ziHN6u/rTtLjnYk2HufLQ97T79sehqr457V3hBOF4Suc0QgiR/cwxH/90gVX7w6TLtG6ls8io8EyrtmDnzRW9I5xufDnoWMhG95UArOz9E4XJVp0TjS0XTS3GZjbQ3BtlX6vcSSGEeI8T89nP0s2uqvC/R7Vu9k9W+7AZx+dnKqGZ4EywPLQOgOOO6XTGpXh8Tn2F9ssmmkBG3Q2KFNqFyEV1z/JyfBbdeCjz2Fg5s0TvROIcVMXEK1O+TcpgZULvRua0P6N3JF3YzUZK3FpBqKlHutqFEGKoyvc/hNOiEDIXQ/GMc26/tdfB8agFlzHNShkbM+w2uq/hqHU6ZjXJDd0PYcnE9I40ZtgtRi6eqs3RlfExQohTZNLQc0x7XDD5jJtt6nGyO+DAasjwyZquUQonxrJpsb1EDm5AVQy81O4lJbXjs3OXkVZMFNgV7IHDeqfJSnI5R4hctONR/pi+HIBbl1RjMso1tWzQ45jAWzV/wyVHf8rFR3/CsfzzCVrL9I416qrzHXQE4zR1R5lR5tE7jhBCZK+uwxQ2vQTAcc9iZijnHlT7dF83+zWlfukEHAGqYuDF/Nu5vfO/KEh1cmXPY/y14A7ox3+b8eCq2WW8sq+dV/a189Urp+kdRwgxSuoaO8/6vCvezrR0nKTByu7WNLQ1n3a7/2xfBMAlzuMcO9pIX2meFp9cOB6vFKDrpZ/jnbKQ7qSNt7rdXCIL5J6ZwUjIUoo33oy7cztwm96Jso4U2oXINd0NHDlSz4bMFzEocNuSar0TiQHYXvExpna9SkVwF1ce+leenPVzvSONuuoCO1sbe2jqiciMViGEGIrXf4iiZnj+YJKKS4rPuXkio/DXNi8gY2NGUszo4vmCO7i18xdMi+2kJfw6212X6h1rTLhiRgkGBepaAzR1R6juGyknhMhNra3aCK3b/+1PZ93u366wcv+FVh7fEeSTT/3ytNuYCiqp/Ny1ADz0o+/x6+73F+OjCRlNOR5logEmhXZxwLOUHX4HExxxah0JvWONWUFLmVZo923TO0pWkkK7ELlm52M81tfNfun0EirzzrxQjBh7VMXIy1O/zSd3fILa3k3MbX+KNXqHGmUVeXaMikIwlsIfTeodRwghspOvHnZrhYv/91qcX19y7l1e97npTZoosSZZXhAa4YDjW5tlAq97b+Jy/5Nc5H+OVssE2iwT9I6lu3ynhaUTC9h4pJuX97bx2Ysm6R1JCDGCent7Abj+1tuZPvXM/79/yvgI4EOZ/QHum3X6MWjb0hNoUKFc6eGWL951ynOvrlvP9jdWE0+lhyu6yDJ5SR/zPRF2Bhy80uHh9uou7HLn3mkFrWUQBFfXLkgnwWjWO1JWkUK7EFmksbERn8935g3UDNPe/j1Ppr8FwNLCJNu2aVchGxoaRiOiOItgIHCya+NsWrHwYt7t3Nj9Gy448lMeiNwwCunGDrPRQJnXRnNvlMbuCAV6BxJCiGz0+g9BzdBbtoJtrS/1a5enW/MA+EBZL0aZZDLidjovpDLRwPTodq7tfoQ/lHyNhMGmdyzdXT27jI1HunlpjxTahRgvCktKqKqtPe1zzrSfyjYfKgqByguoMrret000rdB4TLtza0W5SpX91GO58uqGP7TIOhcUBmmKWuhOmljb6eG6Ur9MbjuNqCmf7qhKgT0KLduheqnekbKKFNqFyBKNjY3MnDmDSCR6xm0unWDkG7dfhA8vmXAPX7z5Jm3hmHdJJuV2udEWS2r/DbZs2cL2/Uf6tc//ovLKkjzO8/byCeNLPA2kUuPnv111gZ3m3ihNPVEKpOYghBAD03kAdj8BQOv0O4FzF9qDKQOrO7R1MWRszChRFNbkfYSyxFHy0l1c1vsXXi74hN6pdHfNnDK+89w+thzroc0fo8wrbwSEGM8mxPYD0GauJnaaIjvA3oCdtKpQbElSaZM7YsXpmQ1wdamfx48XcChsoz4cY5orrnessUdReLUhxS2zzNDwuhTaB0gK7UJkCZ/PRyQS5ZGv38rMmtPPWa3tfYtv+C8G4KbyXj79y785+dz/vrCFB5/dRDo9foq1Y0Wi7xbF+ZNLWLFkYb/3eyNTzcLE//Dh2gBXTzaSzoyfWx1rChxsPNLN8e4I88r1TiOEEFnm9R8AKsy4gah3ar92eandSzxjYIozxmz3mS/qi+EVN9h5Kf92PuL7BbOiWzgamTHuRsa9V7nXzqKaPLY19vLy3jbuWDFB70hCCB1NiGvd6Mdspx8Zk1FhZ0Bbz2G+NyIdyuKsSqwpluSH2dTj4tVOD5W2LpymjN6xxpy1R08U2tfBxX+vd5ysIoV2IbLMzJpiFk2rfP8TqTjd63tYk9FWWr97TpIZ7ne2q3j74GhFFGfgtJkpL/QMYA8PO/wXszj0Gr+83s5XusbPRZJStw2L0UAslaE3Ke+WhRCi3zrqYM+T2uNL74eW/i329XRLHgA3l/dKkWKUtVgnscl9FcuDL3NF75/5i/kCvSPp7rq55Wxr7OWF3a1SaBdiHFPUNDUx7XNsg23mabc5HLYSShmxGzJMd8VGM57IUkvywxwJW+lMmFnb6eaGMhkh815rG/qa/Bo3QTIGZrm7rL8MegcQQgyTzv08m1xCEhNzPRFmuOVNRi7Y4L6G9oSNSfkGPl4wfmYLGgwKlfnaQr4dMXnXI4QQ/bbuPwAVZt0EZXP6tUtbzMT6bu12/JvKe0YwnDiTTe4rabFMwKrG+FrFtnE/I//audrtbG8f7aYzKLf1CzFelSeOYVOjRA1O2s01p91mp1/rZp/jiWCSCpfoB6MCV5YEMKByJGLjQEiKyO+135chaS2AdByOb9Y7TlaRX0NCZJm6xk62HWx+31eoYStPpS8CYKnp6Pueb/EFdE4uBiNpsPLTJq1748P5ByhMnnsx1VxR3Vdo74zJqUoIIfql+wjsfUp7PIDbfJ9oLkBFYWl+iGqHzLbVg6oYeTH/k8QVGzMdPXxthUXvSLqqzLMzvzoPVYWX97bpHUcIoZMJcW0++zHrdFTl/Z8JOuMmmmMWFFTmemXsmei/YmuKZQVhAF7zuQml5DPnewWL+sbeNqzTN0iWkdExQmSJ1latwHr7v/3pfc9NzldYc89kdqqTUTNp/vk73+PbEf9pjxNNjJ/xI7niTX8JT9Ul+eBMM5f3/oUniu5mPNzbVl2gdaf44goY5XQlhBh/Ghsb8fl8/d6+euePKVYz+EuWcbglCS3bqKs7+91QGRUeby4A4KNV3UPKK4YmYCrgNe8Hubr3j3znUit/F+vQO5KurptTxs6mXl7c08rt59fqHUcIoYMJMe0cdvQM89l39HWzT3HGccuc7azV1Blg28HmETn22RoOF+eFORy20hE3s7bTw41lMj7v3YJFCyloXgNHXoPLv6F3nKwhlQshskRvby8A1996O9OnTjrluWsM63kuo91iW2oM8eGvfvl9+7+6bj3b31hNPDV+FtTMJV9+Kca1021UJQ4zNbaTevsCvSONuEKnBYfFSCSRxlpx+pmMQgiRqxobG5k5cwaRSP869EqdCke/4gKTwo0/WMsbjYtPeT4YCp12v7e6XByPWnCb0lxXevqL9GL07HMsIb9pLUvd7XzF/ix/zXyajGF8fmS7dk45339xPxuPdNMVilPosuodSQgxihzpAKXJ4wAcs76/0B5NKydHfizIi4xqNjE8IqEgAD98YhM/fGLTiL7W6RoOjQpcWeznseOFNESs1AVtzPLICN4TgsV97yWbt0K0F+x5esbJGuPzXZsQWaywpISq2ne6ehQ1w/ntB/nPyIcAmFcEVZ73d/248sbPfO9c1BRQ+XPPdG4v3MdF/uc4YptNWjHrHWtEKYpCTYGD/W1B7BMX6h1HCCFGlc/nIxKJ8sjXb2VmTfE5t68IbMcW3kPIXMxP7r/95J1PL7x9kG/9dhWx2Ok/OD7W183+wfIebEZ1+P4BxOAoCj9vm8dPTa8wxd7GkuaH2VT9Wb1T6aKm0MGcSg97mgOs2tfOR5eefj6zECI31cYPANBuriJidL/v+T0BO2lVocSapNwqY8+yUSKuvTc5/5qbWLF4/oi8xrkaDousaZYVhFjf7eb1LjfVjoTcHdEn4SiDwinQdQiOvgEzb9Q7UlaQQrsQWa46Xk9L0sUBtQYjKlOcsmBUrvpTz3RuKm7Gm+5mUeg1Nruv1DvSiKst1ArttomL9I4ihBC6mFlTzKJplWffKBWDjfUAuKZdzKKiqpNP1TV2nnG3roSRV9o9gIyNGUt6UjbueSHKo7c4WNb0vxzJv4hO13S9Y+ni2jnl7GkO8MKeNim0CzHOnBgb02B7/52taRV29Y2NWeCNyLiPLOcpKDqlmXA49afhcHFehMNhG+1xM6/KCJlTTb5cK7QfflUK7f0k0/6FyHKzIm/zXHo5ALWOOFbpRstZcdXEm17t5LY0uBpnOvdv8a8pcAAq1rIp9ERl7JEQQpxWyw5Ix8FRpHUe9dNTLfkkVQPzPBG5VXqM+eOeFBuS0zGqaa6u/w6GzPhcY+faOWUArD/kozeS0DmNEGK0KGqG2pjW0X66sTFHwlZCaSN2Y5qpLjl/iaExKHBliR8DKg0RK4fCMqrspMmXa98Pr9U3RxaRQrsQWcySiTIlspvnMlqhfZq8ych5++2LaDHXYlETXBB4Qe84I85hMZFv0S4e7WiXuzWEEOJ9Milo3qw9rl7W78WyVRX+eFwWQR3Lfhm7jqjJS3GknsUtj+gdRxeTil3MKHOTyqi8sq9d7zhCiFFSlmjErkaIKXZaLe/vdD6xCOpcTxSTdB6LYVBoSXNefhiA131u4mn5iwXAhAvBYIKeBug+onearCCFdiGy2PTodvap1RxTyzApGSbJ2Jjcpyi8nvdBAGZH3qY00ahzoJFXausrtLfJ328hhHif9j2QCIPVAyWz+r3b1l4Hh8M27MYMN5b3jlw+MWh+1cnrE78KwPlN/4s32qRzIn1cN7ccgBd3t+qcRAgxWibEtXEfx2zTURXjKc91xE20xCwYUJnr6d+C4UL0x5K8MHnmFOG0kbe6XXrHGRusbq2RA7TxMeKcpNAuRBabFdl8cmzMJGcCs/wfPS60WWqps2srgF/kf05rS8xhpTZtMZodbXHSmdz+ZxVCiAFRVTje181edR4YjGff/l1OdLPfWNYri36NYXXF13HMuxRTJs7Kw/+W8+f807lurjY+5s1DPvxRWfBQiPFgQmw/AEdPMzbmRDf7FFcMl5y/xDAyGeCK4gAAuwMOmqNmnRONEZMu074fkUJ7f0hZTogslZ9spyx+jOfTMjZmPHrLcz0pTFQnDlEbP6B3nBFVYFXJxEIEEyq7m3N/Lr0QQvRb9xGIdIHRAmXz+71bIGngr215ANwmY2PGNkVhzeT7SRqs1Pi3MKvjeb0TjbopJW6mlrhIplXW1Mn4GCFynT0dojSp3cFzzHZqoT2SUjgYtAGwwCvd7GL4VdmTzHZrf7fWdnpIjb/r2+93Yk77kXWQHp9rxgyESe8AQojBmRXZzGZ1Om0UYDFkqHXIWI3xJGjKZ6frQhaHXuOCwPMcs04DJTevnRoUiB7biXP6Bbx+oJMF1Xl6RxJCiLHhRDd7+XwwnX3hrvqWbooPNgPwUqCGWMZAtTkI7fVs6zj3S7X4AkNNKwbJb69iY/XnuejYz7n46E9pyL+AqKWg3/v39PbS2jq0sSu9vb1D2n+orp1bTv2ael7Y3caHFlXpmkUIMbJq4wdQUOkwVxI2ek95bk/QQRqFUmuSMqvc4SJGxoWFQY5ELHQnTWzrdbA0P6J3JH1VLABbHsR6oWUbVC/VOdDYJoV2IbKQomaYFdnCf6RvBmCyMy6LwIxDb7uuYE54A6XJZqZFd3DQsUjvSCMmdmSrVmg/2MGXV07VO44QQugv1AG9RwEFKs8742Y+v7aw172/XAWsAqDsjp9gLYOdL/2R87Y8O6CXjSakk0kP2yo+znTfS5SE67nk6I95adq/nHOfaFTryHt17VrWvb1jSK+f6GgAIBLRp9hw3dwyframnnX1nQRjUlwTIpdNiGnz2Y9aZ57y87QKu/x2ABZ4I/1d+1uIAbMZVS4uDPFyh5fNPS5muGJ4zON4TJHBCJMuhX1Pw+G1Umg/Bym0C5GFauIHcKb9vJLRPlhPccrYmPEoZnSx1XU5K4IvckHgRQ7Z55NR+j+fN5tEG7YBsKOpF38kidch8/KEEONcc183e/F0sHnPuFkwmgBg5c0fYd7smfSoDtamp2Agw6euOg/r1Qv69XKvrlvP9jdWE0+lh5pcDELGYGL15G/ysV13MrPzJXaX3kyzd/FZ94nHtbsdz5teyZKFc4b0+hvXJ3mjHuKJxJCOM1jTS91MKnJyxBdmdV07tbqkEEKMODVDbbxvPvt7xsYcDlsJp404jGmmyNhUMcKmu2LsDthpiVl4o8vN9WXjfITp5Mv7Cu2vwqX/pHeaMU0K7UJkodmRt9mrTqBVLcSkqNTY9fnQI/S3zXUJ88NvkJf2MSeykV3OC/SONCLSQR/VHhNNgRRvHvJx/bxyvSMJIYR+EiFo36c9rupfV1FBUTFVtbUc7HRDAKa4Ekwurez3S7ry6gaTVAyjdvcsdpV9iPltf+HyIz/kD/P/QMZw7o9zboeV8kLPkF7bY7cMaf+hUhSFG+aV87O1h3h+Zyt3z8vNxgIhxrvS5HEcmTBxxUarZcIpz51YBHWOJyp3c4sRpyhwWVGQR48XcChs41gkSq1jHNddJvctiHp8M8T8Z23yGO9yc6CvEDnMqcSYHN3NK2mti6nWEcck/yePW0mDlU3uqwA4P/AypkzuzupfUKbNH379YD+GCQshRC5r3gZqGjyV4Kno927JDBwIaYvIzXGP83mjWeqtmi8SMeVRFDnCgtbH9Y4zqm6cr/1dX1ffSTA+jm/hFyKHnRgb02iddsqduu1xE60xCwZU5nlkEVQxOoqsKeZ7tfdLr/nc43th1LwaKJyivf9seEPvNGOalOeEyDIrrIcwkeYFdTmgzWcX49tu53L8xgKcmSALwm/qHWfELDxZaO9EVcfzuxwhxLiWTkLrdu1x1ZIB7VofspHIGPCaUlTZZc51Noqbvbw54V4Aljf+D854p86JRs/UUjczytwk0yobm2VshBC56EShvcF26nz2nX3d7FNdMZwmudAmRs/5+WEcxjS9SRPbex16x9HX5Mu174fX6JtjjJNCuxBZ5mLrQZoyxRzKVKCgMsEhhfbxLqOY2OC5BoDFoVcx52hX+6xiCzazgfZAnLrWoN5xhBBCHx17IRnVbtktmjagXfcEtUXkZnuisohcFttbcgMt7rlYMhEuPvoTveOMqhNd7W81SkerELnGlg5TnmwE4Ni75rNHUgoHg9rdWAu8cjeWGF1Wo8pFhSEA3u5xEUyN4zLqlJXa9/rVII1vZzSO/4YIkX0WlhmoMXXzUkbrYKuwJbEb5RecgP32RfQYi3BkwszP0a52i1HhwilFAKypa9c5jRBC6EBVtdmYAJXngdL/t/IRo4vWmAUFlVlu6QbOaoqBVyf9AxkMzPC9QnXvZr0TjZoP9BXa93QmMDjz9A0jhBhWtfEDKKh0msoJGfNO/nxP0EEahTJrgjJbSr+AYtya7opRYUuQUhXWd7n0jqOfCReByQb+Rug8oHeaMUsK7UJkkc8s1Baieo6LARkbI96hKkbedl8J5HZX+xUzSwFYvV/mtAshxqHuIxDpAqMVyuYNaNdOaxUAEx1xue0+B3S4ZrCr7BYALm34LxR1fBSfqgscLKjOI6OCc/qFescRQgyjE2Njjr5rbExahV1+7W6s+V65k0XoQ1Hg4kLtjur9ITttsXMvRJ6TLA6t2A5Q/7K+WcYwKbQLkSUMmSSfmGumR3WxJ1UNwCSndKSJd9Q5FtOb413tV8woAWBnUy+dwdy8mCCEEGd0opu9fB6YrP3fz2jC11donyOLyOWM9TVfIGryUhQ5zNy2p/WOM2pOjI9xzLxY5yRCiOGioDIhfmI++6yTPz8UshJOG3EY00x1yWdfoZ9SW4oZLu091Btd7vE7OWXqVdr3+lX65hjDdC20f//732fJkiW43W5KSkq4+eabOXDg1NsPYrEYd999N4WFhbhcLm655Rba22VkgBh/qsM7ybcrPJM6nwwKhZYkXrN0pIl3qIqRTe/qajflYFd7icfGvCovAK9KV7sQYjwJdUDvUUDRxsYMgGPq+aQMFlzGNLWOxIjEE6MvbvayoebzAKxo/BXW1PhYv+SGeeUogK1qFuHx0cgvRM6baOrEkQkTU2y0Wiac/PmJRVDneaIYZW0RobMVhSFMikpLzMKh8AAaHnLJVK3eQOMGiPn1zTJG6Vpof/3117n77rvZuHEjq1atIplMctVVVxEOh09u89WvfpXnnnuOJ554gtdff52WlhY+9KEP6ZhaCH1MDqwH4MmUdpusjI0Rp3NqV/tbescZEVfM6BsfI3PahRDjSXNfN3vxdG0h1AFwzb8agFmeKAYpVOSUXWUfoss+EXvKz7Km/9U7zqgo9diYXayNUzwekRu0hcgF88xNADTappNRjAC0xUy0xi0YUOVuLDEmuE0ZFudp9co3u1ykxmPfY8FEKJwKmRQceU3vNGOSru9MXnrpJe68805mz57N/Pnzefjhh2lsbGTr1q0A+P1+fvOb3/CjH/2Iyy+/nMWLF/PQQw+xfv16Nm7cqGd0IUZXbyNlkQPEVDN7mQTAJCm0i9N4d1f7eaG1OTmr/YqZ2viYN+p9xJJpndMIIcQoSISgfZ/2uGrpgHYNGjzYJywEVWW2WwoVuUZVTLw+8asALGh9nLzoMZ0TjY4La7SZzcfDUmgXIhfMtxwHoMH6ztiYE93s01wxWVtEjBmL88I4jWkCKdPJv6PjzsnxMa/om2OMGlPvTPx+7baDgoICALZu3UoymWTlypUnt5kxYwY1NTVs2LDhtMeIx+MEAoFTvoTIejseRUHlly0zSSsmXMY0JRa5V1ac3ru72udETv+7MpvNrvBQ5rERTabZcKRL7zhCCDHymreBmgZPJXgqBrTrAdtsALxJHx4ZOZeTjuUv50j+hRjVNJc0/ETvOKPi/CobajpFb9JAT1jGIQmRzUqcCpNMnQActc0AIJwycDBkA2C+N6JbNiHey2yAFQUhAN7udRJNj8NbBU+Mj6lfBRl5b/leY6bQnslk+MpXvsIFF1zAnDlzAGhra8NisZCXl3fKtqWlpbS1tZ32ON///vfxer0nv6qrq0c6uhAjK5OB7X8A4PHwIkDrZlfG4e9z0T+qYmSz+3IAFgdfw6TkVte3oihc3tfVvkbGxwghcpyipqB1u/aHqiUD2jeVgYN9i8oVx5uGO5oYQ9ZN+DJpxciknjep6d2kd5wR57EaiB3dAcCB9vExm16IXHX1ZBMA7eYqIkYPAHsCdjIolFkTlNmkwUyMLTPdMYotSRIZA5t7nHrHGX21K8DshFA7tO3SO82YM2YK7XfffTd79uzhscceG9Jx7r//fvx+/8mvpib5UCGy3NF14G8kqjhoKdQ+YMvYGHEudY4lhAxe3Bk/l3ma9Y4z7Fb2FdrX1nWgjtsl34UQ40Fh5Agko9pc9qJpA9r3NZ+biNFFOuInPyEXJnNZj2MCO8s+AsBFR38Gau53mIXrXgfgYHtQ3gsIkcWum6oV2htsMwFIq7AroI2HWuCVkWdi7FEUuKBQ62rf5XcQSI6Z0uroMFlh8mXa4/pV+mYZg8bE34Z77rmH559/nldffZWqqqqTPy8rKyORSNDb23vK9u3t7ZSVlZ32WFarFY/Hc8qXEFlt+yMAvGS7DqMzH6Oaosout8iKs0srJra6LgHgw4WHcm7xuxWTi7CZDbT4Y9S1SiebECI3KUBJuG82e+USUAb21v2x49o4xtCeNRiQQmSu21R9F3Gjk5LwQWZ0vqR3nBEXqd+IAZWeSBJfSN4bC5GNFDV9sqP9aN989vqQjUjaiNOYZoorpmc8Ic6oxp6gypYgjcLGHpfecUbfyfExMqf9vXQttKuqyj333MNTTz3F2rVrmThx4inPL168GLPZzJo1a07+7MCBAzQ2NrJ8+fLRjivE6Iv2Qt1zALzIhQAUpn0Yc6xoKkbGbudyYoqDSmuYD84w6R1nWNnMRi6cUgzI+BghRO66cboJWzqodQ6VzxvQvu0xE6/6tIaT0E75EDQexMx5bK66A4AVjb/CRG6NjnsvNRGlzK5dQJLxMUJkp6JYA/l2hVDGSpulBoCdfq2bfa4nKp97xZildbVr5566oI2YcZwV26f0FdqPb4awrJv2brpWXu6++24effRRnnnmGdxu98m5616vF7vdjtfr5a677uK+++6joKAAj8fDvffey/Llyzn//PP1jC7E6Nj5GKRiUDKbbW2FABSmfECxvrlEVkgabOxwXcj5wVe4/0Ir38mxbsaVM0tYXdfO6v0d3HvFVL3jCCHEsPvacgsAbdaptBzuHNC+f+6dRFpVyI80cqz7+EjEE2PQ9vKPsaD1CbzxVq537OIZvQOdQV1d3bDsX+1M0xI1cLA9yAWTC1FkESMhskpFeC8Au5JVqIqBtpiJtrgFIypzPDI2RoxtZbYUU5wxDoVttLqn6x1ndHkroXQOtO+Bw2tg3q16JxozdC20P/jggwBceumlp/z8oYce4s477wTgxz/+MQaDgVtuuYV4PM7VV1/NL3/5y1FOKoQOVBW2/BaAQ9M/h6/RiJpOUpDuQgrtor+2Oy9igX8NiytgQfiI3nGG1eUztDntO5t6afPHKPPadE4khBDDJ1q/jotqTSTSKou+u4HW0PoB7K1Q8YVfY86D+rV/1o6XkMXkxoOU0caG6s9z5eHvcZtrC39v1TvRqQLd2gWj22+/fViO504HMRsLCcZStAVilHvtw3JcIcToOFloT1QDsMPvAGCaK4bTlPtrTYjst6IgxOGwlaC1FGvlLL3jjK6pV2mF9gMvSKH9XXQttPdn0RqbzcYDDzzAAw88MAqJhBhDjr0FvgNgdrJKXQocJXZsF6bS3L4NWAyvmNHFy7013FTQwIet61nDfXpHGjYlHhuLa/PZeqyHl/e2cceKCXpHEkKIYVPV9DQArwdr+NiXbxnQvh0ZD29kyjCTYmqRhR1APCXvH8aLvaU3sKjlUQqjDfzDBVY26h3oXaKhAADXf+EbTJ+3eNDHqXv7dV783U9JxmNMLnaxvy3IwbaQFNqFyCaBFgoSx8moKruTVZSnDNSHtMaZ+XkRncMJ0T/5ljSz3VH2BB3kXXoHKqv1jjR6ZlwPb/4I6ldDKq6NOhT6FtqFEGex+Tfa93kfYdXBXkBb9InSmfplElnpqa7JXOs9wjzTMfYGd9Pmnqt3pGFz7Zwyth7r4cU9rVJoF0Lkju4GqkM7AHiVJVTV1g5o993tXgjBTE+CXo97BAKKsUxVTLxZezc37f8aXznfwpfax17BqrCilqqpswe9f3vj4ZOPp5W6tUJ7R5CLphVhkPExQmSHQ1pBctPxNCGHjV0BOxkUym0JSq1yF5bIHssKwuwNWLFVzeZY5KDecUZPxSJwlUGoDY6+AVNW6p1oTNB1MVQhxBmEOk4ugtox8w62N/UCED30to6hRLbypew8sisJwNLjD+sbZphdPbsMgLcbuvGF4jqnEUKIYbLxQQyovFifojldMKBdo2mFwyGto2i2zLcdt44UXMzeRDkOs8LHvTv1jjOiagocWE0GIok0zT3yd16IrFGvLdT9wqEUaQzs6hsbs9A79i4OCnE2LlOGwkgjAG9al9OP4R25wWCA6ddoj/f/Vd8sY4gU2oUYi7b/H2SSUHkea7qLUFWotKdIh2Q1ZzE4P3grQUaFyd3rKAwf0jvOsKkucDC30ktGhVf2tusdRwghhi7Srb0PAP5zw8AvINYF7aRRKLEmKZGOwPFLUXgoeAEAV7iOUJBs0znQyDEaFKaWuAA42B7UOY0Qol9SCTj8GgAv1KdoN5UTyxjwmFJMdkrzjMg+xZHDZJIx2oxlvOobR3cTzrhB+37gRcjIugoghXYhxp5MGrY8rD1echer9mnFw5mepH6ZRNY72JVhQ2oGAOc1/5/OaYbXNXO0rvYX97TqnEQIIYbBlt9CMkK3tYq1DQObq66qsC+gzaie7ZbO3vFuf7Kcp+qSGBWVCwO53Wk2rVQratR3hEhnxksroRBZrGkjJIJEjW62t6ocN2uLoS70RjDI9CeRhcyZBMFt2rn2R4dKx09X+8SLweKCYCu0btc7zZgghXYhxppDa8DfCLY8wlNu5M1DPgBmSaFdDNGf41pn24zOl3HHcqcofW1foX3D4S78Efn/RAiRxVJx2PTfANTlDXzOZXvcRFfShFFRme6KDXc6kYXuXxMnrSpMju2hIn5E7zgjpjLfjsNiJJ7K0NgtYyeEGPP6xsa0OGZjm7KEqMGB1ZBhlkfOXSJ7BTb9BbOaYE/AwSsdHr3jjA6TFaZcoT3e/4K+WcYIKbQLMdZs6VsEdcEnWNcQIpHKUFvooMQqt+GIoTmcKeeYdykG0ixu+YPecYbNpGIX00vdpDIqq+pkfIwQIovt+hOEO8BTyTH34gHvvi+odbNPccawGsdLK5U4mwNdGVaHJgOwPPCizmlGjkFRmFaidbXL+BghskD9KgBanLPxLPkgAHM8USwGOXeJ7JWJBliU2AHAjw+VMm5usJp+vfb9gBTaAUx6BxBCvEvP0ZNX9znvM6xaoxUNr5xZiuJv0S+XyBlbqj5Frf9t5rQ/w8bqzxIz5+kdaVhcO7eMA+1BXtrTyocXV+kdRwghBi6TgfU/1x6f/0XUBuOAdk9m4EDIBsjYmFwRDARobR38HWiBoFZwftw/lyvcDdQkDlEdr6fJOnW4Io4p08pc7Djey+HOEKl0BpNResqEGJN6jkLnflCMbFbmYaspRlEzLJBFUEUOOC+xjb2OxewP2Xmp3ct1ZX69Iw1aXV1dv7YzJkqZpxhQOvax543nSDgr+7VfUVERNTU1Q4k4JkmhXYixZNN/g5qByZeTzJ/Emv2rAbhqdhn163XOJnJCo3cp7c7plIYPML/1CTbVfE7vSMPi2jnl/GR1PevqfYTiKVxWOb0JIbLM/ufBdwCsXlj0KWh4fkC7Hw7bSGQMeExpquwyRiubxZLabP4tW7awff/gx70kOhoAaItb2e1czsLwm6wIvMDjRX8LSu4NQS7z2HDbTARjKRq6wkwtGUeL0QmRTQ703V1Tu4LXWr0AlKTacZnk4pjIfnbifGaCj58dLuXHh0q5utSPMctOua3dQRTg9ttv7/c+qz/p4IpJJn77Dx/mxxsT/drH4bBTV7c/54rtUokQYqyIBWBb3yKV59/N5qPd+KNJCpwWFtfmS6FdDA9FYUvlp7j+4DdY0PontlZ+kpTRpneqIZtW6mJSkZMjvjBr93fwgfkVekcSQoj+U1V44z+1x8s+DzbvgA+xN6j9Lp/ljuZiDXVcSaS0Qvv8ySWsWLJw0MdZuzbM1npIZ9Jsdq9kbngTFYmjTIjv56ht5nDFHTMURWFaqZutx3o42BaSQrsQY9V+bcHI5uob2bPfDEBVqgmo1TGUEMPnrtpOHj5WSH3YxvNtedxU3qt3pAHpDcVQgV986SqWz+vfXXDF4ToIbOE7N9Zw+51Xn3P7usZObv+3P+Hz+aTQLoQYvMbGRnw+32mfKz78Z6oTQaKuWuoC+fxhx24A5hcb2bljOw0NDaMZVeSw+qLL8R+rwBtvYVbHc+wq/4jekYZMURSumVPGL187zIu7W6XQLoTILodWQ+tOMDth2RcHvLs/aeB41AqozJSxMTnDaTNTXjj4xdQcNsvJx2Gjlx2uCzgv9BorAi9w1DojJ7vap/cV2hu6wsRTaaymgY1gEkKMsGgPHNM6yB7unUeGbqJHd+IqDukcTIjh4zVn+NwEH/91qIyfHirl+tJesvGGjSkV+Sya1r8xMMRcsGkL7kQniybmg9kxsuHGsCz8Ty1EdmpsbGTmzBksXrz4fV9LzltM8k1tLutXHtvP4vPO45ktWmH98f/6OosXL+Zb3/oWAMlkSrd/BpEbVMXE1spPAHBe8yMoam78nbpubjkAa/d3EIrnxj+TEGIcUFVY9x/a4/M+Dc7CAR/ixCKoNfYEHrMsni5Ob4vrChKKhdLkcSbH9ugdZ0QUuSzkO8ykMyoNnWG94wgh3qt+FahpgkULeGxXAIDA5qd0DiXE8Luz1keeOcWRiJVnWvP0jjPybF5wlgAq+Or1TqMrKbQLMUp8Ph+RSJRHvn4rW3919ylf9T+6kUn5BlKKhb/57Gf480//CZO3FIuSZs19S9n6q7v54geWAZBOSwFRDN3ekg8QMeXhjbcw1bdW7zjDYnaFh0nFTuKpDK/sbdM7jhBC9M/RN6FpExitsOLeAe+eUd8ptM+SbnZxFlGji+3OiwFYEXhRWxcox5wYHwNwoD2ocxohxPv0jY153PExgvEUxdY0sSNbdQ4lxPBzmzJ8fkInAD8/Ukoq906571c8XfvuO6BvDp1JoV2IUTazpphF0ypP+ZqkHgbAVL2YhdNrabJPAeDiohDLZ5SzaFolFUWDv3VYiPdKGW3sKL8VgPOaf691VGY5RVG4ab52a9vTO1p0TiMA1q1bx4033khFRQWKovD000+f8ryqqnz729+mvLwcu93OypUrqa8f3x0QYhw60c2+6JPgLhvw7k1RC6GUEashw2RnfJjDiVyz1X0ZMcVGUaqVadGdescZEScK7Y3dEaJ9C8uK4SfneDFgqTgcWkNSNfJQqzaP/YKiOJD9n0OEOJ07arrIN6c4Ol662otnaN97jkIypmsUPUmhXQi9BdvAfxwUA1QsAmBVh7YI2lWlAT2TiRy3s/wjJA02SsMHqPG/rXecYfGBBdps9rcO+egMSsFJb+FwmPnz5/PAAw+c9vkf/vCH/OxnP+NXv/oVmzZtwul0cvXVVxOLjd83ZmKcadoMDa+DwQQXfHlQhzjRzT7dFcvK+Z9idMUNDra5LgNgefAlFDX3CtEFTgtFLgsZFQ53yNznkSLneDFgR9+ARJDnzNfQHMxQ5LKwIC+hdyohRoxzvHW1OwrBWazdMdd1UO80upHFUIXQ2/HN2vfimWB10xw1szdox4DKFcVSaBcjJ2bOY0/pTSxsfZzzjv+exrxlekcasolFTuZXedl53M8Lu1u5Y8UE4OwLEfdHUVFRzq2GPhquvfZarr322tM+p6oqP/nJT/jmN7/JTTfdBMDvf/97SktLefrpp/noRz86mlGF0Me6H2rf538U8gb+OyaWVjgctgIw2yNjY0T/bHddzMLwOgpSHcyIbqPOsUTvSMNueqkbX6iLA+1B5lR69Y6Tk+QcLwbswItkVIUH09rfic9cOBFzc4fOoYQYWZ+q6eJ/jhaf7Gq/pbJX70gjq2g6hDuh8wCUzdM7jS6k0C6EnmK90LFPe1x1HgCrOrQRMYvzIhRacq/LSIwt2yo+zvzWP1Prf5uS0H46XDP0jjRkH1hQyc7jfp7Z0cwdKybQ2NjIjJkziUYigz6m3eFgf12dFNuHUUNDA21tbaxcufLkz7xeL8uWLWPDhg2n/RAej8eJx9+5UyEQkIuRIos1boT6V0AxwoX3DeoQB0I20qpCkSVJsUXWcBH9kzDY2OK6jIsCz7M88BIH7IvIKEa9Yw2raaVu3jrcxfGeKOF4CqdVPvaOpsGc40HO8zlNVeHAi6zOLKI+7sJtNXH7+bU895dNeicTYkSd6Gr/QX05Pz9Syk3lvbl9B2LxDDj2JvQ0QCoGJpveiUadvOMQQk9NmwAV8mrBXQ68U2i/qtSvYzAxXgRsFRwovpKZnS9xXvPveWH6v+kdachunFfO9/66j22NvTR2RfD5fEQjET7xj/9Bac3kAR+vvfEwf/jB3+Pz+aTQPoza2rQFa0tLS0/5eWlp6cnn3uv73/8+3/nOd0Y8mxAjTlVhzXe1xwtvh8KB/24C2BfQxsbMdkdRlOEKJ8aDHc4LWRR6HW+6m1mRzexxnq93pGHlsZsp89hoC8So7wixoDpP70jjymDO8SDn+ZzWuhPV38wD6S8C8MnltXhsZp1DCTE6PlXTxa/7utqfbs3nw5U9ekcaOc4icBRBxAe+eiibq3eiUZfL11GEGNviIWjdpT2uWQGAP2lkU48LgCtlbIwYJVsqPwnAVN8avLHjOqcZuhKPjRWTiwB4dmfzyZ+X1kymaursAX8NpjgvRsb999+P3+8/+dXU1KR3JCEG5/BaOPYWGK1wyT8M6hCdcRMdCTNGVKa7ZeaxGJiUwcpm9+UALA2+gkHNvTsippVq76kPtgd1TiL6S87zOezAC2zIzGJnZhJWk4HPXDhR70RCjBqnKcPnJ/bNaj9ckvuz2ouna9879+ubQydSaBdCL8ffBjUNnsqTc1nXdLpJqQrTXDEmOGVhGDE6fM5pNOQtx0CGRc1/0DvOsDixKOrTO1pQVVXnNOJ0ysrKAGhvbz/l5+3t7Sefey+r1YrH4znlS4is8+5u9iWfBW/VoA5zYhHUSc44dqP8nhMDt8u5grDBjTfdw+xIbiyK/m7TSt0AtPpjBKJJndOML4M5x4Oc53Pa/hf4Zd9s9tuWVFPksuocSIjR9cnqLgrMKY5Fta72nFbcN46256g2PmackUK7EHpIRqFlu/a4ZgUn7vd+qV1brOmaEhkbI0bXlspPATCn4znsyey/le2aOWVYTAYOdYQ46s+9Lr1cMHHiRMrKylizZs3JnwUCATZt2sTy5ct1TCbECKt7Dlp3gMUFFw1uNntKhf1BbeblLFkEVQxSWrGw2X0FAEuDq3Ouq91pNVGVr12QOtghXe2jSc7x4hTdR9jZGubNzFyMCnzuokl6JxJi1I2rrnZnMTgKtcbSrkN6pxl1UmgXQg/HN0MmCa5SKNDeaERSCut8WufN1TKfXYyy497FtLlmYsrEWdD6J73jDJnHZuaKGSUAvHFMilB6CYVC7Nixgx07dgDa4mg7duygsbERRVH4yle+wr/+67/y7LPPsnv3bj71qU9RUVHBzTffrGtuIUZMJg1r/1V7fP6XtDmWg9AQthLLGHAZ09TY5Q44MXi7nMsJGTx40j3MieTeooQnutoPtoV0TpJ75Bwv+m3fM/wy9QEAblpQSXWBQ+dAQuhjXHa1j8PxMVJoF2KUGTIJaNmq/aFm+clu9nVdbmIZA9X2OLNk1qoYbYrClso7AJjf+gSmdPYXp29aUAnAa8eioMjpTg9btmxh4cKFLFy4EID77ruPhQsX8u1vfxuAf/iHf+Dee+/l85//PEuWLCEUCvHSSy9hs42/1enFOLHrcfAdAFserLhn0IfZ27cI6kx3FIMsgiqG4L1d7cYc62qfUuzCoEBnKE53WC5KDSc5x4v+qtu+npczS1FQ+ZtLZe0jMX6Nq672E4X27gZIxfXNMsqk8iDEKCuOHNR+0TgKoWj6yZ+fHBtTGjhRexdiVB0qvJQeWzX2lJ857c/oHWfILp9RQoHTQm8sg33iIr3jjEuXXnopqqq+7+vhhx8GQFEUvvvd79LW1kYsFmP16tVMmzZN39BCjJR46J3Z7Bd+BWzeQR0mmDJwLGoBYJZHLsyLodvtXE7Q4MWd7mV2eKPecYaV3WI82T0ri6IOLznHi37pOcbPWmcCcN2swpN3mQgxXn2q2jc+utodRe+Mj/Ed1DvNqJJCuxCjyGOF0tBe7Q/V55/sZk9kFNZ0aov9XC3z2YVOVMXI1srbAVjc8gcMmezuarOYDNzUtyiqc96VOqcRQox7b/0Egq3aAujLvjjow9QF7YBCpS1Bnjk9bPHE+JVWzGx2rwROdLXn1sKh00+Mj2kPygLpQoyyuo0v8mJmGQoqf3vVHL3jCKE7h0nlC+Ohq11RoGSW9rh9r75ZRplJ7wBCjCdfW2HFpCa0K3uls0/+fEO3k2DKSLElyaK8iI4JxXi3r/g6ljf+N554G9N8q9hfcq3ekYbkI4ureeitozimLCWelg/XQgid9ByDt36mPb7qe2Ae3OgEVYV9gb5FUN3ZP+JLjB17nOezJLQGd7qXueEN7HBdrHekYTOp2InRoNATSeILJSh2W/WOJMS48dMt2p1X11XFmF4m3ewi9zV1Bth2sPms28zNtOExFHIsauUn2+Fy99m3P6GhrWc4Io6ektlw9A3oPQbxIFjHx+8AKbQLMUpMsW6+er52qzcTLj5lZvSJsTFXlQZk1qrQVdpoY3v5R7mw8Zec1/x/7C++Ru9IQzKrwsOkfBNHeqApkkKmQgohdLHqW5COw4SLYOaNgz5Mc8yMP2XCrGSY6pKxMWL4pBUTb7tXckXvn1kSXMNu5/mkFYvesYaF1WRkQqGDw51hDrQHpdAuxCjZd+AgL4WnopDhy9edp3ccIUZUJKSNJ/vhE5v44RPnXlzcs/Q4+Zd9hh/XF/H3v/4mqP1vbe/oDQ8656iy54GnEgLN0FEH1Uv1TjQqpNAuxCgpq38El0UhbC7EWfTOfMK0Cqs6tLEx18jYGDGCgoEAra2t59xulXIhS5SHKI7U4z7yV3p7e0c+3Ai6fIKDIz0BjoZkWpoQQgdH34R9z2gX2K/5d4ayEMu+vkVQp7limOVXmhhmexzLWBJcgyfdw7zwBra7LtE70rCZXurmcGeY+vYgF0wuRJEFkYQYcT97aQfg5Hr3YaZNGvxFZiGyQSKuNUCcf81NrFg8/5zbp1QDL6aTkF/Bh/7pJ0ww+M65z5Zddax77gn8kSxaXLRkdl+hfa8U2oUQw6jnKEVHnwOgxb2Qqe96c7+t14EvYcZjSnF+QUivhCKHxZLaDN8tW7awff+Rfu1TPLWce2qPMH3fL1i7tgyASCQ7xxpdVGPn15u78GOmMxiXTjYhxOjJpOHFf9IeL/40lA1+Pm08o1Af1sbGzJZFUMUIyPR1ta/sfYIlwTXsci7Pma72CUVOzEaFQCxFeyBOmXdw45uEEP2zryXAS61OrZt9qUfvOEKMGk9BEVW1tf3admlPjDe7zRwy1LCixnnO6Qb1zecuxo85JTPg8GoItUPYB84ivRONOCm0CzEaXv0+BjXFqsMpCsvLT3nqxNiYlSVB6U4TIyKR0grt8yeXsGLJwn7t41enkY7/hIsKuvjkoin8Tz3EE4mRjDli3FYDkUMbcc64iH0tAS6ZXqx3JCHEeLHlt9C+G2x5cPk3h3SogyEbKVUh35yizJpbi1WKsWOvYylLgqvxpnuYF17PdtelekcaFmajgYlFTg62hzjYEZRCuxAj7Ccv7QLgBsNGpi67R+c0QoxN87wRtvY68adM7A/amJWLjRRmB+RPhO7D0LEPJubOGjBnImU9IUZa+z7Y9TgAX1976i9OVX2n0H61jI0RI8xpM1Ne6OnXl6Oomv2OxQB8qqJR5+RDF9q1CoD97QHSGVkUVQgxCnqbYPU/a48v/yY4CoZ0uL19Y2Nme6JDmT4jxFlpXe1XAbAkuBZTJjsvsp/O1BJtEbb69hCqKu8FhBgpW4/18MpBPwYy/G3VEfCUn3snIcYhswEW52vz1t/ucZKzH1NLZ2vfO/ZqRbAcJ4V2IUaSqmoLoKHSU34JW1pOXeBim99Bc8yC05jm4qKgPhmFOIOtrssAWO5uZUpBdp8uYkd3YDeqxJIZjvhkRJMQYoSpKjz/VUiEoPp8OO+uIR3OFzfSHjdjQGWmKzpMIYU4vX2OJfiNBTgzQeaF39I7zrCZUOjAYjQQiqdo9edg16AQY4Cqqvzgpf0AfNj4OlMX5X73qhBDMc8TwW7InOxqz0mFU8FogZhfm9ee42R0jBAj6cCLcGg1GC20zPws8Bx1jZ0nn/5t10wAzrO1UXf4+FkP1eILjGRSId6ny1zOEdssJsX28XfLLbygc566urrB76dmqHFmOBAwsrc5cLKrTQghRsSuP8GhVdqHig/8HAxDu1i5N6h1s090xnGYcr8TSOgroxjZ5L6Kq3ofY0loLbucK/SONCxMRgOTip3sbwtysD1IRZ5d70hC5JzXDnTydkM3FhJ8xfQkzHpT70hCjGknutrf7HLzdo+TGe7YOWe1Zx2jGYqmQfseravdW6V3ohElhXYhRkoyBi/frz1efjdHg0YAbv+3P2k/UwxUfulhTC544uFf8/sjW/p12GgiNRJphTitLa7LmRTbx50LzKyP6tMJHujWLk7dfvvtQzpOiRLkAHkc647gjybx2s3DEU8IIU4V6oCX/lF7fMk/QvG0IR0ug8L+vkL7bLd0s4vRUec4j6XBVeSlu1gQfpOXyY1P/VNLXexvC1LfEeLiabJmixDDKZN5p5v9TuMrVEyeC54KnVMJMfbN80TY2pPjs9pLZvcV2utg8hV6pxlRUmgXYqRs+AX0HAV3OVz0NXr//AwA1996O9OnTqIj4+aNTAFmUnzho9djUK476+FeXbee7W+sJt63sKUQo6HZMon9kXxmOHq4wbKZZj4x6hmiIe1ujuu/8A2mz1s84P3r3n6dF3/3UwzJCDUFFTR2R9jb4mfF5Nxf8VwIoYMX/wGiPVA2Fy748pAP12UsIpYx4DSmqXXkzrxsMbad6Gq/uvePLA69ik3JjfEPtQVOrCYDkUSall65cCXEcHpmZzP724K4lRhfMj0D8/5T70hCZIX3drVPd8cw5sb17Xfk14LFpY1V7DoE5O4d5lJoF2Ik+I/DG/+lPb7yu2B1nXyqsKSEqtpaDnS4IQjT3QlqSmrOeUhX3uDGZggxJIrCn7sm803HFq6zbOXhVJikyalLlMKKWqqmzh7wfu2Nh08+nlPp6Su0B1g2sRBjzt2XJ4TQ1Z4nYe9ToBjhA7/QbpUdolaT1g04yx3NvVuJxZhW51jM0uBq8tOd3FDQwF/0DjQMjAaFycUu9rUGONgeYppR70RC5IZ4Ks1/vXIQgL8xPk2eOQMzbtA5lRDZ471d7bNzratdMWhNKI0boHUn2C7UO9GIye7V7YQYq1Z9G5IRbQG0uR9539NpFerD2kIX01w59gtU5JxNoTL2+9K4lBhz25/WO86QTCpy4bAYiSTSsiiqEGJ4dTfAc30d7Bd+FSoWDPmQRncxPcYCgNy8jViMaapiZJPnSgA+VHAYl0XnQMNkaqnWAHOoI0RGljwQYlj8YWMjx3uilFjifMb4Esy4DmwevWMJkTVOdLUDbO5xks7F81PZPO17TwPmdFjfLCNICu1CDLejb8KevwAKXPdDUN7fftYYsRDPGHAY01Tak6OfUYgBUFH4j/XauIJFLY9iyGTv31mjQWFWufamf0+zLDAshBgmqQT8+TMQD0D1Mrj0/mE5rGvuFaAoVNkS5JlldJwYffvti+g2FeMxJbl3aW5U2qvzHdjMBqLJNJ1xuU1EiKHqDif4yWqtm/0r5qexKwmYd5vOqYTIPvM8EezG9Mmu9pxjzwevNs2hMHL4HBtnLym0CzGcklF49m+1x4vvhPL5p93sYOhEN3tcbgMXWeGRXUm6Mi7ciQ5mdL6od5whmVPpBaCxb1FUIYQYsrXfhZZtYMuDW34DxqFPZ8yo4Jq7EoDZHpklLfShKkY2ua8G4GsrrNiJ65xo6IwGhSnFWlf78bB8HBZiqH686iCBWIoZBQq3pZ4FRyFMvlzvWEJkHbMBzsuLADnc1V6udbUXRg/lyDLr7yfvLIQYTq/9O3Qf1hZAXfnPp90kjYHDYSsgY2NE9kik4dnEMgCWHn8YRU3pnGjwvHYztQUOAPY0+3VOI4TIevWrYP3Ptcc3PQB51cNy2CNhE6a8MoxqkilOeb8g9HPAvpCmuIsCu8KNlrf1jjMsppZqi7C1RA1gkEHtQgzW/rYAf9h0DID/V/wGRkWFObcMyxolQoxHc9/V1b43YNc7zvArmg5GK9Z0mMsn5ub5VwrtQgyXlu3vfNC+/kdgzzvtZt3GQpKqAbcpTZlVumlF9ngxsZioyUt+rInpna/oHWdITnS1720JkJYBrUKIwepthKe+oD1e+gWYOXwLv23t1sZ0lKbaMck7dqEjVTHwR980AG62bsKaCuqcaOiq8uzYzUYSGQXbhAV6xxEiK6mqynee3UdGhetmFbG85WHtCRkbI8SgmQ2wrG9W+6YeJ4lMjvV9G81QOguAuxbmxki695K37UIMh3QSnrkH1LR2BX/GdWfctMNUCmjd7KcZ3y7EmBXDwtbKTwCw7PhvUdTsnRc8sciJw2IkmkxzuFMWRRVCDEI8CI9+FCJd2uJOV3532A7dG0mwL6B1A5alWoftuEIM1puBCvZ1agujL2x5TO84Q2YwKEwt0cbHOGdcqHMaIbLTy3vb2XCkC4vJwP2Tj0EyAgWToHKx3tGEyGpzPFG8phSRtJHtvQ694wy/Mm3E8gdnmjAmcm/dNCm0CzEc3vwJtO8BewFc+8Mzbmawe+gyFgEwQ8bGiCy0s+wjxEweCqLHmOpbo3ecQTMaFOZUaF3tu47L+BghxABl0vDnu6BjL7hK4WN/BPPwLVr19PZmUqpCov0Irkz2dw+L7JdB4TuvI572hgAAXt5JREFUa/PZF7Y8mhNd7VNLtUK7Y+pykjk5CFeIkRNLpvneC/sA+PxFk6g+9H/aE/NuQ7rJhBgaowIrCrVmsK29DiLpHPt/ylVKxJSPzaRQcHy13mmGnRTahRiq9n2wrq+4fu0PwVl0xk2dsy9FVQyUWJMUWbN3xrUYvxImF9sqPgbA+U3/C2pG50SDN6fSg6JAc28UXyj7F3cTQoyiVd+G+pfBZIOP/hG8VcN2aFVVeXzLcQBCu17J2YWiRPZ5Ym+KY+libOkQi1oe1TvOkFXk2bEZVQw2Fzva5X2AEAPx63VHaOqOUuqx8sV5BmhYByiw4ON6RxMiJ0x1ximxJkmqBjb3uPSOM7wUhS7HFACKjv0V1Ny62C2FdiGGIhmFv9wF6QRMuwbmfviMm6oquOZeCcBsd3S0Egox7HaU30bM6KIw2sDUrlf1jjNobpuZyUXam5adx3v1DSOEyB5bfwcbfqE9vvlBqBreW+S3N/VS1xrApKiE9702rMcWYihU4I/xiwFY2PJHrKnsvt3boChU2rWGgcPdsm6SEP11pDPEz189BMDXr5uJc88j2hNTVkJejY7JhMgdigIXFGhd7bv8dvzJ3Fo4tNs+kXBCxR48AsfW6x1nWEmhXYihWPX/oGMfOEvgA784621yzVEjlpKJGNQ002VsjMhicZObHRUfBWBZ02+yuqt9frU2PmZ/a5B4MntnzgshRkndc/D8V7XHl34d5nxo2F/ikQ3HAJiXlyATkzUkxNiyITWDTsdUrOkwi5r/oHecIZvmSXP8wU/z0TluvaMIkRVUVeUbT+0hkcpw0dQiPjC7CHb0/S5YfKeu2YTINTWOBDX2OBkU1nc79Y4zrNIGK4/s7rvI/fZ/6xtmmOlaaF+3bh033ngjFRUVKIrC008/fcrzqqry7W9/m/Lycux2OytXrqS+vl6fsEK818GX3/mFcPOD4Co+6+Zbe7QVlYvSnViNuXVrjBh/tpV/lLjRSXGknildr+kdZ9Aq8+wUOi2kMir7WrO7M08IMcLqV8MTn9YWPp//cbjkH4b9JbpCcZ7fpS1+uqwgMezHF2KoVBQ21nwWgIWtj2NNZvc6Jw4TpAOdescQImv8ZVszG450YTMb+N7Nc1EOvgjhTv5/e/cdHlWZPXD8e6dkMum9F1qA0KsUUXBBxArqqquouOq6rrrWde3runbd9WdZ117W3lZRQVEEpPdeQgkEUkjvyWT6+/tjIBoBSZlkMsP5PM99krn13Jty5p557/sSlgR9z/B1eEIEnJMP9dW+u8FMozHKt8F42b/XHHqvmzMHagt9G4wX+bTQ3tjYyNChQ3nxxRePuvypp57i+eef5+WXX2b16tWEhoZyxhlnYLVKa2DhY/UlMPtPnu/H3ghZU3519Sa7i801nkJ7kqO4s6MTotPZjJFsTL4EgHEFr6Ap/2wNrmkaQ9IODYpaVIsKsP7hhBBekrcUPp4JbgcMmAHnvdApg719sq4Qu8vNkLRI0kL88/+qCHy5MZMoC+2LydXISUX/9XU4QoguUtVo59G5ngFQb5ncl4zYEFj/tmfh8MtBb/RdcEIEqASTk+xDXQ8Xh2VDAI3es63MTX3sUE8jlnVv+Tocr/Fpof3MM8/kkUce4fzzzz9imVKKZ599lvvvv5/p06czZMgQ3nnnHQ4ePHhEy3chupTb7SmyWyohcTBMefC4m3y3vQSbW8NZU0KUu7oLghSi821IvRyrPpw4yz76lX/v63DarX9SBEF6HTUWB/lVFl+HI4TobgrWwgeXgNPqGY/lgtdAb/D6YVxuxXurPN3GXDE20+v7F8JrNB0rMjwNToYd/JgwW4mPAxJCdIVH5+ZQbXHQPymca0/pCVV5sG8RoMGIK3wdnhAB6+SYBoyaG0tQNKEDJ/k6HK8q73moHrz+bXAERqPqbttHe15eHiUlJUyZ8lNL4cjISMaMGcPKlSuPuZ3NZqOurq7FJIRXLXkK9i4Egxl++wYYTMfd5JN1BQA0bP0hgD5/FCc6myGcdameN9VjC15D53b6OKL2CTLoGJAcAcDmQv9+BF4I4WV5S+Hd88HRCL0mwUX/BUNQpxzqx11lFNU0EWk2cu7QlE45hhDekhd9MgURIzAoO+PzA6tvVSHEkZbuKed/GwrRNHjsgsEY9TrY+K5nYe/fQHQPn8YnRCALNbgZHd0IQNTEq7ATOE+P1CRNgIhUsFTA9i98HY5XdNtCe0mJp2VEYmJii/mJiYnNy47m8ccfJzIysnlKT0/v1DjFCWbXPPjxcc/35zwD8f2Ou0lBlYUVeyvRUDRsW9DJAQrRtTalXILFGE20tYABZXN8HU67He4+Jq+ikbomh4+jEUJ0CzvnwnsXgr0eepwCv/sAjMGddrh3Dg2CevGoNIKN+k47jhBeoWks6/FnAAaUzSW2MdfHAQkhOkutxcGdn24B4MqxmYzIiAaXAza+51lh5CwfRifEiWF4pIUgZyOG8FjWBI3ydTjeo9PDqKs936951bexeEm3LbS31z333ENtbW3zVFBQ4OuQRKCo3AufX+f5fvQfYNhlrdrscGv23mFOGWxJBByHPoQ1qVcBMKbgdfRu/xy8Lzo0iIyYEMDTV7sQ4gS36QP4+Apw2aD/OTDzMwgK7bTDHahsZPFuz3uEy6XbGOEnSsIHsTt2MhqKCQeOPuaWEML//f3r7ZTUWekZF8pdZ/b3zNz1LTSUQmgC9DvLtwEKcQIw6CC5YScAa4NGUNAUOK3aGXkV6E1wcAMUrvN1NB3m/Q4mvSQpKQmA0tJSkpOTm+eXlpYybNiwY25nMpkwmY7flYcQbWJrgI9mgq0W0sfCGY+1ajO7082HazyF9lHRdqQ9uwhEW5IuYNTB94iwlzKodDabky/2dUjtMjQtkvwqC9sP1jK2ZwwGfcB9Fi1Et5Kfn09FRUWH9xMXF0dGRoYXIgKUguXPwQ+Hxl8ZNhPOfb5NfbK357ze3uTp6nB4konKA7uoPODpRlGI7m555p/oU/kjvaqXkVq7nqLIkb4OSQjhJStXruSrjQV8kR+KhmJqZAlffPoxAFMKnyER2BY0nM0ffdLuYyxfvtxL0QoR+CJspTTt34y5x1Ae3ZnCy8MP+Dok7wiNg0EXwuYPYNVLni6a/Vi3LbT37NmTpKQkFixY0FxYr6urY/Xq1fzpT3/ybXDixOJ2w5c3QnkOhCXBxa3vn/XbbcVUNNhICDcxILKmc+MUwkdc+mBWp13N5H1PMqbgTbYnnItTb/Z1WG3WIy6U8GAD9VYnu0sbGJAS4euQhAhY+fn5ZGf3x2Jp6vC+QkLM5OTs7Hix3WmDObfBpvc9r8fdBKc/DLrWf+jWnvPSgsyk/ukt9MFhfPfv+5h925oWyx0O/xz/QpwYasyZbE2awdCS/3HK/n/z0ZA3QZMRiYTwdytXrmTC6WeTcvW/0YdAzYqPufdJT1cxI5N1zLwuDIdLccYDn3Gw/tMOH6+2oePvB4QIdBpQveBVQq5+gXllkSwoC2dyQr2vw/KOsdd7Cu3bP4ff3A8xPX0dUbv5tNDe0NBAbu5P/fnl5eWxadMmYmJiyMjI4NZbb+WRRx4hKyuLnj178sADD5CSksKMGTN8F7Q48Sx8GHbMBp0BLn4HwpNavem7h/pbnTkmE31paScFKITvbUuczqiid4m0HWTkwfdZnX6tr0NqM52mMSQ1kuV7K9lcWEN2cjiaFAuE6BQVFRVYLE28d+/FZGfEt3s/OfnlXP7YJ1RUVHSs0N5QDp9cAfkrQdPBGY/DmD+2uWDYnvP6urYHb1WFkWJs4NO/jEavjQbg9W/W8dJXq3G5pNAuurdV6deSXfYNyQ3b6Fsxn93xU30dkhCig/bu3UfstD+jD4kkzFXPKUMT0Q29HYA/hi0C9rLGmcWUWZM6dJy1a9eTs3oxTXb/7H5SiK7mqDjAKMcG1gaN4m85qYyN2U2owe3rsDoueSj0ngx7F8CKFzxjIvopnxba161bx2mnndb8+vbbPf+4Z82axdtvv81f//pXGhsbue6666ipqWHChAnMmzeP4ODOG4hKiBbWvQXLDv2Bn/s8ZIxp9abbimpZd6Aao17j0jHpzP9qzfE3EsJPuXVGlmXeyNm772NU4btsTTwfS1Csr8Nqs4EpkazKq6Ks3kZxrZWUKP9rmS+EP8nOiGdE31TfBlGyFT68DGrzwRQJF70FfSZ3aJetPS+HG25a2huAm7JqGJ3+0zYpa3Z3KAYhuoolKI51aVcyPv8VTtn/PPtiTsWpl/s1IfzZqsogQvqchKbcTM+0E2caAECYs5oxpZ6uzfanncewoPQOHSfvgIypJ0RbjbOt5mDEEIqsQfxfbiL39y/2dUjeMeE2T6F943sw8S4IT/R1RO3i0w5oJ02ahFLqiOntt98GQNM0/vGPf1BSUoLVauWHH36gb9++vgxZnEj2/ABz7/B8P/EuGD6zTZu/vWI/ANMGJZMQLjcbIvDtjjudkrABBLktjC14zdfhtIs5SE+/xHAANhXU+DYYIUTnUgrW/xdem+wpssf0gmt/6HCRvS3mlkRx0BpEXJCDC1Kqu+y4QnjbupTLqTMlEWEvZVTRu74ORwjRAZsKavi2xNPYpJc9lzjTT09WDWtchh43BUF9KOtgkV0I0T5BOHlkQBEAbx6IY1tdgNSbekyAtNHgssHql3wdTbvJSG9CHE3xFvh0FigXDPkdTLqnTZuX1Vn5cpPnH9/VJ/fohACF6IY0jSU9bgFgcMlsYiz+OZDfsPQoAHLLG6izOnwbjBCic9gb4Yvr4eubPW/ms6bCtQsgvusadCgFL+d5upe5KqOSYL3qsmML4W0ufXDze4BRRf8l3Fbi44iEEO1RY7Fz4/sbcCmNxl3LSXUWNi8zum0MblwBwIawib4KUQgBnBZfz9lJNbjRuHd7Gq5AeBupaTDB09MJa98Aa61v42knKbQL8UuVe+H934K9AXqcAue90OY+Wv+7cj8Ol2JUZjTDM6I7KVAhup+iyBHkxkxEh4sJ+1/wdTjtEh9uIi3ajFKwpdA/k7sQ4leUbve0Yt/ykac/9sl/g0s/hpCYLg1jaWUYOxvMhOhdXJ5e2aXHFqIz7ImdTGHEcIxuG6fsf97X4Qgh2kgpxV8+3UxRTRMxQS4qv3mOn98FD7CsIVhZqdbHsy94gM/iFEJ4PNj/IOEGF1vqQnj7QJyvw/GOvtMgvj/Y6mDt676Opl2k0C7Ez9Xkw3/Pg4ZSSBgIl7wHhqA27cJid/LeqnwArj2lV2dEKUS3tizzJtzo6V29lNTa9b4Op12GH2rVvq2oFmcAjC0jhADcbs/gSq9OgvIcCEuEWV/DKXeAruvfEr+639Oa/XdpVUQFubr8+EJ4nabxY887UGj0q5hPau1GX0ckhGiD15bu44ecMoIMOi7NsKDsluZlmnIzomEJcKg1uyalJCF8LcHk5O6+nv7Zn9qTRG6DyccReYFO5+mrHWDVS+Bo8m087SD/HYU4rK4Y/nsu1BVCbBZcORvMUW3ezSdrC6htcpAZG8LpA/xz8AYhOqI6pAdbk2YAcOr+59Dwv+fYesaFEmk2YnO6OdAoqVIIv1dTAO+cB9/fDy67p7XM9cs8fUH6wLY6M8sqw9FriqszK3wSgxCdoTysH1sTZwAwMe9faEo+RBLCHyzeXc4T3+4E4O/nDiTF3PJvt491C1GuCpq0EHaEjPJFiEKIo7g0rYpTYuuxuXXcvjUdRyA0Eht0IURmQGM5bPC/cV8Mvg5AiG6hsQLemQ7V+yEqE2Z9BWEJR6yWn59PRcWxb4gdLsULP5QBcEamgc2bfmrJk5fnn/1VC3FYfV0dxcWtG9F8tmk6/bRvSGrIYbRtBe91cmzepmkaw9Oj+HF3Obn1eqBt3UcJIboJpWDLJ/DNXzyPoBpDYdpjMGLWEd3CHS/Ht0ZOTk6r1jvcN/u5STWkmWUsCBFYVmT+ib4V80ls3MXQ4k/ZlPI7X4ckhPgVe0rruen9DbgV/HZkGpeelM4HuT9bQbkZW/c9AJvDJuDUBUCrWSEChE6DpwcVMHV5X7bUhfDivgRu7VPm67A6Rm+ECbfA3Dtg6T9h+EwICvV1VK0mhXYh6kvgnRlQsQsiUj1F9oiUI1bLz88nO7s/FsuxH10JG3I6sWfegrO+kvsuO5/7XEfePDsczqNsKUT3ZXV4WrSsW7eOjTv3tXo7W0ZPHuu7g8tMi/l7MFgsluNv1I1kJ0ewYl8lDU43wb1G+jocIURbNZTBN3fCjtme12mj4fxXILb3Eau2Jse3RX1DwzGX7ao3MbckEoA/9iz3yvGE6E6ajNEs6/Fnpux9nJMP/Ie9sZOoNyX5OiwhxFFUNdq55r/rqLc5OalHDI+dPxjtFx9EZ1m3EOcsxqoFsyFskm8CFUIcU1Kwk4cHHOSWLRm8sC+R0+LrGRrpf12utDD8Slj+PNQcgNUve7p69BNSaBcntuoDh1qy50F4Mlz5FUT3OOqqFRUVWCxNvHfvxWRnxB+x3KU0bi48hWInXJNZxvQXr2ux/PVv1vHSV6txuaTQLvyL3ekptA/tncD40cNbvZ1bjaDE/jJJwWU88ptg5tntnRVipwgy6BiUEsGG/BoiRk/3dThCiNZSCja+C98/ANYa0Blg0t1w8m2gP/pb3+Pl+Nb6Zs1uHnhzPlar9ZjrPLc3EYXGWYk1ZIcfez0h/NnWxBlkl31Dav1mfrP3Sb7MfuaIp0iEEL5lc7q4/t315FdZyIgJ4eUrRhJkaNllooZibN13AGwMm4hNZ/ZFqEKI45ieXMP8sgjmlERx29Z05o7bg1nvf124NjMEwW/uh8//AMueg5G/h5AYX0fVKlJoFyeuij2eIntd0U/dxRyjyP5z2RnxjOibesT82QejKHaGEmV08tfhLkINLddJWbPbW5EL4ROhwUaSYyPatM1S20VcVPEi148ysruxdd3OdCdD06LYkF+NucdwDtY7GeHrgIQQv65iD3x9KxxY5nmdPBTOfR5ShrVq82Pl+NbKyf/1Fuo76oL5pjQKDcUtvUvbfRwhuj1Nxw997uXyTTPpVb2MrMqF7Imb7OuohBCHuN2Ke/63lTX7qwg3GXhj1ihiQoOOWG90UB5xzhKsWjAbwyb6IFIhRGs9kl3E2upQ9jUG84+dKTw+sMjXIXXMoN/C8uegdBssfxZO/4evI2oVGeFNnJgOboI3p3mK7HH94Op5rSqyH4vT7WmhBnBtZgWhhkAYgUKIjis09WFxbQo6TeOPwd+B8q+/jQizkSFRLorfvYOUcPlsWojuSnM7YPFT8NJ4T5HdGAJTH4VrF7a6yN4V/pXr6T7jnKRa+oXbfByNEJ2rKqQXa1NnAXDavqcxOet9HJEQAkApxT/m7ODzjUXodRr/njmCrMTwI9bTgBnmDYC0ZhfCH0QFufjnoAI0FB8WxvL5wShfh9QxOh1M/pvn+9WvQN1B38bTSlI1ECeU/Px8HNu+pMf6R9C7rFgis9gz8klcuSVAya9ue3iAs6O1VltQn0qexUSEzs5wxxY27HYdsc7BijqvnIMQ/ubNsgGMCC4i21RIftlcdiSe6+uQ2iQrws3XB3f5OgwhxDGMT9fTf/EfoP6AZ0afKXD2MxCd6dvAfmFlVSgLyiPQa4pb+0hrdnFiWJP+e/pWzCfGms+E/f9mBQN9HZIQJ7z/m7+bt1fsB+Dp3w5hYt+jd5l20UADqYYarJpZWrML4SdOiWvglt6lPLs3iXu3pzEg3Ep/f+6qMGsqZIyD/JWw+Ek49zlfR3RcUmgXJ4z8Awf4z5UDeWySDp2m8f1eJxd9up4622/atJ/LH/uk5QydgdTrXsEQCft/eIcJa2f/6vZNdumjXZxYKp1m/rHExtOnB3Pq/ufYHz0eS1Csr8MSQvg7p5X02tUsvzrUU2QPjYdpT8CgC7tdX9BuBY/vSgbgsrRKeodKa3ZxYnDpTPzQ514u3nY9Q0o/Z4jOxPu+DkqIE9hrS/bx/MJcAB6ePpALRqQddT1NufnbqSYANkhrdiH8yp97l7G+JpSlleHcsCmTL8ftIdxfe13QNJj8ILw1DTa8C+P+DHF9fB3Vr5JCuzgxuByYF97HE6fpASgPySLu5JNYNKH1vScdHsx0yoyLGDIwu3l+rjuRze5EgrFz9elD0U8dctTtFy1ZwcalP2BzHtnaXYhA9+wqO3/6TSa9KOW0fU8zt/8Tvg5JCOGvlIKKXZD7A/H2BgAqMs4i7ncvdttBkuaURLKlLoRQvYube5f5OhwhulRR5Eg2Jl/C8OKPuc74NU+Zu9cHYUKcKN5bdYBHv/E8pX3nGf24YlyPY67bo34NAxP0NLqD2Bh2ahdFKITwBr0Gzw3J5+yVWeyzmLh7Wxr/Hprf3dqhtF7mOMg6A/Z8B9/fB5d97OuIfpUU2kXgqzsIn/6e+IJVuJXiYMQo0oZPIb6N/2UOD2YaExdPWqbncXSbS2NufhwA4+OtZEZkHHP7sKicdp6AEP7P6Ybnm87hmbC36Vu5gN0VC2RQNCFE21nrIPd7qPS0xrPqI5j2RjHPfH4ncd20yN7o1PH4bk9r9j/2LCfeJE+2iRPP0sybyKhZQ2xTHq+dG8xspXwdkhAnlFcW7+Xxb3cCcP3E3tx42q+0CLVbGFb5FQBfNw3DLq3ZhfA7MUEuXhyaz8VrejO3NIqBeU3c0OvIbpD9xtRHYO8C2D0P9syHrNN9HdExSaFdBLZ9i+F/10BjOS5DKOe/W87fbx9Ampc+yltbE4rVrSPG6GRgeJNX9ilEoNrnTmZt2izGFL7Jb/Y9SUHkSKzGKF+HJYTwB8oNRRtg/xJw2UHTQfpYcuw9WHzg5eZxVNqro9v/mhf3JVBsDSLdbOO6Hn58gyMEUF9XR3Fxcbu2fSfmFm4qvJ3zs41UsYY6Jnk3OCHEEZRSPDN/Ny8c6i7mhkm9ufOMfr++0ar/EOKsYX+Nmx9cA2RkBSG6mYLyOjbsLmrVur+PsfFa5UCe2pOMu7aE8aG/PjYhQF5JdUdD9L74vjDmelj5b5h3N/ScCIYgX0d1VFJoF4HJ7YJl/weLHvXcnCcOZufAu/j6gfP4u5cOUefQsak2BICTY+vR+etjOEJ0odXp19C76kfiLPuYtO+fzOv3iK9DEkJ0dw1lsPtbqD9U3ItIhb7TIDSeg6t2ogGXX365Vw5V39Dglf0ctq8xiNf2e558+1v/YoL10opX+Cerw9P14bp169i4c1+791MeG89jw0uZ6f6SD5oupdac7q0QhRC/4HYr/jFnR/PAp3+d1o8bJh2nb+P6Ulj2LAD3LrBinCQlIyG6C0tDPQBPfbqapz5d3ertoidfR8So83iqaAClH72H/eCuVm1XVtPYrjg7zcS/wpaPPU+2rnwBTrnD1xEdlfzXFF0qPz+fioqKdm8fFxdHRsaxu2cBoPoAzP4THFjueT38CjjraWxbvdtabUllOC6lkRZsp2eI3av7FiJQuXRBfN/nb/xuy9VkV3zH7rjT2Rc70ddhCSG6I5fDk8sLVgMK9CboNQmShzUPdlrTYEUB/75hKuOGZLX7UN+s2c0Db87HarV6I3LAMwDqPdvTcCgdk+LqmBJf57V9C9HV7IfGGBraO4Hxo4e3ez8rVthZlPcNp/WEs3fdx8dDXsOlM3krTCHEIU12F3d+tpk5WzwfUj88feCv9sne7IcHwV5PhSmTj7Zt5YpJnRqmEKIN7DbP+9Sx06YzfuTQVm+nFKxwV1NijKbHFU9wmn47odqxa1jrtuSw5OtPqbXYOhyzVwVHwtRH4YvrYPFTMPB8iOnl66iOIIV20WXy8/PJzu6PxdL+LlZCQszk5Ow8erFdKdj0AXx7F9jrISgMznwKhs/sQNRHd8ASxN7GYDQUE+Pq/HdQCSF8oDR8IOtTL2d00TtMzX2Y98L602BK9HVYQojupCrPM+CRtcbzOq4f9JkCpvCjrt4nJZoRfVPbfbicfO936fJBYQyrq8Mw6908nF0k7xVEQAgNNpIcG9Hu7cPMJmbNbmLbLQkkNuYwee8TfN/nb8gfiBDeU1Jr5Q/vrGNrUS1GvcZTvx3C+cPTjr9h/mrY/CEA6xIuRrG1kyMVQrRHRExc87iBrXW+28FnRQ7K7UbW6Abx29QqzMd40nJPUfsbx3a6IRfDpvchbzHMuR2u+KLbvYeQQrvoMhUVFVgsTbx378VkZ8S3efuc/HIuf+wTKioqjiy01x2Eb+6EnXM8rzPGwYyXIKanFyJvyY3G4grPjf7QSAtxJpfXjyFEoFuZ8UcyataQ2LiTs3bfz6eDXkJpkpKEOOHZLbBvAZRu97w2hUOfqRDX/tbqvlDlDuGJXZ4BUO/MKiY9xOHjiIToPgrqFE83nc9DoR8xsGwOpWHZbE6+2NdhCREQNhXUcN076yirtxETGsRLM0cwplfs8Td0u+DbOz3fD7ucykbv30cLIXwnSKc4L7mGjwtjqHIYmF0czQXJ1Zj8rVtDTYNz/g/+Mw72LfI0tu2ExrUdIVUN0eWyM+I71OqsBbcL1r4BC/7hacWuM8Jv7oPxN4NO751j/EKxuRfVDgNmvYux0d2szyoh/IRLF8Tcfo8xc/MVpNZtYlz+q6zIvMHXYQkhfEUpKN0GexeC89CTb6kjocepYPCzbiU0HW9ZT6bBpWdEVCOzMip9HZEQ3c5mVy+W9vgzE/c/x8S8Z6gI6UNR5AhfhyWE31JK8cGafB76egd2p5t+ieG8PmsU6TEhrdvB6legeDOYImHKg/Dl/M4NWAjR5cIMbmakVPO/ohjKbEa+LIliRnINQTo/K7bH9obT7oEf/u4ZGLXXRIhsxVM7XUTn6wCEaLfiLfD6FM8n7/Z6SBsNf1wME27rtCK7ITqFIrNnAJlTYxv879M/IbqRWnM6P/S5D4CTCt8mo3qVjyMSQvhEUzVs+Qh2zfUU2UPjYfiV0Od0/yuyAxEnXcBuVxIhehf/GlSAvns9zSpEt7EhZSY7485Ar1ycvesewmwlvg5JCL9U3Wjn+vfWc98X27A73UzJTuB/N4xvfZG9Jh8WPuL5/vSHICyh84IVQvhUbJCLGSnVmHRuiq1BfF0SidPt66jaYdyfIXUU2Orgqz97Gu10E1JoF35H52yC7+6DVyfBwQ2eT93Pfgau/h4SB3bacRUQe8ZNKE1PptlGvzDvDZgmxIlqd9zpbE66EA3FmXv+RqjN+/0kCyG6J6MOEhu2wro3oOYA6AzQcyKMuAoiUnwdXrvkqziiTrkcgL9nH6RnqAyWLsQxaRrz+9xPWWgWoY4qZuy4DZNTBg0Woi1W7q3kzOeW8t32Uox6jfvPzubVK0YRZmpl5wVKwdw7wNHo6X51xKzODVgI4XMJJiczkqsxam4Km0zMKYnyv2K73gDnvwyGYM8Tsatf8XVEzaTQLvyHUlw22MCAhVfCyn+DcnlGGb5pDYy+BnSd++ucEzyE4Mwh6JSL0+JlAFQhvGVxz9soC80ixFHNuTv/it7dzUY3F0J4XWjVdtZfF0pq/SZwOyG6B4y6xnOT30lPpXW2cpuBD90T0fQGRhr2c1FKta9DEqLbc+qD+br/P2kwxhFvyWXGjtswuKQxixDHU9vk4P7ZW7ns9VWU1FnpFRfKFzeczLWn9EKna8ON6qYPYM/3oA+Cc5/r9HtqIUT3kBTsZHpyDQZNcaDJxOziaGwuPytyxWXB1ENP48x/wNPrRTcgfbQL/1B3kH6V83j/ghCwVkBUBpz1L+g7tUsOv78xiDVhEwBIt+wk0hjXJccV4kTg0pmY0+9JLttyFckN2zh9z8PM6/twtxs9XAjhBdZa+OEh+q57Ey1Rj0Nnwtj3dEgY2C3+5vccrCJ+d1Gbt3MqjYdKRlNHKPaKfK7ssRJN67yn7IQIJHXBKXw+8AUu3nodKfVbOGfXXXzV/1+4dXKrKvxPfn4+FRUVnbZ/pRQrCq28saGWGpunq4QpPc38flgY9tK9bCht/b6MllIG/HgneqCo71WUFjRCwQYA8vLyOiF6IUR3kmp2MCO5mq9KoiiyBvG/g9HMSPazhiKjr/W0aN/1DXx2NVy3CEzhPg1J3r2I7s1WB/sWQ9l2QoF6m6Ju2B9IveBRMAZ3SQhON/xlWzpOzYj1wGYSw4oAKbQL4U215nTm9HuC83f8meyK76g1p7My44++DksI4S1KQc5X8M1foaEEDXhro50R0y5maGIvX0dHRa1ncPM//2c+0PYB4GLPvJmwIbG4bRbKv3iMuquHeTdAIQJcZWgfZg/4Py7cfiM9q1cwNfch5mU9BJq0rhX+Iz8/n/7Z2TRZLJ2yf2N8D6In/R5zr5EAOCoLqfz+Rd7I38obbdyXBsy/IoTBvQysLHAy4R//xK3+ecR6Fpuz44ELIbqtVLODC1OqmX0wmnK7kU8PxpCk65pam1doGkx/EV46GSr3wOwb4OJ3fNqARwrtonty2qBgNRSuBbcDgApzbwb/axNzF88ktYuK7AD/3pfAuppQjG47hd88h3bxb7vs2EKcSAqiRrOo11+Zsvdxxha8TqMxji3JF/o6LCFER9UWwjd3elqaAMT0Zne/G7j6oT+w/qzuMdhpfZOnL/UpMy5iyMDsNm2b405hhzsNUCSWrqSgqpBaS9v2IYSA4oihzOn/JOfl3EF2+TzcmoH5fe5DaXLLKvxDRUUFTRYLM+96msSM3l7bb6MTdtTqyW/UARqaclO9/EPGD+pN9l0PtWufv2mcw+TGz7ARxI9Dn+DWfye1WL5mwRyWff4mNocU2oUIdAkmJxelVvFFcTQ1DgMNMeMJSp7j67BaLyTGU1x/60xPw54Vz8PJt/gsHHnXIroXtwuKN8KBFeA41BIgIg36TCG/2EVJw8YuDWdNdQjP700E4OSGheTWlXXp8YU40WxNuoAwWxljC9/gtH1PYTWEs97XQQkh2sftgjWvwcKHwd4AOiNMuBVO+QsNW3f4OrqjiomLJy0zs9Xrb60zs6M8AoBJcfVUlcoYE0J0xP7ok5mX9Q/O3P03BpbNweRs4Jt+j+DSdY8P5YRojcSM3qRldbz7sLomBxvza9haXItLebqJyUoII6JsE58v/5D4qa+26zjJdZs5c+sXAPzY5y6CEyeT9ot1dm2Rd+BCnEiig1xclFrFlwejqSSYpMueIMex0NdhtV76aDjzCc/gzj/8HeL7Q98zfBKKFNpF96AUlOdA3hKw1njmmWOg56kQ18/z2Eexp8/UnJycdh2irdtV2PTcsiUDNxoXpFQRU76rXccVQrTNyow/EuKoYkjpF5y5+2/k6s7nfV8HJYRom5Kt8NXNcNDT1yvpYzyDrCUETkvvnfXBLCz39AE5MqqRoZFNLPJxTEIEgt3xU3HqTJy96176VP3IjB238lX/f+IwhPo6NCG6RHm9jfX51ewuredQfZ20aDMn94kjKSKY9QvWtnvfZnsVZ++6Fx0ucuKnsSPhXC9FLYTwd+EGNxelVfH+TkW9KZG5hmlk7C7jzqwS2jLGss+MugaKN8OGdzz9tV89D5IGd3kYUmgXvle9H/b9CA0lntfGUOgxAZKGgE7fvFpxVT0acPnll3focPUNDcddx+mGP2/JpNgaRK9QK//IPsizmzt0WCFEa2kaC3vfhcFtZ0D5XG40fs6qQZKuhPALtnpY/CSs/A8oF5gi4fS/w4irQBc4fS3n1AczvywC0BgSYeHkmOO/txBCtN6+2Il8MeA5pufcQUbtOn67/Qa+zH4GS1Csr0MTolM43W72lTeytaiWwuqm5vnpMWZGZcaQHm1G62Cfwzq3k7N33UO4vYxKcw8W9rqrWwxELoToPkw6RY+a9SzLayRy7EW8lJfAjvpg/jWogDiTy9fh/TpNg7Of8dQY85bA+xfDNd9BVEaXhiGVC+E7dcWwfwlUHxrRXB/kafGWNtrz/S/UNFhRwL9vmMq4IVltPtw3a3bzwJvzsVqtx1336T1JrKwKI0Tv4pVhBwgzuNt8PCFE+ylNz/dZD6DhJrv8W96/wMy7ajlVTPR1aEKIo1EKtv0Pvr8f6os98wbMgDOfhPCkX93U32yuNfNjhae7mIHhFibF1UudQohOUBg1is8GvcT5O24mqWEHMzdfwdf9n6QkvOtbpwnRWSoabOQU15FTXE+Tw1PE0vB0ETMiM5rECO+NTXbq/v8jvW4DNn0oX/d/GrshzGv7FkIEDg2oWfxfLh0azg+hU1lcEcFZK/vy7OB8xsc2+jq8X6c3evprf3MalO+Ed8+Hq7+D0LguC0EK7aLLmR1VsG0lVOZ6Zmg6SBkOGeMh6PiPhPZJiWZE39Q2Hzcnv7xV631SFM0r+xMAeHpQIVlh0t+qEL6gND3zsv5OYXE5pxvWMUt9wbq8UJb1uAml6Y+/AyFE1yjL8Qx2un+p53V0TzjzKeg71bdxeZlbwfLKMDbUet6rDIts5NTYBimyC9GJSsMH8NGQNzgv505im/K4eOt1LOp1J+vlNlb4sWqLnT2lDewuraey0d48P8xkYEByBANTIogwG716zOEHP2R48ScAfJf1d6pDenh1/0KIwDPAuYubx/bips0Z5DYGM3NdL27oVcZtvUsxdOcHVc3RcPnn8OYZnrrjexfArDkQHNElh5d3KKLLmGv38r+LzWRXzD00R4PEgZB5sucPoRtYVRXKfds9Rfw/9yrl7KRaH0ckxAlO0/Ff5zSWLVvGQ5OCGXXwPWKa9jOv70PYDF2TKIUQx2CtgyVPwaqXwO0EQzCccgeMvxmM3muB1x3Y3RrzSiPJs3gGZBwb3cBJ0Y1SZBeiC9SYM/lwyFuckfsQWZWLmLL3cQyGYXzh3TqkEJ3G5VYU1zaRV9HI/goLVZafiut6TSMzNoSBKRH0iA1F1wkdIfeu/JGJef8HwNLMP7M3dpLXjyGECEz9w618PW4P/9iZwoeFsby4L5HFFeE8ObCQgRHH7y3CZyJT4YrZnmJ7eIqnpXsXkUK76HwHN8GyZ8je8SXZ2UYUoCUM8BTYQ7pPP4s59cH8YWMPHErH2Uk13Nan1NchCSEA0PjHYjuJp13DdXxKr+plzNx0BXP7PUZp+EBfByfECSU/P5+KshLiDnxN8q53MNprAKhJOpnCgTdiD02GrTuOu5/2DmzuC3UOHV+VRFFpN6LXFFMTaukrT7sJ0aUchlDm9HuS0UX/5eQD/2GSYRNbrg/jtfotFBf3bfd+KyoqvBil6O7y8/M79Wd+OLcpBbVNDgqrLeyvtJBfacHu+qkrUk2DjOgQ+iaG0zs+FJOx857UzKhZzVm77kVDsSXxfNalXtFpxxJCBCazXvH4wCJOjm3gvu2pbKsL4bxVWfyxRzk39y4lWK/ave/OvicwjX2W8IyBZBjNnXqcn5NCu+gcSnkGOF3+rOfrIZ9sdzBo4gUMyO5exbEDliCuXNeTeqeeUVGN/GtQgX+MqiyEH6mvq6O4uLjN29XU1ACwWhtO5OAzOHvXPURZi7hk6zWsSbuGNWm/x607fjqrrqlp1/HlJlwIj/wDB7hr+kAeOgUyYj1Fgd2VLm77zsY3e74Fvm3zPour6r0cpXftaTCxoDwCm1tHiN7FuUk1JAU7fR2WECcmTWNt2lWUhA1g4ta76R1Tz2PqHV5atJSH9/bH6m57sdLVUAXQrvcHwr/k5+fTPzubJoulU/ZviE4hOH0QsWffzjdFeqwF+1ssNxv19IgNoUdcKJkxIZ1aXD8spW4z5+X8BYNysCf2NBb2/qsMfiqEaLdzkmoZE93I33NSmFsaxX/yEphXGsnf+hcxKb6hTfsqrqpHAy6//PLOCfZnQkLM5OTsJCOjawZFlUK78C63C3Z8Ccufg+JNnnmaHgZdyI7YM7jkoYtYPyXKlxEeId8SxGVre1FuN9I/rIk3RuR16BM5IURL1kMDO61bt46NO/e1eXt7mWfAZIvFQllYNh8MfZcpuY/Rt/IHxhW8Sp/KRfzY6w4KI0cedfumpiYAFi1cyJI1m9p8fLkJFwIoWEPMl7fx4QxPYaBeC+f70Bmsip9I/2wD/du4u11b1jP3lUepaeiej5w63LC4Ipzt9SEAJJgcnJNUQ7gMji6EzxVEncSN5ZdyxsF/c83wIG7MzOOSHrV8bZhGjq5vmwqJO3ft4evNP32oLwJXRUUFTRYLM+96msSM3h3al90N1TaNartGlV1HlU3D5v7p987qBp0GiRHBpMeE0DM2lMQIE1oXFrnTa9YyPed2jG4r+6PG8m3fR1CalH+EEB0Tb3Ly4rB8ppfV8MCOVPZZTFy1oRcT4+q4r19xq5/6rGmwooB/3zCVcUOyOi3enPxyLn/sEyoqKqTQLvxMQxlsfBfWvw01+Z55BjOMuBLG3QjRmVg3bPBpiEeT1xjEZet6UWwNoleolXdG5RFplJtoIbzJ7vQU2of2TmD86OFt3n7VCgdL94DN7unP0mYIZ26/x8itmMRp+54m3rKHi7Zdz57Y01iaeTO15rQW29tsnmQ/ql8qo4cPavPx5SZcnNAK1sDipyB3PmGAxaFYHnkeuwffjt0QRko7d9udnxQpsRr4riySGocBUIyKsjA2pgG9NAIUotuwKBPXfmWlMOUM7kjeQJy7it87PmC/qT+LI2ZQZUxs1X5KwwJrPAlxfIkZvUnLav3T1U63m4p6O6V1VkoOTTUWxxHr6TWNUNVI/oqvOPW0KUwYNwaj3jejBfaqWsLZu+7F4LaxP2osX/d/GpcuyCexCCEC09SEOsZGN/DCvkTePhDL4ooIllaEc2l6FTf1KiM5+Mj/k0fTJyWaEX1TOznariWFdtF+SsGB5bD2Dcj5GtyH/pDM0XDSH+Gk6yC0+/TB/kubasxcs7EnlXYDfUKtfDB6HwkmeRxciM4SGmwkObbtA5hGmI9yY6Bp7Io/gwNRYxiX/wpDSj4nq3IRPauWsTXpAtanzKQ+OLnFJuEhpnYdX27CxQlHKTiwApY8DfsWeeZpeirSpzL01k/43RMXkmYI822MnUAzhZIXOpDVRTGARpjexdTEWtLNrbtREEJ0vfXWVP6bOJWT6uczvGExPWw7ySh7ii2h41gTPoVGfZSvQxR+RClFTZODklprc2G9ot6OSx35tHOk2UhihImkiGASI4JJCDex+cc5bF36HtFTTvVZkX1o8SdM2vcvdLjZG30Kc/s/jktn8kksQojAFmF0c1+/YmamVfLE7mTmlUXyfkEsnxZGc1FaNX/qWUbaCfg+Wgrtou1q8mHb57DpA6jY9dP8tNEw6moYeD504UAD7fFtSQS3bc3A6tYxKMLCWyP2Ey9FdiH8jtUYxaLed7El6UIm7n+WzJrVDC/+mKHFn7ErfqoM+CREWzjtsP0LWP0SHNzomaczwNDfwYTbyT9Qy8H6j30bYydQCnJN/Uj9w5WUBUcD0D+siYlx9dKVnBB+wK4LZlnkuWwNHcuptV/Rx7qNYY3LGdS4iq2h41gbPlkK7uKomuyu5lbqh4vrNueRTzcHG3UkRgSTdGhKjAjGHNT5fay3hd5tZ9K+fzGk9HMAtiZOZ2Gvu1s1jpEQQnREj1A7Lw8/wOqqUJ7JTWR1dRjvF8TycWEM56dUc1VGBQMjumd3kZ1B/uueYNo70rrBWkV08WISSpdgKtv00wJjKAy5yFNgTx7aqn3l5Je3+fgAeSXV7dquBU3H/6wj+H5zDwAmxtXxn6H5hEqfq0L4tcrQPnw+4AUyatcwuvC/ZNSuJbv8W7LLv2VYTAqxQ41YNPkwTYijqsn3fHi+7k1oKPXM05tg2GUw4TaIzvTMO9D9uoDrCKVgWWUY/8xNYnPEEPRAsLOBszPsJ2TrGyH8Xa0hnq9jryHNtodxdfNIs+9jeOMyBjeuYkfIaDaGTWx1lzIi8DhciqDkvuTW69i2rYSSOiu1TUfpAkankRBu+qmwHhlMRLChS/tXb6vIpgLO2n0/SQ07UGgsz7yBtamzZOBTIUSXGhPTyMcn7WN1VSgv7EtgWWU4nxbF8GlRDCOjGrkyo5IzE2sJ0gV2QxYptJ9A8vPzyc7uj8XS1Kr1MyM1zu5rYHo/I5N76tHrPIlaoaH1mACDLvRMwa3riuHwQIKXP/ZJ+07gkLKaxvZtpyJJuuKffO/oC8AfepTz16xijL55qk8I4W2aRn7UGPKjxpDQkMOoonfJqljA4KCD/HeGGYv7M/ZW57HbPJxCUx/cWvdqiSREl7JbYOcc2Pge5C0BDr3hDUuCk66Fkb+H0DifhtiZ1laH8M89Sayu9nSBY1AOypd8wNRBCaSZR/g4OiFERxSasvg0rg/p9lzG1X1Lqj2PIZaVDLGsJM/Unw1hE8k39QVNbgJOFFsKa5j5RQnJVz7D5mqA+uZl0SFGTyv1SE9hPS7M1Hzf291pys2Q4s84df9zGN1WmgyRfNv3YQ5Ej/N1aEKIE9iYmEbGxOSxoSaEtw7E8W1pJOtrQllfE8rfjU7OSarBrIp8HWankUL7CaSiogKLpYn37r2Y7Iz4I1dQbsLs5UTYioi0FWJ21rbc3h3Jo/NLufqfXzH45DPafPzDAwmeffHl9Mvq1ebt123JYcnXn1Jrad0oxoc1OHW8lBfPK+6BmJL1hGDjn0NLOCup9vgbCyH8UllYNt/0e4ywHiWYFj3KeMcK+sQ4GWxZzWDLapq0EPaZB5EbPJgDwf1waUZfhyxE57PWwu7vIecryP0BHJaflvU8FYZfCQOmgyEwB0yzujTmlkTyTkEcm2tDAAjS3MxMr8S2YTaPr/oS3aAbfBylEMIrNI0CUxYFcX1Ite9jRMNielu30dO2k562ndTo49gWOoY8LdLXkYou0DMuFJcbXJZaUmPC6ZEcR1KkpwuYYKN/NrwYmqjjPvUiWfsOAJAfOYrvsx6k3pTk48iEEMJjRJSFEVH5lNkMfFgQw/uFsZTZjLxbEAecScofh/M/WwUx1cGMiLKg94/POI9LCu0noOyMeM+ovsoNDWWeR8Zr86GmAFw/L2JrEJkGMb0hvh/5BRaeXfUiV5iPUqRvg9iEBNIyM9u83Z6itnV5U+/U8UFBLK/tj6PC7imiNe1dxxND9nNWUt82H18I4X8aTEl82TiaWa98z91/vJDLetXT27qNEHcDAy1rGGhZg10zkRecTV7wAPab+tOkD/d12MJH2tu92tHExcWRkZHR4f10KCblIqRmN+Hl6wkrW0949TZ06qculGwhSVSmT6Mq/QzsIUngBLZsO+bucnJyAM8H9/qw4l89tFspHC6wuxUOl8KtQKcdnjTKahq6pDWpS8Gm2hC+K43ks6Joqhyet75Gzc1vU6v5c68yUswOHllvOc6e2qagvI4NuzvWUudgRZ2XohGi+6mvq2t+2rU96urrj78SgKZRZOpNkak3kc4KhjUsZaBlNVGuCibUzWVctMZvLjETatnd7lhE9xcebOTlsxOYduo5/OahV0k0R4DdTrWX/88ebljWmSKbCviT8QvG/TEUHQew60JYkXk9G5Mvkac0hBDdUoLJyS19yrixVxnLq8L4sjiaOQfDICqJ7+1JfL8GwnV2RoSUM8xcweDgSmIMbWtgeyzt7bq6I6TQfgLRXHbGpulJaNgB21ZBbQE4fzEggcEMMb0gtjdE9wJj8M8WevcmtDNYXRprq0P5qiSKb0oiaXR5Wihkmm1MsK3gsc/+RfSwS3wcpRDCF7bbEvkh+iwWqItIse8jq2kLfZq2EO6upV/TJvo1bUKhUWpMZ39wf/KCB1BqTPd12KKLtLV7teMJCTGTk7OzQ8X2tsYUa9Y4KVXPmDQ9Y1L1jE3TExXcsmnIjnIXn+c4+TzHwcaS3cBu4Pk2xfX555+jD4vxvNDp0YfFYAiLQWeOQGeOQG8OR2cK+fWdBPUl487ZPOa08u5yjeRgB2lmO6lmB6nBnq9pZjtxQU7a8gS/UlBkNbKxJoTFFeEsqoig0v7T293UYDuXpVdySWoVcSZXm867NSwNnuLfU5+u5qlPV3tln012GV9CBA6rw/N3t27dOjbu3Nfu/djL8gBwOlv/91FriGNx1PksjziLvk2bGWRZRao9jxn9jWy07m93LMI/OOvKgF/kMC87/HtpsXj5vlkpUus2Maz4Y/pULkKndwMaqxjGlhGP0mhK8O7xhBCiExh0MDGugYlxDaTsXs2DCyox9xmDudco6s3hLG5IZXFDKgCOykKs+VuxHczBVrwbZ2URzV1dtkNHPtxvKym0ByqloDoPDm6EgrVQuJahxZtZeU0o1K//aT19EESmQ1QGRGVCWEKHPwl3utzsr7RwoLKRg7VWimuaKK61sn1/KImXPs764Ey25HtuwHWaQgfoNYVBpzDpFEGawqhTBOkUQTr3oa+KWlMiwZlDKdYlsqMumCaXjmqHnhKbkb0NJnLqzWysDcHm/in+3qFW/tiznBnJNXy6sKBD5yWECAxK01Fk6kORqQ8/Rs4gyVFAL+t2elh3kOgoIsmRT5Ijn7H132PRhbIpLAnHIAN6t93XoYtOdNzu1dogJ7+cyx/7hIqKig4V2o8ak3JjdDcR7Kwj2FnbYjK6rUfsw6kZyW0M4/lFBxk/biwDhgzhrCFwVjvief2bdbw8bytDRo3GnNKPSlcwNS4TimNXwg24CNLc6DSFW2m48Ux2tw5N09FICDsbYGeD+ajbB+ncpAY7SDXbSTI5CDO4MencmPVudBqscY8kZloirzT156VVceQ1mqh1tnx7G25wMSmunnOTa5gcX9epj6XabZ6fwdhp0xk/snWDxB/LoiUr2Lj0B2xO738gIISv2A/9Pg/tncD40cPbvZ+FCxtZvwdc7rb/fTh1JnaEnsSO0JMo276MuJwP6HHZWNofjfAHh1ubnza8F/37ZXXKMVatcLB0D9jsXnjPqBQJjTvpXbmY/hXfEWUtbF60ydWHq1/fxOA/Xc4wKbILIfyQtcmCZecyxvdPZlBYKJWEU+KOokxFUEMIxtg0jLFphA8/EwADTqK1RmJoJFprJEJrIgzrccd83rVnH3M/ea9Lnjg6TArtbdTRx8o7+ij50Y6vueyYGgsJqd2DuTaXkNrdhNTuRe9sOWioDihrdBMUk0FUSh9PcT08qc2F9W+++ab58XG7Gw426Sm0GDjYpKfUpqfcpsOljvbbbiQ4YzANAEcO8H58USNJ/N1I3gfeX3ns1RJMDibH13F+SjWjoixHtITbc7CK+HY8zi2PcAvhW+19zPxXHy/XdJQEZVISlMmKiLMIddWSad1JT1sOGdZdhLgbGW/ay5jzzXyu2vOPS/ib5u7VupKjCZqqj5gS92zlX1NNnBWeQ3TjVrDVga2BX23NYY6BiBQIT4GIFAxhCaxfsIWX1n3C9BkpbT43pxs214WwrCKM9X2Gkn5LIkU6PfyshhCqd5EU7CDG6CQ6yEW00UmE0UWwTh2zNfrCFev55pP3ue/qs/jNKeMotgZRaDVS1BREUZPn+1KrEbtbR57FRJ7FdIwIkwgfOpANTuDQ0CsGTZEd3sTo6EamxNcxOrqxywc+j4iJa1c3eT8XFpXjpWiE6H5Cg40kx0a0e/uQYO+MJXHQFc0T39t478r2xyL8S3RYcId+935NhLl9v5c6t4MwexnRTQdIrt9OUv1Wkhp2tBgzza4zsytuKhtTfsf3q3awsWQDg70VuBBC+EhMXDwZPTL5qUragNXVSJE1iKImI6U2I2U2I05loFxFUk5k862QXlPEGJ3EBrWcwg3u5gJ8RW1Dl5+TFNrbwBuPlbf7UXK3m8LdG5l17qlkhjrIjteRHaejf5yO3tG6o46MbnMqtpa5WVXoYmWhk5UFLvJqFD/+czQTM/q1OfZN+4oxxmXwxCdLMCWXYErpizG+B5ruyAFk3PYmHFVFuOrKcdZX4KqrwNVUh7JbGDNxMsMH9kEDXErDrcCFhsPtmexuDbs69NWtO/RVo6LWQk1tHbGx0ZiCzYTo3UQaXSSaHKSb7WRHWBkWaSEr1HbUT7Uqaj0fPPz5P/OB+W0+/8PkEW4hulZHHzNvy+PljfpIdoSOYUfoGHTKRbJ9PyEFSynfuZagfqFtPrbwY0qB2wEuJ7jth746wHVocjt/Nh1ezzOl1dbwyjnBZG54DPaYPYV0p/XoXx2WI7txOyQVuH2cCawH4OeraDoIjoKQ2J9NcRASA4ZjFaRbf9p5liBWVIWxrCKc5VVh1DsP5XkjaECwq4G+0TpSgu0kBztavJltLQ1wW2pJcFcwKf7ob4AdbiixGim0BlHYFESZzUCTS9c8KaCwqJivflzPn6b259T+SfQKtdEjxEawvv2PlgohhAhsOuUk1FVHmKuWMHctwW5L82RyWwh2N2FSTeiVE51yo8OJ/tBXTSncmg43etyaHtehr25Nz6npNVx/qZk48yfE7lyBGx1uTY/SDLg1HUrTYXDbMLqsGN1NBDkbCbeXEmqvQDvKh+h2nZkD0WPJjZlEbuxpOPWHn/7a0bUXTAghulCwXtE71EbvUE8/7W4FlXYDpTYjpVYDZTYjVQ4DTqVRbjdSfmhMxsMMmiLa6CTK6MJm7EnogEmoLrw1kEJ7G3T0sfIWj5Knp4PLDk4b2BvBUgGNFWCp9EyNFVB/0DNAaW0B1BaS5rKzaKaBo/3YXJoRizGaJkMMFmMMTcZomgxR6NJ1jB8J44Fv1uzmgTfnY7Ue/Yb+l8psBjbVhrCpJoRNtWbWqn6kXHP1EesFuW2Eu+sId9cR6m4g1N1IsLKihQPhAKFAKGvXridn63KMI/uTZm57K69F+9fz9dv/4d4bTuemM09r8/b1TZ7md1NmXMSQgdltP748wi2ET3T0MfP2Pl7u1vQUmXqzyWLlna+W8t7FbT608CNJu/7L/lvCSC35BEpdnqJ5OyUA140MgsI2fKir6cEc/dMUEkOlxc1bn3zNJdNOJj0tHUzhYIqAoBCvDnhW2GRkRVUYKyvDWFkVSomtZYu8SIOTCbEN1Oau46P3PuDCi3/L2L4jvXb8YzHqID3EQXqIA2g86jrvF2/ivVWfcto5l3BG0tG7nxFCCHGCqz7AxIP/Yf11ofSOfo/Ig627H26rjDCgrxHYDZVtG2DXqQVRG5xCWVg2xeGDKAkbRHloFm6d8fgbCyFEANNpEG9yEm9yMujQA0luBXVOPZV2w6HJ8321/RcF+KCeRE26qs2NgjrCLwrtL774Ik8//TQlJSUMHTqUF154gZNOOqlrg3C7SdzzIfefGsRvogtJ1ld5bsKVC9yHJ6fnq3L+4rXn+8EmO+fcFU74nKnwVdu7IFDoyK9xEp2QQkRcSouWbPqgMMI1zVPXPoZjjbbrcMN+i4ndDcHsbghmV30wW+rMHLT+4tE3naeleqRmoW98MIkmB0nBDsL0h1uyhR2aji7vQPfoIz0mLr5dj3PLI9xC+FZ7HzP31uPlovN0hzyvdzSSEqUDZTuyZxadAXRG0B+aDr/WGUBvOPT6p3klNU38++t1XH/TbaT16A1GMxiCj/7VaPYU1k0R/PId4IENG7jzD5/xmwuzSY/3Tnc21XY9OfXBbK4NYUudmc21IUfk+yCdmxGRFk6ObeCU2HoGRzah1+CRbdtxHRpMTgghhGiN7pDj0elJa9xGWrKew4+IOdHTqI+kQR9Jky4Mq86MTReCVTNj1YVg15lxaoYjWq4rNHS40SkXeg63eHehUy52bt/G9nUrGXH6hfQfOAidcqEpz7qe1vBunDoTTp0Zh96MXR9CQ1ACdaYkmozRR7wPEEIIcXQ6DaKMLqKMruaW7wAuBXUOPdUOPTUOA7kldezKWQPj295Yt726faH9448/5vbbb+fll19mzJgxPPvss5xxxhns2rWLhIQuHPhD00jNeZWHTwuGhm3Qjm5+jEBksOZ5xLzFvvWegnlo3E/F89A4CEuCqPRDg5WmszG3lJGjT2L9y6czIqv1N9xON1Q5DBSoWEL6ncx8ezardyZzsCmIfRYTeY1BONSRLeM0FH3DrAyLbGJYpIU1yxbz7OsfM+6a6xnbv/NbsgkhhAh83SXPl/e6gHPueYv/3nMpA3qn/lRY1xnbfON7cHcRjy5dwQXPXkzaiBGdFPHR2d0a1XY9RdYgDlqNHGwy8oN7DIm/G8ZfGrKoX3Rkq2+9phgaaWF8TAPjYxoYEWWRrleEEEJ0WHfJ8YQlsTrhUh5+9g2Gn3UZqf1H0qQL9Xphe2FtLXM3LqF80gjsydO9um8hhBDHp9fwjBkV5ALs6PJ3sWrRG3CNFNqbPfPMM/zhD3/g97//PQAvv/wyc+fO5c033+Tuu+/uukA0jU+i/8jK1Ws4aUAmEWGhoOlQmv7Q5PkeTQc/e/3z+UWVDTz3xWpuuuU2UtN7gE6P0hlROgMKmvsMUiiUOtSgzqLAAqrYTX6+lfAR5/BlbQ9W7I3G7tawuTVsbl3z1yaXRq1DT63DQI1DT51T/1PfqgwgfsbZfGYDDrQ8vVC9iz5hNvqFWekbZmVAeBNDIpsIM7ib19nrqgDlRgghhPCW7pLnd9tj2RE2lkX2fuyviW1u1N4yP4NCa36h4Kjr7a+H0EGTWZhnIddd0LxSi/x+aH116NXP56M8cwvyGwkfdR6f1/RicW6UJ9e7NKyH875LR53T02Kj2u7J+42uI8dNAQjOhPpDB0gNtjM00sKQyCaGRloYHNEy3wshhBDe0F1yPHoDuZGnMHfPK8S64ojRH/spbCGEEKIjunWh3W63s379eu65557meTqdjilTprBy5cqjbmOz2bDZfnpsoLbWM1J3XV1dh+P5y/7RkDia/1UCle3cybih/N+aRlizvV2bR516JW8VA8XHW1MBzkMTaLgJctRTW15Mn0hFepgikiaitHriqSXSYUGzAZWeLbcfmn5u3c5CAPL2H0B3lMFXj6f04EEADhYUsGbdhjZvX3BgPwArdhRhmru2zdv7Ov4TeXt/jl22l+3z84sAsFgsHc4lh7dXXTkaSzfW1jzfmTn+2x3lxJ51K08WAB3u6SyOmCl9eH5ZMSw7bsL+VVETLuedEqDkeGu2zPnhNBGJhQitkcaKEtavXcdvh0RwUpqZIKfT82ReEWzDM7VGR/Poz3U0px+2ekc+APPW7SW/2t7u/Xjr3Dr6/6Yz9hWo++mOMQXqfrpjTN7ajzdzPEie/7nudi9vsVgAyM3dh91uO87a7VNQ4Pl9Kti1lTXBHRuc/Nfs37EZgNxt67FbmzrlGAV7d3q+HtjPmqDO69LGm/+nfH0cOZfueRw5l7bz1vv0X+PN+4pf45N7edWNFRUVKUCtWLGixfw777xTnXTSSUfd5sEHHzzcwEwmmWSSSSaZuuVUUFDQFWm022trnpccL5NMMskkkz9MkuflXl4mmWSSSabAnI6X47t1i/b2uOeee7j99tubX7vdbqqqqoiNjUU7QQcXqaurIz09nYKCAiIi2j6QoGhJrqf3yTX1Lrme3uXN66mUor6+npSUFC9Fd2KRHH908jfvXXI9vUuup3fJ9fQub19PyfMdc7w8Hyi//4FwHoFwDiDn0d0EwnkEwjmAnMfRtDbHd+tCe1xcHHq9ntLS0hbzS0tLSUpKOuo2JpMJk6nlY1pRUVGdFaJfiYiI8Os/kO5Grqf3yTX1Lrme3uWt6xkZGemFaAJDW/O85PhfJ3/z3iXX07vkenqXXE/v8ub1lDzv0Zn38oHy+x8I5xEI5wByHt1NIJxHIJwDyHn8UmtyvK7DR+lEQUFBjBw5kgULFjTPc7vdLFiwgHHjxvkwMiGEEEJ0lOR5IYQQIjBJjhdCCHEi6tYt2gFuv/12Zs2axahRozjppJN49tlnaWxsbB65XAghhBD+S/K8EEIIEZgkxwshhDjRdPtC+yWXXEJ5eTl/+9vfKCkpYdiwYcybN4/ExERfh+Y3TCYTDz744BGP4Yn2kevpfXJNvUuup3fJ9exckuc7Tn5HvUuup3fJ9fQuuZ7eJdezc3k7xwfKzysQziMQzgHkPLqbQDiPQDgHkPPoCE0ppbrsaEIIIYQQQgghhBBCCCFEgOnWfbQLIYQQQgghhBBCCCGEEN2dFNqFEEIIIYQQQgghhBBCiA6QQrsQQgghhBBCCCGEEEII0QFSaBdCCCGEEEIIIYQQQgghOkAK7QHk8ccfZ/To0YSHh5OQkMCMGTPYtWtXi3WsVis33ngjsbGxhIWFceGFF1JaWuqjiP3HE088gaZp3Hrrrc3z5Fq2XVFREZdffjmxsbGYzWYGDx7MunXrmpcrpfjb3/5GcnIyZrOZKVOmsGfPHh9G3H25XC4eeOABevbsidlspnfv3jz88MP8fHxruZ7HtmTJEs4991xSUlLQNI3Zs2e3WN6aa1dVVcXMmTOJiIggKiqKa665hoaGhi48C3EikRzfuSTPd5zkeO+RHN9xkuf9V6Dku5deeokhQ4YQERFBREQE48aN49tvv21e7g/n8Ev+miv//ve/o2lai6l///7Ny/3hHA4LhFzbo0ePI34emqZx4403Av7z8wiUXF1fX8+tt95KZmYmZrOZ8ePHs3bt2ubl3fEcun2OVyJgnHHGGeqtt95S27ZtU5s2bVJnnXWWysjIUA0NDc3rXH/99So9PV0tWLBArVu3To0dO1aNHz/eh1F3f2vWrFE9evRQQ4YMUbfcckvzfLmWbVNVVaUyMzPVVVddpVavXq327dunvvvuO5Wbm9u8zhNPPKEiIyPV7Nmz1ebNm9V5552nevbsqZqamnwYeff06KOPqtjYWDVnzhyVl5enPv30UxUWFqaee+655nXkeh7bN998o+677z71+eefK0B98cUXLZa35tpNmzZNDR06VK1atUotXbpU9enTR1166aVdfCbiRCE5vvNInu84yfHeJTm+4yTP+69AyXdfffWVmjt3rtq9e7fatWuXuvfee5XRaFTbtm1TSvnHOfycP+fKBx98UA0cOFAVFxc3T+Xl5c3L/eEclAqcXFtWVtbiZzF//nwFqEWLFiml/OfnESi5+uKLL1YDBgxQixcvVnv27FEPPvigioiIUIWFhUqp7nkO3T3HS6E9gJWVlSlALV68WCmlVE1NjTIajerTTz9tXicnJ0cBauXKlb4Ks1urr69XWVlZav78+WrixInNbyrkWrbdXXfdpSZMmHDM5W63WyUlJamnn366eV5NTY0ymUzqww8/7IoQ/crZZ5+trr766hbzLrjgAjVz5kyllFzPtvhlcm7NtduxY4cC1Nq1a5vX+fbbb5WmaaqoqKjLYhcnLsnx3iF53jskx3uX5Hjvkjzv3wIp30VHR6vXX3/d787B33Plgw8+qIYOHXrUZf5yDkoFbq695ZZbVO/evZXb7farn0cg5GqLxaL0er2aM2dOi/kjRoxQ9913n1+cQ3fM8dJ1TACrra0FICYmBoD169fjcDiYMmVK8zr9+/cnIyODlStX+iTG7u7GG2/k7LPPbnHNQK5le3z11VeMGjWKiy66iISEBIYPH85rr73WvDwvL4+SkpIW1zQyMpIxY8bINT2K8ePHs2DBAnbv3g3A5s2bWbZsGWeeeSYg17MjWnPtVq5cSVRUFKNGjWpeZ8qUKeh0OlavXt3lMYsTj+R475A87x2S471LcnznkjzvXwIh37lcLj766CMaGxsZN26c351DIOTKPXv2kJKSQq9evZg5cyb5+fmAf51DIOZau93Oe++9x9VXX42maX718wiEXO10OnG5XAQHB7eYbzabWbZsmV+cwy91hxxv6PAeRLfkdru59dZbOfnkkxk0aBAAJSUlBAUFERUV1WLdxMRESkpKfBBl9/bRRx+xYcOGFv1THSbXsu327dvHSy+9xO233869997L2rVrufnmmwkKCmLWrFnN1y0xMbHFdnJNj+7uu++mrq6O/v37o9frcblcPProo8ycORNArmcHtObalZSUkJCQ0GK5wWAgJiZGrq/odJLjvUPyvPdIjvcuyfGdS/K8//D3fLd161bGjRuH1WolLCyML774ggEDBrBp0ya/OYdAyJVjxozh7bffpl+/fhQXF/PQQw9xyimnsG3bNr85BwjMXDt79mxqamq46qqrAP/5nYLAyNXh4eGMGzeOhx9+mOzsbBITE/nwww9ZuXIlffr08Ytz+KXukOOl0B6gbrzxRrZt28ayZct8HYpfKigo4JZbbmH+/PlHfLon2sftdjNq1Cgee+wxAIYPH862bdt4+eWXmTVrlo+j8z+ffPIJ77//Ph988AEDBw5k06ZN3HrrraSkpMj1FCLASY7vOMnz3iU53rskxwvh4e/5rl+/fmzatIna2lo+++wzZs2axeLFi30dVqsFSq483MIYYMiQIYwZM4bMzEw++eQTzGazDyNrm0DMtW+88QZnnnkmKSkpvg6lzQIlV7/77rtcffXVpKamotfrGTFiBJdeeinr16/3dWh+S7qOCUA33XQTc+bMYdGiRaSlpTXPT0pKwm63U1NT02L90tJSkpKSujjK7m39+vWUlZUxYsQIDAYDBoOBxYsX8/zzz2MwGEhMTJRr2UbJyckMGDCgxbzs7Ozmx/YOX7dfjigu1/To7rzzTu6++25+97vfMXjwYK644gpuu+02Hn/8cUCuZ0e05tolJSVRVlbWYrnT6aSqqkqur+hUkuO9Q/K8d0mO9y7J8Z1L8rx/CIR8FxQURJ8+fRg5ciSPP/44Q4cO5bnnnvObcwjUXBkVFUXfvn3Jzc31m58FBF6uPXDgAD/88APXXntt8zx/+nkESq7u3bs3ixcvpqGhgYKCAtasWYPD4aBXr15+cw4/1x1yvBTaA4hSiptuuokvvviChQsX0rNnzxbLR44cidFoZMGCBc3zdu3aRX5+PuPGjevqcLu1yZMns3XrVjZt2tQ8jRo1ipkzZzZ/L9eybU4++WR27drVYt7u3bvJzMwEoGfPniQlJbW4pnV1daxevVqu6VFYLBZ0upb/wvV6PW63G5Dr2RGtuXbjxo2jpqamxSf9CxcuxO12M2bMmC6PWQQ+yfHeJXneuyTHe5fk+M4leb57C+R853a7sdlsfnMOgZorGxoa2Lt3L8nJyX7zs4DAy7VvvfUWCQkJnH322c3z/OnnEWi5OjQ0lOTkZKqrq/nuu++YPn26350DdJMc3+HhVEW38ac//UlFRkaqH3/8URUXFzdPFouleZ3rr79eZWRkqIULF6p169apcePGqXHjxvkwav/x8xHWlZJr2VZr1qxRBoNBPfroo2rPnj3q/fffVyEhIeq9995rXueJJ55QUVFR6ssvv1RbtmxR06dPVz179lRNTU0+jLx7mjVrlkpNTVVz5sxReXl56vPPP1dxcXHqr3/9a/M6cj2Prb6+Xm3cuFFt3LhRAeqZZ55RGzduVAcOHFBKte7aTZs2TQ0fPlytXr1aLVu2TGVlZalLL73UV6ckApzk+M4neb79JMd7l+T4jpM8778CJd/dfffdavHixSovL09t2bJF3X333UrTNPX9998rpfzjHI7GH3PlHXfcoX788UeVl5enli9frqZMmaLi4uJUWVmZUso/zkGpwMq1LpdLZWRkqLvuuuuIZf7y8wiUXD1v3jz17bffqn379qnvv/9eDR06VI0ZM0bZ7XalVPc8h+6e46XQHkCAo05vvfVW8zpNTU3qhhtuUNHR0SokJESdf/75qri42HdB+5FfvqmQa9l2X3/9tRo0aJAymUyqf//+6tVXX22x3O12qwceeEAlJiYqk8mkJk+erHbt2uWjaLu3uro6dcstt6iMjAwVHBysevXqpe677z5ls9ma15HreWyLFi066v/LWbNmKaVad+0qKyvVpZdeqsLCwlRERIT6/e9/r+rr631wNuJEIDm+80me7xjJ8d4jOb7jJM/7r0DJd1dffbXKzMxUQUFBKj4+Xk2ePLm5yK6Uf5zD0fhjrrzkkktUcnKyCgoKUqmpqeqSSy5Rubm5zcv94RwOC5Rc+9133yngqLH5y88jUHL1xx9/rHr16qWCgoJUUlKSuvHGG1VNTU3z8u54Dt09x2tKKdXxdvFCCCGEEEIIIYQQQgghxIlJ+mgXQgghhBBCCCGEEEIIITpACu1CCCGEEEIIIYQQQgghRAdIoV0IIYQQQgghhBBCCCGE6AAptAshhBBCCCGEEEIIIYQQHSCFdiGEEEIIIYQQQgghhBCiA6TQLoQQQgghhBBCCCGEEEJ0gBTahRBCCCGEEEIIIYQQQogOkEK7EEIIIYQQQgghhBBCCNEBUmgXQgghhBBCCCGEEEIIITpACu1CiDZxuVy43W5fhyGEEEIIL5McL4QQQgQuyfNCdD4ptAvh5+bNm8eECROIiooiNjaWc845h7179wIwfvx47rrrrhbrl5eXYzQaWbJkCQA2m42//OUvpKamEhoaypgxY/jxxx+b13/77beJioriq6++YsCAAZhMJvLz81m7di2nn346cXFxREZGMnHiRDZs2NDiWDt37mTChAkEBwczYMAAfvjhBzRNY/bs2c3rFBQUcPHFFxMVFUVMTAzTp09n//79nXKthBBCCH8iOV4IIYQIXJLnhQg8UmgXws81NjZy++23s27dOhYsWIBOp+P888/H7XYzc+ZMPvroI5RSzet//PHHpKSkcMoppwBw0003sXLlSj766CO2bNnCRRddxLRp09izZ0/zNhaLhSeffJLXX3+d7du3k5CQQH19PbNmzWLZsmWsWrWKrKwszjrrLOrr6wHPp+UzZswgJCSE1atX8+qrr3Lfffe1iN3hcHDGGWcQHh7O0qVLWb58OWFhYUybNg273d4FV08IIYToviTHCyGEEIFL8rwQAUgJIQJKeXm5AtTWrVtVWVmZMhgMasmSJc3Lx40bp+666y6llFIHDhxQer1eFRUVtdjH5MmT1T333KOUUuqtt95SgNq0adOvHtflcqnw8HD19ddfK6WU+vbbb5XBYFDFxcXN68yfP18B6osvvlBKKfXuu++qfv36Kbfb3byOzWZTZrNZfffdd+2/CEIIIUQAkhwvhBBCBC7J80L4P2nRLoSf27NnD5deeim9evUiIiKCHj16AJCfn098fDxTp07l/fffByAvL4+VK1cyc+ZMALZu3YrL5aJv376EhYU1T4sXL25+ZA0gKCiIIUOGtDhuaWkpf/jDH8jKyiIyMpKIiAgaGhrIz88HYNeuXaSnp5OUlNS8zUknndRiH5s3byY3N5fw8PDmY8fExGC1WlscXwghhDgRSY4XQgghApfkeSECj8HXAQghOubcc88lMzOT1157jZSUFNxuN4MGDWp+XGvmzJncfPPNvPDCC3zwwQcMHjyYwYMHA9DQ0IBer2f9+vXo9foW+w0LC2v+3mw2o2lai+WzZs2isrKS5557jszMTEwmE+PGjWvTY2INDQ2MHDmy+c3Dz8XHx7d6P0IIIUQgkhwvhBBCBC7J80IEHim0C+HHKisr2bVrF6+99lpzP23Lli1rsc706dO57rrrmDdvHh988AFXXnll87Lhw4fjcrkoKytr3r61li9fzn/+8x/OOusswDMQSkVFRfPyfv36UVBQQGlpKYmJiQCsXbu2xT5GjBjBxx9/TEJCAhEREW06vhBCCBHIJMcLIYQQgUvyvBCBSbqOEcKPRUdHExsby6uvvkpubi4LFy7k9ttvb7FOaGgoM2bM4IEHHiAnJ4dLL720eVnfvn2ZOXMmV155JZ9//jl5eXmsWbOGxx9/nLlz5/7qsbOysnj33XfJyclh9erVzJw5E7PZ3Lz89NNPp3fv3syaNYstW7awfPly7r//foDmT9RnzpxJXFwc06dPZ+nSpeTl5fHjjz9y8803U1hY6K3LJIQQQvgdyfFCCCFE4JI8L0RgkkK7EH5Mp9Px0UcfsX79egYNGsRtt93G008/fcR6M2fOZPPmzZxyyilkZGS0WPbWW29x5ZVXcscdd9CvXz9mzJjB2rVrj1jvl9544w2qq6sZMWIEV1xxBTfffDMJCQnNy/V6PbNnz6ahoYHRo0dz7bXXNo9UHhwcDEBISAhLliwhIyODCy64gOzsbK655hqsVqt8Ki6EEOKEJjleCCGECFyS54UITJpSSvk6CCHEiWH58uVMmDCB3Nxcevfu7etwhBBCCOElkuOFEEKIwCV5XojWkUK7EKLTfPHFF4SFhZGVlUVubi633HIL0dHRR/Q9J4QQQgj/IjleCCGECFyS54VoHxkMVQjRaerr67nrrrvIz88nLi6OKVOm8K9//cvXYQkhhBCigyTHCyGEEIFL8rwQ7SMt2oUQQgghhBBCCCGEEEKIDpDBUIUQQgghhBBCCCGEEEKIDpBCuxBCCCGEEEIIIYQQQgjRAVJoF0IIIYQQQgghhBBCCCE6QArtQgghhBBCCCGEEEIIIUQHSKFdCCGEEEIIIYQQQgghhOgAKbQLIYQQQgghhBBCCCGEEB0ghXYhhBBCCCGEEEIIIYQQogOk0C6EEEIIIYQQQgghhBBCdIAU2oUQQgghhBBCCCGEEEKIDvh/lh40uK+0DYwAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.subplots(1,3,figsize=(25,6))\n",
+ "plt.subplot(141)\n",
+ "sns.histplot(data=df,x='average',kde=True,hue='lunch')\n",
+ "plt.subplot(142)\n",
+ "sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='lunch')\n",
+ "plt.subplot(143)\n",
+ "sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='lunch')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "569113e7",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ "- Standard lunch helps perform well in exams.\n",
+ "- Standard lunch helps perform well in exams be it a male or a female."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0b6c697a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.subplots(1,3,figsize=(25,6))\n",
+ "plt.subplot(141)\n",
+ "ax =sns.histplot(data=df,x='average',kde=True,hue='parental level of education')\n",
+ "plt.subplot(142)\n",
+ "ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='parental level of education')\n",
+ "plt.subplot(143)\n",
+ "ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='parental level of education')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9e7fd489",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ "- In general parent's education don't help student perform well in exam.\n",
+ "- 2nd plot shows that parent's whose education is of associate's degree or master's degree their male child tend to perform well in exam\n",
+ "- 3rd plot we can see there is no effect of parent's education on female students."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0b30cbd7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.subplots(1,3,figsize=(25,6))\n",
+ "plt.subplot(141)\n",
+ "ax =sns.histplot(data=df,x='average',kde=True,hue='race/ethnicity')\n",
+ "plt.subplot(142)\n",
+ "ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='race/ethnicity')\n",
+ "plt.subplot(143)\n",
+ "ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='race/ethnicity')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6180a334",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ "- Students of group A and group B tends to perform poorly in exam.\n",
+ "- Students of group A and group B tends to perform poorly in exam irrespective of whether they are male or female"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a1f7eef3",
+ "metadata": {},
+ "source": [
+ "#### 4.2 Maximumum score of students in all three subjects"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "14db115f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "plt.figure(figsize=(18,8))\n",
+ "plt.subplot(1, 4, 1)\n",
+ "plt.title('MATH SCORES')\n",
+ "sns.violinplot(y='math score',data=df,color='red',linewidth=3)\n",
+ "plt.subplot(1, 4, 2)\n",
+ "plt.title('READING SCORES')\n",
+ "sns.violinplot(y='reading score',data=df,color='green',linewidth=3)\n",
+ "plt.subplot(1, 4, 3)\n",
+ "plt.title('WRITING SCORES')\n",
+ "sns.violinplot(y='writing score',data=df,color='blue',linewidth=3)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66d1041f",
+ "metadata": {},
+ "source": [
+ "#### Insights\n",
+ "- From the above three plots its clearly visible that most of the students score in between 60-80 in Maths whereas in reading and writing most of them score from 50-80"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ae77a33d",
+ "metadata": {},
+ "source": [
+ "#### 4.3 Multivariate analysis using pieplot"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2ddf9ce3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.rcParams['figure.figsize'] = (30, 12)\n",
+ "\n",
+ "plt.subplot(1, 5, 1)\n",
+ "size = df['gender'].value_counts()\n",
+ "labels = 'Female', 'Male'\n",
+ "color = ['red','green']\n",
+ "\n",
+ "\n",
+ "plt.pie(size, colors = color, labels = labels,autopct = '.%2f%%')\n",
+ "plt.title('Gender', fontsize = 20)\n",
+ "plt.axis('off')\n",
+ "\n",
+ "\n",
+ "\n",
+ "plt.subplot(1, 5, 2)\n",
+ "size = df['race/ethnicity'].value_counts()\n",
+ "labels = 'Group C', 'Group D','Group B','Group E','Group A'\n",
+ "color = ['red', 'green', 'blue', 'cyan','orange']\n",
+ "\n",
+ "plt.pie(size, colors = color,labels = labels,autopct = '.%2f%%')\n",
+ "plt.title('Race/Ethnicity', fontsize = 20)\n",
+ "plt.axis('off')\n",
+ "\n",
+ "\n",
+ "\n",
+ "plt.subplot(1, 5, 3)\n",
+ "size = df['lunch'].value_counts()\n",
+ "labels = 'Standard', 'Free'\n",
+ "color = ['red','green']\n",
+ "\n",
+ "plt.pie(size, colors = color,labels = labels,autopct = '.%2f%%')\n",
+ "plt.title('Lunch', fontsize = 20)\n",
+ "plt.axis('off')\n",
+ "\n",
+ "\n",
+ "plt.subplot(1, 5, 4)\n",
+ "size = df['test preparation course'].value_counts()\n",
+ "labels = 'None', 'Completed'\n",
+ "color = ['red','green']\n",
+ "\n",
+ "plt.pie(size, colors = color,labels = labels,autopct = '.%2f%%')\n",
+ "plt.title('Test Course', fontsize = 20)\n",
+ "plt.axis('off')\n",
+ "\n",
+ "\n",
+ "plt.subplot(1, 5, 5)\n",
+ "size = df['parental level of education'].value_counts()\n",
+ "labels = 'Some College', \"Associate's Degree\",'High School','Some High School',\"Bachelor's Degree\",\"Master's Degree\"\n",
+ "color = ['red', 'green', 'blue', 'cyan','orange','grey']\n",
+ "\n",
+ "plt.pie(size, colors = color,labels = labels,autopct = '.%2f%%')\n",
+ "plt.title('Parental Education', fontsize = 20)\n",
+ "plt.axis('off')\n",
+ "\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.grid()\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2e2d686a",
+ "metadata": {},
+ "source": [
+ "##### Insights\n",
+ "- Number of Male and Female students is almost equal\n",
+ "- Number students are greatest in Group C\n",
+ "- Number of students who have standard lunch are greater\n",
+ "- Number of students who have not enrolled in any test preparation course is greater\n",
+ "- Number of students whose parental education is \"Some College\" is greater followed closely by \"Associate's Degree\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ab008237",
+ "metadata": {},
+ "source": [
+ "#### 4.4 Feature Wise Visualization\n",
+ "#### 4.4.1 GENDER COLUMN\n",
+ "- How is distribution of Gender ?\n",
+ "- Is gender has any impact on student's performance ?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e1a2c8f5",
+ "metadata": {},
+ "source": [
+ "#### UNIVARIATE ANALYSIS ( How is distribution of Gender ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c435f53b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f,ax=plt.subplots(1,2,figsize=(20,10))\n",
+ "sns.countplot(x=df['gender'],data=df,palette ='bright',ax=ax[0],saturation=0.95)\n",
+ "for container in ax[0].containers:\n",
+ " ax[0].bar_label(container,color='black',size=20)\n",
+ " \n",
+ "plt.pie(x=df['gender'].value_counts(),labels=['Male','Female'],explode=[0,0.1],autopct='%1.1f%%',shadow=True,colors=['#ff4d4d','#ff8000'])\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cfb8c9b2",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Gender has balanced data with female students are 518 (48%) and male students are 482 (52%) "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e440a3a5",
+ "metadata": {},
+ "source": [
+ "#### BIVARIATE ANALYSIS ( Is gender has any impact on student's performance ? ) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "526d49f9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gender_group = df.groupby('gender').mean()\n",
+ "gender_group"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b704f144",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.figure(figsize=(10, 8))\n",
+ "\n",
+ "X = ['Total Average','Math Average']\n",
+ "\n",
+ "\n",
+ "female_scores = [gender_group['average'][0], gender_group['math score'][0]]\n",
+ "male_scores = [gender_group['average'][1], gender_group['math score'][1]]\n",
+ "\n",
+ "X_axis = np.arange(len(X))\n",
+ " \n",
+ "plt.bar(X_axis - 0.2, male_scores, 0.4, label = 'Male')\n",
+ "plt.bar(X_axis + 0.2, female_scores, 0.4, label = 'Female')\n",
+ " \n",
+ "plt.xticks(X_axis, X)\n",
+ "plt.ylabel(\"Marks\")\n",
+ "plt.title(\"Total average v/s Math average marks of both the genders\", fontweight='bold')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "72fbab62",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- On an average females have a better overall score than men.\n",
+ "- whereas males have scored higher in Maths."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1a903c5c",
+ "metadata": {},
+ "source": [
+ "#### 4.4.2 RACE/EHNICITY COLUMN\n",
+ "- How is Group wise distribution ?\n",
+ "- Is Race/Ehnicity has any impact on student's performance ?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69fe557f",
+ "metadata": {},
+ "source": [
+ "#### UNIVARIATE ANALYSIS ( How is Group wise distribution ?)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "acbc5c8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f,ax=plt.subplots(1,2,figsize=(20,10))\n",
+ "sns.countplot(x=df['race/ethnicity'],data=df,palette = 'bright',ax=ax[0],saturation=0.95)\n",
+ "for container in ax[0].containers:\n",
+ " ax[0].bar_label(container,color='black',size=20)\n",
+ " \n",
+ "plt.pie(x = df['race/ethnicity'].value_counts(),labels=df['race/ethnicity'].value_counts().index,explode=[0.1,0,0,0,0],autopct='%1.1f%%',shadow=True)\n",
+ "plt.show() "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1762646a",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Most of the student belonging from group C /group D.\n",
+ "- Lowest number of students belong to groupA."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2d3a3719",
+ "metadata": {},
+ "source": [
+ "#### BIVARIATE ANALYSIS ( Is Race/Ehnicity has any impact on student's performance ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "db261c61",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Group_data2=df.groupby('race/ethnicity')\n",
+ "f,ax=plt.subplots(1,3,figsize=(20,8))\n",
+ "sns.barplot(x=Group_data2['math score'].mean().index,y=Group_data2['math score'].mean().values,palette = 'mako',ax=ax[0])\n",
+ "ax[0].set_title('Math score',color='#005ce6',size=20)\n",
+ "\n",
+ "for container in ax[0].containers:\n",
+ " ax[0].bar_label(container,color='black',size=15)\n",
+ "\n",
+ "sns.barplot(x=Group_data2['reading score'].mean().index,y=Group_data2['reading score'].mean().values,palette = 'flare',ax=ax[1])\n",
+ "ax[1].set_title('Reading score',color='#005ce6',size=20)\n",
+ "\n",
+ "for container in ax[1].containers:\n",
+ " ax[1].bar_label(container,color='black',size=15)\n",
+ "\n",
+ "sns.barplot(x=Group_data2['writing score'].mean().index,y=Group_data2['writing score'].mean().values,palette = 'coolwarm',ax=ax[2])\n",
+ "ax[2].set_title('Writing score',color='#005ce6',size=20)\n",
+ "\n",
+ "for container in ax[2].containers:\n",
+ " ax[2].bar_label(container,color='black',size=15)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8e292ddd",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Group E students have scored the highest marks. \n",
+ "- Group A students have scored the lowest marks. \n",
+ "- Students from a lower Socioeconomic status have a lower avg in all course subjects"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1409042e",
+ "metadata": {},
+ "source": [
+ "#### 4.4.3 PARENTAL LEVEL OF EDUCATION COLUMN\n",
+ "- What is educational background of student's parent ?\n",
+ "- Is parental education has any impact on student's performance ?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38aca4fc",
+ "metadata": {},
+ "source": [
+ "#### UNIVARIATE ANALYSIS ( What is educational background of student's parent ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c05ab987",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.rcParams['figure.figsize'] = (15, 9)\n",
+ "plt.style.use('fivethirtyeight')\n",
+ "sns.countplot(df['parental level of education'], palette = 'Blues')\n",
+ "plt.title('Comparison of Parental Education', fontweight = 30, fontsize = 20)\n",
+ "plt.xlabel('Degree')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3d351e1d",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Largest number of parents are from some college."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6f38ab41",
+ "metadata": {},
+ "source": [
+ "#### BIVARIATE ANALYSIS ( Is parental education has any impact on student's performance ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "122b2581",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.groupby('parental level of education').agg('mean').plot(kind='barh',figsize=(10,10))\n",
+ "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58b3999d",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- The score of student whose parents possess master and bachelor level education are higher than others."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "079f4f29",
+ "metadata": {},
+ "source": [
+ "#### 4.4.4 LUNCH COLUMN \n",
+ "- Which type of lunch is most common amoung students ?\n",
+ "- What is the effect of lunch type on test results?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8584c755",
+ "metadata": {},
+ "source": [
+ "#### UNIVARIATE ANALYSIS ( Which type of lunch is most common amoung students ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a3a277e0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.rcParams['figure.figsize'] = (15, 9)\n",
+ "plt.style.use('seaborn-talk')\n",
+ "sns.countplot(df['lunch'], palette = 'PuBu')\n",
+ "plt.title('Comparison of different types of lunch', fontweight = 30, fontsize = 20)\n",
+ "plt.xlabel('types of lunch')\n",
+ "plt.ylabel('count')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "332b0c50",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Students being served Standard lunch was more than free lunch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d75db26f",
+ "metadata": {},
+ "source": [
+ "#### BIVARIATE ANALYSIS ( Is lunch type intake has any impact on student's performance ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "666babd5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f,ax=plt.subplots(1,2,figsize=(20,8))\n",
+ "sns.countplot(x=df['parental level of education'],data=df,palette = 'bright',hue='test preparation course',saturation=0.95,ax=ax[0])\n",
+ "ax[0].set_title('Students vs test preparation course ',color='black',size=25)\n",
+ "for container in ax[0].containers:\n",
+ " ax[0].bar_label(container,color='black',size=20)\n",
+ " \n",
+ "sns.countplot(x=df['parental level of education'],data=df,palette = 'bright',hue='lunch',saturation=0.95,ax=ax[1])\n",
+ "for container in ax[1].containers:\n",
+ " ax[1].bar_label(container,color='black',size=20) "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0677b04c",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Students who get Standard Lunch tend to perform better than students who got free/reduced lunch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "edd0ec29",
+ "metadata": {},
+ "source": [
+ "#### 4.4.5 TEST PREPARATION COURSE COLUMN \n",
+ "- Which type of lunch is most common amoung students ?\n",
+ "- Is Test prepration course has any impact on student's performance ?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf8f65bd",
+ "metadata": {},
+ "source": [
+ "#### BIVARIATE ANALYSIS ( Is Test prepration course has any impact on student's performance ? )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1b08ed26",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.figure(figsize=(12,6))\n",
+ "plt.subplot(2,2,1)\n",
+ "sns.barplot (x=df['lunch'], y=df['math score'], hue=df['test preparation course'])\n",
+ "plt.subplot(2,2,2)\n",
+ "sns.barplot (x=df['lunch'], y=df['reading score'], hue=df['test preparation course'])\n",
+ "plt.subplot(2,2,3)\n",
+ "sns.barplot (x=df['lunch'], y=df['writing score'], hue=df['test preparation course'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5bab116e",
+ "metadata": {},
+ "source": [
+ "#### Insights \n",
+ "- Students who have completed the Test Prepration Course have scores higher in all three categories than those who haven't taken the course"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4069d6e6",
+ "metadata": {},
+ "source": [
+ "#### 4.4.6 CHECKING OUTLIERS"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "62a813a5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.subplots(1,4,figsize=(16,5))\n",
+ "plt.subplot(141)\n",
+ "sns.boxplot(df['math score'],color='skyblue')\n",
+ "plt.subplot(142)\n",
+ "sns.boxplot(df['reading score'],color='hotpink')\n",
+ "plt.subplot(143)\n",
+ "sns.boxplot(df['writing score'],color='yellow')\n",
+ "plt.subplot(144)\n",
+ "sns.boxplot(df['average'],color='lightgreen')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "957e8bef",
+ "metadata": {},
+ "source": [
+ "#### 4.4.7 MUTIVARIATE ANALYSIS USING PAIRPLOT"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f09f746c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sns.pairplot(df,hue = 'gender')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f7991322",
+ "metadata": {},
+ "source": [
+ "#### Insights\n",
+ "- From the above plot it is clear that all the scores increase linearly with each other."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b7e20716",
+ "metadata": {},
+ "source": [
+ "### 5. Conclusions\n",
+ "- Student's Performance is related with lunch, race, parental level education\n",
+ "- Females lead in pass percentage and also are top-scorers\n",
+ "- Student's Performance is not much related with test preparation course\n",
+ "- Finishing preparation course is benefitial."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.0"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "7f9dc718a552478e14f37d36e0ca2ac7de1ac15c04a40a415ea3abc3fe8a0a39"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebook/2. MODEL TRAINING.ipynb b/notebook/2. MODEL TRAINING.ipynb
new file mode 100644
index 0000000..c51ba3a
--- /dev/null
+++ b/notebook/2. MODEL TRAINING.ipynb
@@ -0,0 +1,1053 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "92e48866",
+ "metadata": {},
+ "source": [
+ "## Model Training"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "25791a74",
+ "metadata": {},
+ "source": [
+ "#### 1.1 Import Data and Required Packages\n",
+ "##### Importing Pandas, Numpy, Matplotlib, Seaborn and Warings Library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "b080dfb2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Basic Import\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt \n",
+ "import seaborn as sns\n",
+ "# Modelling\n",
+ "from sklearn.metrics import mean_squared_error, r2_score\n",
+ "from sklearn.neighbors import KNeighborsRegressor\n",
+ "from sklearn.tree import DecisionTreeRegressor\n",
+ "from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor\n",
+ "from sklearn.svm import SVR\n",
+ "from sklearn.linear_model import LinearRegression, Ridge,Lasso\n",
+ "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n",
+ "from sklearn.model_selection import RandomizedSearchCV\n",
+ "from catboost import CatBoostRegressor\n",
+ "from xgboost import XGBRegressor\n",
+ "import warnings"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e45079ad",
+ "metadata": {},
+ "source": [
+ "#### Import the CSV Data as Pandas DataFrame"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "e11c6255",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('data/stud.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20634923",
+ "metadata": {},
+ "source": [
+ "#### Show Top 5 Records"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "e7e412a2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " math_score \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 72 \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 69 \n",
+ " 90 \n",
+ " 88 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " female \n",
+ " group B \n",
+ " master's degree \n",
+ " standard \n",
+ " none \n",
+ " 90 \n",
+ " 95 \n",
+ " 93 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " male \n",
+ " group A \n",
+ " associate's degree \n",
+ " free/reduced \n",
+ " none \n",
+ " 47 \n",
+ " 57 \n",
+ " 44 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " male \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " none \n",
+ " 76 \n",
+ " 78 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test_preparation_course math_score reading_score writing_score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 "
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbd32281",
+ "metadata": {},
+ "source": [
+ "#### Preparing X and Y variables"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "56d72fde",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = df.drop(columns=['math_score'],axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "cd613177",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " gender \n",
+ " race_ethnicity \n",
+ " parental_level_of_education \n",
+ " lunch \n",
+ " test_preparation_course \n",
+ " reading_score \n",
+ " writing_score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " female \n",
+ " group B \n",
+ " bachelor's degree \n",
+ " standard \n",
+ " none \n",
+ " 72 \n",
+ " 74 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " female \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " completed \n",
+ " 90 \n",
+ " 88 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " female \n",
+ " group B \n",
+ " master's degree \n",
+ " standard \n",
+ " none \n",
+ " 95 \n",
+ " 93 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " male \n",
+ " group A \n",
+ " associate's degree \n",
+ " free/reduced \n",
+ " none \n",
+ " 57 \n",
+ " 44 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " male \n",
+ " group C \n",
+ " some college \n",
+ " standard \n",
+ " none \n",
+ " 78 \n",
+ " 75 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race_ethnicity parental_level_of_education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "\n",
+ " test_preparation_course reading_score writing_score \n",
+ "0 none 72 74 \n",
+ "1 completed 90 88 \n",
+ "2 none 95 93 \n",
+ "3 none 57 44 \n",
+ "4 none 78 75 "
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "f237ea14",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Categories in 'gender' variable: ['female' 'male']\n",
+ "Categories in 'race_ethnicity' variable: ['group B' 'group C' 'group A' 'group D' 'group E']\n",
+ "Categories in'parental level of education' variable: [\"bachelor's degree\" 'some college' \"master's degree\" \"associate's degree\"\n",
+ " 'high school' 'some high school']\n",
+ "Categories in 'lunch' variable: ['standard' 'free/reduced']\n",
+ "Categories in 'test preparation course' variable: ['none' 'completed']\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Categories in 'gender' variable: \",end=\" \" )\n",
+ "print(df['gender'].unique())\n",
+ "\n",
+ "print(\"Categories in 'race_ethnicity' variable: \",end=\" \")\n",
+ "print(df['race_ethnicity'].unique())\n",
+ "\n",
+ "print(\"Categories in'parental level of education' variable:\",end=\" \" )\n",
+ "print(df['parental_level_of_education'].unique())\n",
+ "\n",
+ "print(\"Categories in 'lunch' variable: \",end=\" \" )\n",
+ "print(df['lunch'].unique())\n",
+ "\n",
+ "print(\"Categories in 'test preparation course' variable: \",end=\" \" )\n",
+ "print(df['test_preparation_course'].unique())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "924b7f9d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y = df['math_score']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "ffc69816",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 72\n",
+ "1 69\n",
+ "2 90\n",
+ "3 47\n",
+ "4 76\n",
+ " ..\n",
+ "995 88\n",
+ "996 62\n",
+ "997 59\n",
+ "998 68\n",
+ "999 77\n",
+ "Name: math_score, Length: 1000, dtype: int64"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "1e290fe3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create Column Transformer with 3 types of transformers\n",
+ "num_features = X.select_dtypes(exclude=\"object\").columns\n",
+ "cat_features = X.select_dtypes(include=\"object\").columns\n",
+ "\n",
+ "from sklearn.preprocessing import OneHotEncoder, StandardScaler\n",
+ "from sklearn.compose import ColumnTransformer\n",
+ "\n",
+ "numeric_transformer = StandardScaler()\n",
+ "oh_transformer = OneHotEncoder()\n",
+ "\n",
+ "preprocessor = ColumnTransformer(\n",
+ " [\n",
+ " (\"OneHotEncoder\", oh_transformer, cat_features),\n",
+ " (\"StandardScaler\", numeric_transformer, num_features), \n",
+ " ]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "9c68f99a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = preprocessor.fit_transform(X)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "72459f1d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(1000, 19)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "ed5c4e99",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "((800, 19), (200, 19))"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# separate dataset into train and test\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)\n",
+ "X_train.shape, X_test.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4cd80317",
+ "metadata": {},
+ "source": [
+ "#### Create an Evaluate Function to give all metrics after model Training"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "8c247bd0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def evaluate_model(true, predicted):\n",
+ " mae = mean_absolute_error(true, predicted)\n",
+ " mse = mean_squared_error(true, predicted)\n",
+ " rmse = np.sqrt(mean_squared_error(true, predicted))\n",
+ " r2_square = r2_score(true, predicted)\n",
+ " return mae, rmse, r2_square"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "79ccb8e7",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Linear Regression\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 5.3243\n",
+ "- Mean Absolute Error: 4.2671\n",
+ "- R2 Score: 0.8743\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 5.3960\n",
+ "- Mean Absolute Error: 4.2158\n",
+ "- R2 Score: 0.8803\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "Lasso\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 6.5938\n",
+ "- Mean Absolute Error: 5.2063\n",
+ "- R2 Score: 0.8071\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 6.5197\n",
+ "- Mean Absolute Error: 5.1579\n",
+ "- R2 Score: 0.8253\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "Ridge\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 5.3233\n",
+ "- Mean Absolute Error: 4.2650\n",
+ "- R2 Score: 0.8743\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 5.3904\n",
+ "- Mean Absolute Error: 4.2111\n",
+ "- R2 Score: 0.8806\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "K-Neighbors Regressor\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 5.7077\n",
+ "- Mean Absolute Error: 4.5167\n",
+ "- R2 Score: 0.8555\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 7.2530\n",
+ "- Mean Absolute Error: 5.6210\n",
+ "- R2 Score: 0.7838\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "Decision Tree\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 0.2795\n",
+ "- Mean Absolute Error: 0.0187\n",
+ "- R2 Score: 0.9997\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 7.6371\n",
+ "- Mean Absolute Error: 6.0250\n",
+ "- R2 Score: 0.7603\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "Random Forest Regressor\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 2.2851\n",
+ "- Mean Absolute Error: 1.8253\n",
+ "- R2 Score: 0.9768\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 6.0959\n",
+ "- Mean Absolute Error: 4.7194\n",
+ "- R2 Score: 0.8473\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "XGBRegressor\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 0.9087\n",
+ "- Mean Absolute Error: 0.6148\n",
+ "- R2 Score: 0.9963\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 6.5889\n",
+ "- Mean Absolute Error: 5.0844\n",
+ "- R2 Score: 0.8216\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "CatBoosting Regressor\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 3.0427\n",
+ "- Mean Absolute Error: 2.4054\n",
+ "- R2 Score: 0.9589\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 6.0086\n",
+ "- Mean Absolute Error: 4.6125\n",
+ "- R2 Score: 0.8516\n",
+ "===================================\n",
+ "\n",
+ "\n",
+ "AdaBoost Regressor\n",
+ "Model performance for Training set\n",
+ "- Root Mean Squared Error: 5.7843\n",
+ "- Mean Absolute Error: 4.7564\n",
+ "- R2 Score: 0.8516\n",
+ "----------------------------------\n",
+ "Model performance for Test set\n",
+ "- Root Mean Squared Error: 6.0447\n",
+ "- Mean Absolute Error: 4.6813\n",
+ "- R2 Score: 0.8498\n",
+ "===================================\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "models = {\n",
+ " \"Linear Regression\": LinearRegression(),\n",
+ " \"Lasso\": Lasso(),\n",
+ " \"Ridge\": Ridge(),\n",
+ " \"K-Neighbors Regressor\": KNeighborsRegressor(),\n",
+ " \"Decision Tree\": DecisionTreeRegressor(),\n",
+ " \"Random Forest Regressor\": RandomForestRegressor(),\n",
+ " \"XGBRegressor\": XGBRegressor(), \n",
+ " \"CatBoosting Regressor\": CatBoostRegressor(verbose=False),\n",
+ " \"AdaBoost Regressor\": AdaBoostRegressor()\n",
+ "}\n",
+ "model_list = []\n",
+ "r2_list =[]\n",
+ "\n",
+ "for i in range(len(list(models))):\n",
+ " model = list(models.values())[i]\n",
+ " model.fit(X_train, y_train) # Train model\n",
+ "\n",
+ " # Make predictions\n",
+ " y_train_pred = model.predict(X_train)\n",
+ " y_test_pred = model.predict(X_test)\n",
+ " \n",
+ " # Evaluate Train and Test dataset\n",
+ " model_train_mae , model_train_rmse, model_train_r2 = evaluate_model(y_train, y_train_pred)\n",
+ "\n",
+ " model_test_mae , model_test_rmse, model_test_r2 = evaluate_model(y_test, y_test_pred)\n",
+ "\n",
+ " \n",
+ " print(list(models.keys())[i])\n",
+ " model_list.append(list(models.keys())[i])\n",
+ " \n",
+ " print('Model performance for Training set')\n",
+ " print(\"- Root Mean Squared Error: {:.4f}\".format(model_train_rmse))\n",
+ " print(\"- Mean Absolute Error: {:.4f}\".format(model_train_mae))\n",
+ " print(\"- R2 Score: {:.4f}\".format(model_train_r2))\n",
+ "\n",
+ " print('----------------------------------')\n",
+ " \n",
+ " print('Model performance for Test set')\n",
+ " print(\"- Root Mean Squared Error: {:.4f}\".format(model_test_rmse))\n",
+ " print(\"- Mean Absolute Error: {:.4f}\".format(model_test_mae))\n",
+ " print(\"- R2 Score: {:.4f}\".format(model_test_r2))\n",
+ " r2_list.append(model_test_r2)\n",
+ " \n",
+ " print('='*35)\n",
+ " print('\\n')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "06480b5a",
+ "metadata": {},
+ "source": [
+ "### Results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "e0159e5f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Model Name \n",
+ " R2_Score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " Ridge \n",
+ " 0.880593 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Linear Regression \n",
+ " 0.880345 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " CatBoosting Regressor \n",
+ " 0.851632 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " AdaBoost Regressor \n",
+ " 0.849847 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " Random Forest Regressor \n",
+ " 0.847291 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " Lasso \n",
+ " 0.825320 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " XGBRegressor \n",
+ " 0.821589 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " K-Neighbors Regressor \n",
+ " 0.783813 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " Decision Tree \n",
+ " 0.760313 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Model Name R2_Score\n",
+ "2 Ridge 0.880593\n",
+ "0 Linear Regression 0.880345\n",
+ "7 CatBoosting Regressor 0.851632\n",
+ "8 AdaBoost Regressor 0.849847\n",
+ "5 Random Forest Regressor 0.847291\n",
+ "1 Lasso 0.825320\n",
+ "6 XGBRegressor 0.821589\n",
+ "3 K-Neighbors Regressor 0.783813\n",
+ "4 Decision Tree 0.760313"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame(list(zip(model_list, r2_list)), columns=['Model Name', 'R2_Score']).sort_values(by=[\"R2_Score\"],ascending=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "357a7c1c",
+ "metadata": {},
+ "source": [
+ "## Linear Regression"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "9a6ad559",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Accuracy of the model is 88.03\n"
+ ]
+ }
+ ],
+ "source": [
+ "lin_model = LinearRegression(fit_intercept=True)\n",
+ "lin_model = lin_model.fit(X_train, y_train)\n",
+ "y_pred = lin_model.predict(X_test)\n",
+ "score = r2_score(y_test, y_pred)*100\n",
+ "print(\" Accuracy of the model is %.2f\" %score)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d31453e",
+ "metadata": {},
+ "source": [
+ "## Plot y_pred and y_test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "eb557b0a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMG0lEQVR4nO3deXhU9d3//9ckkIUlA4HCBGWJFAsxKiACEbrcECpCEZcuILS4lP6kUFnuqtiKSBHR9q7S3i4IRapFsPXrgrjgrcGC0ECQADVFAZGtQELZkrAkQOb8/ogzZpJZzsyc2ZLn47pyXeTMmTOfORd43n4+78/7bTMMwxAAAEACSor1AAAAAEJFIAMAABIWgQwAAEhYBDIAACBhEcgAAICERSADAAASFoEMAABIWM1iPYBIczqdOnz4sFq3bi2bzRbr4QAAABMMw1BlZaU6deqkpCTf8y6NPpA5fPiwOnfuHOthAACAEBw8eFCXXnqpz9cbfSDTunVrSbU3IiMjI8ajAQAAZlRUVKhz587u57gvjT6QcS0nZWRkEMgAAJBgAqWFkOwLAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAEhaBDAAASFgEMgAAIGERyAAAgIRFIAMAABJWo6/sCwAArFfjNFS094SOVlapQ+s09c/OVHJS9JszE8gAAICgrC45ojmrduhIeZX7WJY9TbNH5Wh4blZUx8LSEgAAMVbjNFS457hWbjukwj3HVeM0Yj0kn1aXHNGkZcUeQYwklZZXadKyYq0uORLV8TAjAwBADMXT7EYgNU5Dc1btkLcwy5BkkzRn1Q4Ny3FEbZmJGRkAAGIk3mY3Ainae6LBWOsyJB0pr1LR3hNRGxOBDAAAMRBodkOqnd3wt8wU7SWpo5W+g5hQzrMCS0sAAMRAMLMbed3bNXg9FktSHVqnWXqeFZiRAQDAQmZnScKZ3YjVklT/7Exl2dPkK/vFptpgqn92ZkQ+3xtmZAAAsEgwsyShzm7EMuE2Ocmm2aNyNGlZsWySxxhcnzR7VE5U68kwIwMAgAWCnSUJdXYj1gm3w3Oz9Oz4vnLYPQMshz1Nz47vG/WdVszIAAAQplBmSUKd3YiHhNvhuVkaluOIi8q+zMgAABCmUGdJQpndiJeE2+Qkm/K6t9Po3pcor3u7mAQxEjMyAACELZxZkmBnN1xLUqXlVV5ngGyqDYSimXAbSwQyAACEKdxZEtfshhnxmHAbSywtAQAQpmhvS463hNtYYkYGAIAwxWKWJJ4SbmPJZhhG/LbYtEBFRYXsdrvKy8uVkZER6+EAABqxRGoAGe/MPr+ZkQEAwCLMkkQfgQwAoMmpcRoEG40EgQwAoEmJ5PIPS0vRR44MAKDJcLURqP/gc83FhLPjx9+1DUl3DuqmYTkOZn9MMvv8Zvs1AKBJCNRGQKptI+CrW3W4135+wz6NXbxRgx9fE7Hu1E0RgQwAoEmIZLPFQNeuy1cTSYSGQAYA0CREstliMO8Jd/YHnghkAABNQrBtBGqchgr3HNfKbYdUuOe436Aj2AaN4cz+wBO7lgAATUIwzRaD3X0U6Nq+hDL7A0/MyAAAGj1X3Zgbch0ypAY9keq2EXh/R6kmLStukPPiL7fF1aKg7rXMCHYmBw0xIwMAaNS8za7YbFLd4iOOL2dbhuU4NPjxNX53H/3q9U907oJTjgzPQnquRo71P8uburM/CA+BDACg0fJV28WV7nLXoG7Kr1PbpXDP8YBByIkzFzT9r9skNVxuqtui4IMdpVqyYV+D90eqiWRTxdISAKBR8lfbRaoNKN4pKfWYVQk2Z8XbclNykk153dtp1qgrtHB8XzkyPJePHPa0sArvwROBDACgUQqlbkwou4+kQFupPY8bhiGnU6Z3RME/lpYAAI1SKHVjrunaVkm2r5aezKgbEOV1b+c+7mtZq7SiWj9fXuxxjH5MoWNGBgDQKAVbN0aStuw/GVQQU1fdgCjQslZ9VPsNHTMyAIC45do2fbSySh1ap+marm21Zf9J9+/+GjAGUzfGJZy6LnUDomBaFkhybwmfs2qHhuU4SAIOAoEMACAueds2XX/Zx9+SjKu2y6Rlxe4O1C6+dg6FUtfFqoDI1xIV/GNpCQAQd1z5JfVnNeov+wRaknHVdnHYze0ccs3iBDsfYkVA5EK13+AwIwMAiCvB5JeYWZKpW9sl0JKUaxbn7mXFDV7zJskmTfxmts+AKNiWBRLVfoPFjAwAIK6Ekl8SqAGjq7bL6N6XKK97O8tyUAxDWrRub4MZoVBaFthUu1RGtd/gEMgAAOKCq9v0uyHu3LFiScY1G2SWvzoyvpa1vKHab+hYWgIAxJy3xN5gWbEkE+xskOQ/SdfbstbJM9Wa+/anHp/joI5MyAhkAAAx5atwnFlWNmAMZ1bH13tdy1p1XZ+bZSpnB4ERyAAAYibYwnH1Wb0kE86sTjDv9RbcIDTkyAAAYibYpZz6sYrVDRhD3X5Nkm7sMCMDAIgZs0s5P8nrqhtys4Kq7OtP/YrBruv4K6Lnz41XZ7E0FCMEMgCAmDG7HHNDbpZ7KSbcJRlvicV1KwS7dhsFk3z85vYjum94LyUn2XwGSYgMAhkAQMyE0g8pEH+BhM+O1F9WCHYtU9XdbbTh8//oqQ/3+P1M166l8nPn/QZJsB6BDAAgZkLph+SPv9mWYTkOn4nF3ioEuxJyzS5/fbCjVM9v2BcwSIK1SPYFAMRUsP2QfPHVn8kVSDy1ZrffpSJfFYLbt0w19fmvbf23zyBJ8l40D+FjRgYAEHPB9EOqr8ZpaOMXxzXz1U/8zrYs3bDP1FgazMCYTG85efaiz9fobB05BDIAgLjgrbZKoMRZsxWBDUmnzl0wNY76CcjHTleb+wIm0NnaegQyAIC4FGh3UbgVgeurn1jsCqJ2lVVa9Al0to4EAhkAQNwJtLvo6dv6au7boVcErq9+YnEovZ/atmimU2cvWrb7CuaQ7AsAiCv+2ha4js1aWRJWg8n66iYW+0oaDuSWPpdKaphSQ2fryIppIFNTU6NZs2YpOztb6enp6t69u+bOnSvD+Oqvr2EYeuihh5SVlaX09HTl5+dr9+7dMRw1AMAKNU5DhXuOa+W2Qyrcc9y9oydQ2wJD0vEz5y0bx6yRvbT+/iEanpsVVu+n/BxHyLuvfN0LBBbTpaXHH39czz77rF544QVdccUV+vjjj3XHHXfIbrfrnnvukST99re/1R//+Ee98MILys7O1qxZs3T99ddrx44dSktjrREAEtHqkiN6+M1/qbTiq0RaR0aqHr7xClVfdEZ1LO1bp7pnSoLt/SR5LhslJ9mC3n0VKBcI/sU0kPnHP/6h0aNHa+TIkZKkbt26acWKFSoqKpJUOxuzYMECPfjggxo9erQk6cUXX1THjh31xhtvaMyYMTEbOwAgNKtLjujuZcUNjpdWVOvuZcUakdvR1HUyWzbXyTMXfM6etExN1pnqmoDXqZuAG+yuIm/LRsF0tjZbaRi+xXRp6brrrlNBQYF27dolSdq+fbvWr1+vG264QZK0d+9elZaWKj8/3/0eu92uAQMGqLCw0Os1q6urVVFR4fEDAIgPNU5DM1/7xO8575SU+X3dptoZi0dG57p/r/+6TdLvbr1KWXb/M/dZ9XYpHasMbqt1ON23zeQCUUQvsJjOyMycOVMVFRXq2bOnkpOTVVNTo3nz5mncuHGSpNLSUklSx46e0XnHjh3dr9U3f/58zZkzJ7IDBwCEZOOe4zp11lw9F29cbQxuyHWobctUPX1bH819+1OPZRlHnWWZ7f8+pefW7fV5PVfXarO7lGySMlum6MGRveSwp4fVENJMLhBF9AKLaSDzt7/9TS+99JKWL1+uK664Qtu2bdO0adPUqVMnTZgwIaRrPvDAA5oxY4b794qKCnXu3NmqIQMAwlD4xbGw3m+zSYYhPb9hn57fsE9Z9jTNGpmjti1TGuSk1DgNvbn9iN/r/XXzv5XevJn+ULA7YIKvK1yZd3OuJcs9ZpexKKLnX0wDmXvvvVczZ85057pceeWV2r9/v+bPn68JEybI4XBIksrKypSV9dVfmrKyMvXu3dvrNVNTU5Waaq4vBgAg2kKbvbgh16F3S0pVf5WltLxKk5fX5pKM7n2JpK92AG34/FjAGZZT5y5oQYG5nbAOixNwzRbHo4iefzHNkTl79qySkjyHkJycLKezNmM9OztbDodDBQUF7tcrKiq0adMm5eXlRXWsAIDwhbpEUrjnuNfj9XNJVpcc0eDH12js4o166sPPQxxlQ3W3aFulf3amsuxpPkM7Vy4QRfT8i+mMzKhRozRv3jx16dJFV1xxhbZu3aonnnhCd955pyTJZrNp2rRpeuSRR9SjRw/39utOnTrppptuiuXQAQAhGHhZO7Vp0TzoPBl/fZJcuSRTlhfr3RLv+ZPhqrtFO1i++kUlJ9k0e1SOJi0rduf+uFBEzzybUbf6XJRVVlZq1qxZev3113X06FF16tRJY8eO1UMPPaSUlBRJtVuwZ8+erUWLFunUqVMaPHiwnnnmGV1++eWmPqOiokJ2u13l5eXKyMiI5NcBAJjga/u1NzZJ9hACH6utmDgwpNkkMzViqCPjndnnd0wDmWggkAGA+FNbEG+HSit857C45iGm5V+uJz/YFZ2BeRmDw56m9fcPCXpmxFeNGNdV6m7bDtTluyky+/ymaSQAIOLqP6iH5Tg8KuDuO3ZWK4oOeAQ2ruTaYTkOvbz5gErLqyxrEmlGOMs7gWrE2FSb1zMsx+FeZmKLdWgIZAAghprC/4n7WjqZNbKX2ras3WXaPztTk77TXVv2n/R6L3zlkgSrVWqyTpuo9iuFt0vJihoxTeHvhhUIZAAgRppCboSv5ZUj5VX6+fKtHsccGWka27+LurVv4T7mephXX3RqWv7lDWZtgpFkk+bfcpXuWVH7ufWTaw1J0/N7qFv7lmEHDuHWiGkKfzesQiADADHQFHrsBNtJurSiyiMXpk2L5pLkkejryEjV9PweulDj1FMf7glqPE5Dat8qVc+O79sgSIinGjFN4e+GlQhkACDKgs2fSEQ1TkN/3rA36E7SdXnbqVRaUa0FH+zW07f1UZY9LejrH62s0ujelwTdoTpYrhoxvvJ66nbMrqsp/N2wGoEMAERZNHrsmMmvCDUHI9D7zPYtCpUhae7bn+p7V2Vp8Ue++yh545oBiXRybag1Yui/FDwCGQCIsmDzJ4INOCJZuyTQ+3wti1jtSHmVXi0+FNR7kmzSNV3bRmhEDQ3PzQp6GYv+S8EjkAGAKAsmfyLYgMNMfoWkkHIwAl3b1Yk6WlukT5w5H9T5TkPasv9kVGcyhudmBbWMRf+l4BHIAECUmc2fOHmmWpOXbzUdcJjNrzAMI+gcDDPXfnBliU6ciW0F3kBiMZMRzDJWqLk1TVlMm0YCQFPkyp+QGvaCdv0+a2SOz9mN+o0SJXPJta78itKK6oDnFO094XHcTO5GvAcxUvzPZJj5u0H/JU8EMgAQA678CYfd88HqsKfp2fF91bZliumkT1fH57lvf2rZ+OrPXMRjTkZmyxSfnaPri2Yn6RqnocI9x7Vy2yEV7jnuDjbNCvR3g63XnlhaAoAY8Zc/sXKbuUTW93eUaumGfZbnpdSfuTA7k5HZMkUnz5wPajw/yeuqdi1Tvix253u2qK7aysA5+vnywM0nozmTYVUhu2Bza5oyAhkAiCFf+RNmA4c3th02HTS48isMw1BZRXVQORiu3A1/s0Su4GKyieCirhtys5TXvZ2mDOlRp/fSGT35wW6/W5fNsrrYnS9WF7Kj/5I5BDIAEIfMJH22bdnc9M6d+gFAsPVNkpNsuvHqLD23znfdlhuvztKIq7L0s39na/FHexVoRaV+0FT/wf0NR2ufW5eH5Th0zSPv+71+y5RkLfpJPw28rF3EZzIoZBc7BDIAEIfMFFS7ufclWrJhn6nr1Z+VCLa+SY3T0F82HvD7Gcs2HtDVl7bVonV7A84SmVnu8be8suHzY14r/9Z15nxtc8hoBA4UsosdAhkAiFOBCqrZ01NMBTKzRvbS7YOyPR7oweZg/OPzYzp73n/X6DPna/TrNz4xtdRldrnH1/JK4Z7jJj6l9rxBX29v6txwUMgudghkACCO+Qs4apyGqZoj9YMYl2ByMF4t/rep804GmCWRvAdWwTObGRSd8nwUsosdtl8DQJxzBRyje1+ivO5f5XsEW3MknG3BZ89fDPdruJkJdgLJu8zcLIvZ88LlymnyFZpFc/t3U0MgAwAJzGzNEVetmbGLN2rqy9s0dvFGDX58jVaXHDH1Odd2sy6v46kPPw/qs70Z2L2d2rRo7vecNi2aa2CU8lEoZBc7NsMwotUWIyYqKipkt9tVXl6ujIyMWA8HACKifmPJa7q21Zb9J7/cynxWCz7Y1WCRxfVINbMt+PxFp77x4LuWLdQE89m+rC45oruX+d7qvTAGxeOsqiMD889vAhkAaGS8PUx9ceXRrL9/iN/ZghqnoSsffs9vwm9Ksk3na8w/Usx+tj+rS47o4Tf/5VFIz5GRqodvvCJmgUOw3crhndnnN8m+ANCI+CrK5ovZbcFFe08E3LUUTBATzGf7Y3b3VTSDCwrZRReBDAA0AjVOQxv3HNfMV81tf64v0LbgSG4bfvfLXJlQg4tAgUPtrM0OlVbU2cKekaaHb2S5pzEgkAGABBfMUpIvrm3BvmYuIrlt+MXC/XqxcH9Eckl85dGUVlTp7mXFMcmjgbUIZAAggQW7lFRf3TYB/mYuhuU4Atas6ZiRqsqqi+6KusEKtSeRLzVOQzNf+8TvOQ+89gltAxIc268BIEH56+9jliHphlyHnlrzue5eVuwRxEhfzVy8v6NUs0fl+PwsQ9JD38tR82ahP1Zc156zakdQNW582fjF8YBtDE6evaCNX5irEoz4RCADAAkqUH8fs57fsE9PfrDL7zkPvPaJnAGCi91HTwcMHAKpmwAcrmDaGCBxEcgAQIKKZt+ek2cv6NdvlPh83SZpqckGlmZY893iq40BIoNABgASVLT79vhrLWBIOnUu/NYDLu1bpYZ9jXhrY4DIIJABgAQVqL+PJLVMSY7aeCSpRYDPa5Vqco+JBZMk8dbGAJFBIAMACSpQfx+bpDHXdo7qmJJs/nf/OE0Wkz92pjrwSQEkJ9n02C1X+j3nsVuuZMdSgiOQAYAEFqhpZH6OIyrjsEnKbNlcp6v9d8kOVB3Yxapls+G5WVo4vq8cGZ5LVY6MVGrINBLUkQGABOevTH+N0/Bb/8UKrvmMm3tfoiUmEn7bpDdX+bkLPuvRuOraWMVsGwMkJgIZAGgEfJXpdy0/+esSHS7HlxV57ekppgKZ/F4d9P+KD8kmz1QYV1gxe1SO5UEG/Y8aLwIZAIiAROyAnGVP069G9NKaT8v0+rbDAc//SV5X3ZCb1WD2J1Btm/9XfMidhFu37owjAi0K0PgRyACAxbz1PopEHyEzzJTpT0m26d7reyorI1Xz3vnUdJG963McHrMcyUk23Xh1lp5btzfge8u/DGCm51+ubu1bJEywh/hDIAMAFvLV+6i0vLbU//T8HurWvmVYD25vsz01TkN/Kdyn/SfOqmtmC/04r5tSmiVp457AZfrP1xia986nQY+j/lapGqehN7cfMfVW48u3v7z5gNbfP4QABiEjkAEAi/jrfeQ69uQHu93HHBmpevjGK4KapfE229MiJVnnLtSo7s7mee98qonfzFbz5MhtTj122nOLdLAtE+q2I/CVv5KIS3SILgIZALBIsA/y0opq3b2s2PQ2YF+zPd62NDsN6bl1e9WncxvT4wlW/eq7obYV8PW+eFqiQ/yijgwAWCTUB/nM1z4J2O051E7X2/59KqQxmVJvMKHWfvH2PlfQVj8wLC2v0qRlxVpdYm4JC40fgQwAWCTUB/mpsxe08csOzDVOQ4V7jmvltkMq3HPcHeCE2unaMKTmyZFZiqlffddMy4S6bKqdYalfM8bMEt2cVTsCBn9oGlhaAgCLuB7koRSfK/zimCqrL+jhN/+l0oqvAgRXHk31RWfI47pQE5kHfv3ALZiaNf5qxgQK2ly5NX/esFe3D8omZ6aJY0YGACzir/dRIHv+c0Z3Lyv2CGKkr/Jo9h07Y9Eow+drJiUYrhYK3nJdzC7RzX37Uw1+fA3LTE0cgQwAWMhX76NA1u36j9/Xl27YK0eG+WWbSPE3k+JaEvKnTXpzvfTTAVp//xCfCbvBLNGRMwMCGQCw2PDcLK2/f4hWTByoJ394tVql+l/Fb5mSrDMBmimeOndRP/qyk3Usgxl/Mylm8nhOnbugJJvN63KQKz+otPycMlummPqe5MyAHBkAiIC6vX3SU5L95o186/L2erekLOA1a5xOPTu+b4MtyanNksLKoTHrxwO76OEbc33mpJhdEvJ2nret1maZqUeDxotABgAibHhulhaO76uH39yh0oqGNVFKDlVIChzISLYGnZz3HTurBR/sitjY6+rb1X8xOrNLQvXP81UfJ1ihbn9HYiOQAYAoqB+A1K1S2zqtuZ768POA13DNNrhme2qchgY/viasAMAmKbNlio6fOR/wXEeG/0Al0K4tm2qXpuomCZupj9M6LVmVVf6X3qTQt78jsZEjAwAxNvCydu5u0L60bdFcAy+rDWRcuSRPvr8zpKUYF9fcysM3XqFAO5iTbNI1Xdv6Pcffri1fScJm8moqq2r85sxYsYsKiYsZGQCIgkDl9h+75Uq/eTS3X5ett/55WPuOndWKogMeS1Rm2FTbk6luUrHjy8+3p6coUJ6s05C27D8ZMAfFtWur/nd1+GgtYHY56KbenbR0wz7Z5FlQ2N8uKjQNBDIAEGFmO2KPusqht/5Z6vmgtknpzZP1ZJh5MIakM+drvHbfXrntkKlrmA06/C2j1Wd2OWhYjkP9szNNB0hoOghkACCCgu2I3eAcw3tTyFDYJL28+aDW3z/EI6gINUnXn7q7tvwJJq8mOclmOkBC00GODABEwFd5LLvCymOxUt1tynUF6pEUyRyUYPNqXAHS6N6XKK97O4IYEMgAgNVWlxzR4MfXaOzijaZ2I0Vb/SWiusGEL5HMQfFVDdlf8T3AhaUlAAigxmmYXs6wqiZKJHlbIhqem6WffStbiz/a65H4m2STJn4zO+LBRDB5NUBdBDIA4Eeg3UYuNU5DG/cc18xXP4lJEOPKJTEMQ2UV1abruLisLjmiRev2NnifYUiL1u1Vny5tIx7MmM2rAepiaQlAk+bKZVm57ZAK9xz36Nfjml2pn+NSv1Ghaylp3JJNOnXuQlTHL3nmkjx84xUex7yd46vZo7+EZHoZIV4xIwOgyfI32zIsx+H34W5T7cPd6TQ0efnWmC4l1d+CHEwdFylwUTp6GSGeEcgAaJL81XaZtKxY0/IvN/Vwf3BlSdBBTL+ubfTx/lNBvusrjoxUje3fpUE9GBez+Sau3J93v5xZCoReRohHBDIAmpxASyk2SUv/sdfUtU6cMb+U5MpRGZDdLqxARpK+4WjtN2clUL5JKN2m6WWEeEQgA6DJMbOUcuqs9bkuhmpzVFqnNtfTf98T8nVKK6p197Ji3TWom/K/rHhrZnePawbm/R2len7DPtOf5y9JGIg1AhkATY7ZJZI26c1Vfu6C5fkvA7vXNokMN1hasmGflmzY53UXVX2hzMBI9DJC/GPXEoAmx+wSyR2Duln6ua4EYUl67JYrLbtu/V1UkudurD98sEt3e9l9ZQZF6RDvmJEBkJCCKVJXX//szIAzIm1bNNeUIT109vzFBkXiQlV398/w3CwtHN9XD7/5L5VWVId9XVeQNCzHofd3lIY0+1LXT/K66obcLIrSIe7FfEbm0KFDGj9+vNq1a6f09HRdeeWV+vjjj92vG4ahhx56SFlZWUpPT1d+fr527/bdYA1A41e3BcDUl7dp7OKNGvz4Go8ZiXBVX3Tqfwt2a9E6a4KYulxLW8Nzs7Rh5lC99NMBapPePKxruoKkp9Z87rX2TbBuyM2ilxESQkwDmZMnT2rQoEFq3ry53n33Xe3YsUO///3v1bZtW/c5v/3tb/XHP/5RCxcu1KZNm9SyZUtdf/31qqpiGyDQWFlRpM6for0nAuannD1fowUFuyNSH6bu0lZykk1JNptlhfSWbmhYnTdYkWoQCURCTJeWHn/8cXXu3FlLly51H8vOznb/2TAMLViwQA8++KBGjx4tSXrxxRfVsWNHvfHGGxozZkyDa1ZXV6u6+qtp2oqKigh+AwBWs6JI3bAch9eZhGDrpljN1+4fK+uzWBEQ3Xh1FjMxSBgxnZF588031a9fP/3gBz9Qhw4d1KdPHy1evNj9+t69e1VaWqr8/Hz3MbvdrgEDBqiwsNDrNefPny+73e7+6dy5c8S/BwBrBJpteWrNbtMVaL1d27Uc9WLhfquHHpC/3T9W1GexSWEvT7m8uf0I7QiQMGIayHzxxRd69tln1aNHD7333nuaNGmS7rnnHr3wwguSpNLSUklSx44dPd7XsWNH92v1PfDAAyovL3f/HDx4MLJfAoAlAhWpMyQ9t/YLU9eqP8PhK0CKJn+7f/pnZyrLntagP1JdmS2bu3dR+eqjZNUuK1/BIBCPYrq05HQ61a9fPz366KOSpD59+qikpEQLFy7UhAkTQrpmamqqUlNTrRwmgCgIVKROks5eqDF1rbozHP4CpGiZNbKXbh+U7XO5JjnJptmjcjRpWbFsksdYXe949OYrNTw3SwOyM/XwmztUWtGwj9KwHIde3nxQpeVVYX9f2hEgUcR0RiYrK0s5OTkex3r16qUDBw5IkhwOhySprKzM45yysjL3awAaBysenDY1TFQ1EyBFUpJN+nFet4A5J8Nzs/Ts+L5y2D2XmbzP5HiGKYZR+7srIJK8z9rYJH2/7yWmxk07AiSKmM7IDBo0SDt37vQ4tmvXLnXt2lVSbeKvw+FQQUGBevfuLak2eXfTpk2aNGlStIcLIILCfXD6ykGJxMxCkk2mt2Q7DWnL/pOmukYHavboq9FlWUW1Ji0rdgc8/rpfD8txaMOe4z5nbWhHgEQT00Bm+vTpuu666/Too4/qhz/8oYqKirRo0SItWrRIkmSz2TRt2jQ98sgj6tGjh7KzszVr1ix16tRJN910UyyHDsCEYIrWufJEQl0Wcfgo02/lzMKU//q6Bn29va7p2lZb9p/UO58c1l82Hgj4vtLycz5f83aPvAU9ZhpdunZsBQqIAi1j0Y4AiSSmgcy1116r119/XQ888IB+85vfKDs7WwsWLNC4cePc59x33306c+aMfvazn+nUqVMaPHiwVq9erbQ0pj2BeOZvG7W3hFd/eSL+BKpAG26AVHfs04dd7v6MvO7ttONwuan3njhz3uvxYO6RmUaXriRdVyE7X7NAgWZtaEeARGIzXIurjVRFRYXsdrvKy8uVkZER6+EATYKvJRBXmOGvd0+wzQ1XTBwYcNnGNR7JfIDk4m/Mr289pOl/3RbwGk/+qLdu7uOZmxLsPVq57ZCmvhz4s/4wprdG9zaXBxNOmwcg0sw+v+m1BMBSwSyBeHtoupZFNu45rol/+Vhnz/veqdS2RXNTuRy+ZiCy7GmaNbKX2rZM1dHKKu07dkYrig549D7yN0vRobW5HZL1zwvlHpldIgtmKc3frA2QKAhkAFgq2CUQb5KTbBrYvZ1SmiX5DWSCmV0JlDfiMmVID/OzFGYHUO+8UO5RoCUyknTRVBHIALCU2V1Cgc4z0w/p1NkLfgOi+szMQAQzS3HsjLmu1fXPC+Uemak1Q5IumqKYd78G0LhYtQRiVUAUSWa/67HKao+S/6Heo+BqzQBNAzMyACxl1RJIJHJCrNY/O1NtWjQPOHM09+1P9af1e925NuHcI7NLZEBTYXpGpqKiwvQPgKbLtQTiK33EkLklkED9h7xV8Y2UGqehwj3HtXLbIRXuOR5SQ0VX48vVJUcCVuCV/N8j1/LX6N6XuLdaA02V6RmZNm3ayGYz94+lpsZcPxQA8CVeckL81Xqxp6cEnI1x8Va0zlctlzHXdlH1RacK9xxntgUIwHQdmbVr17r/vG/fPs2cOVO333678vLyJEmFhYV64YUXNH/+/JAbPkYCdWSA6KpxGhr8+Bqfu3Jcyybr7x9i6gEdbGE9KwWq9XLHoG56fsO+oK9bt/ZN3Vou3rZ/R+u7AvHG7PM7pIJ4Q4cO1U9/+lONHTvW4/jy5cu1aNEi/f3vfw96wJFCIANEV+Ge4xq7eGPA88wUsnOJReE2MwFZZssUHfdRtdcfb0XrwikiCDRGZp/fIe1aKiwsVL9+/Roc79evn4qKikK5JIBGIhK7jWKRE2Km1svxM+eV2bK5zzweX+onKAcqkCfVLkmFkpsDNHYhBTKdO3fW4sWLGxz/05/+pM6dO4c9KACJKxF2G5lhNtC6+cuZFbPBTGbL5iqtqPJIGg6mQB4ATyFtv37yySd166236t1339WAAQMkSUVFRdq9e7deffVVSwcIILG4dhv5ezBHYreR1ctPZgOt/ByHrs3ONN0f6sSZC+7+TK78l+qLTlOfFcuaOUC8CimQGTFihHbt2qVnn31Wn332mSRp1KhRuvvuu5mRAZq45CSbbrw6S8+t2+vznBuvzrJ0echsQnAwwU4wtV6Sk2wetV32HTv7ZdKu/8DDtSV7Wv7lpr5nvM9iAbFA92sAlgqUJCvVBhlmdy0FYjZJ1lewM2tkjtq2TPEa3Pjqmm0mAdcVNJWWn9Pctz/VCR9Jwa6A6Oz5iyo/d9Hn92zTorm2PDiMrdhoMiLe/fqjjz7Sc889py+++EKvvPKKLrnkEv3lL39Rdna2Bg8eHOplASS4QPkeUuCmkWaZTZJ1Og1NXr61wXlHyqv08+XFHsfqzuS4ar08/OYOj9kVfx2xXVwJyoV7jvsMYlzjPFJepZapyX6/K+EL4F1Iyb6vvvqqrr/+eqWnp6u4uFjV1bU1D8rLy/Xoo49aOkAAiSUSu5bOX3RqyUdf6KGVJVry0Rc6/2VOidmg6cGVJaYbVdetwPsVz3cHM5Ft9nueqfZfSPTklw0yAXgKaUbmkUce0cKFC/WTn/xEL7/8svv4oEGD9Mgjj1g2OACJx+pdS/Pf2aHFH+1V3Z3H8975VBO/ma2eWXZT1zhxxlz1XcmzAq/TKU1e3nDZqqyiWpOWFZuq7WJlXgvJvkBDIc3I7Ny5U9/61rcaHLfb7Tp16lS4YwKQwK7p2laB0jiSbLXnBTL/nR16bp1nECNJTkN6bt1e/a3oQBgj9c213ONrJieY2i5meka1a5lialwk+wINhRTIOBwOff755w2Or1+/XpdddlnYgwKQuLbsP9kg8KjPadSe58/5i04t/sj3zidJ2hjhpRYzuS2BlnvMNIicOzo3bhpkAokmpEBm4sSJmjp1qjZt2iSbzabDhw/rpZde0i9/+UtNmjTJ6jECSCBW5cj8pXBfwIDIbKZKq9SQ9zUEZOb7upKGHXbPGRWHPU3Pju+rEVdlhdUNG2jKQvrXPXPmTDmdTg0dOlRnz57Vt771LaWmpuqXv/ylfvGLX1g9RgAJxKocmf0nzloxHCXZpGRbcFUmbJLatmxuKrfG7PcdnpvlUWum/lZvf92waRoJ+BZWHZnz58/r888/1+nTp5WTk6NWrVpZOTZLUEcGiC5XHZlAheQC1ZFZ8tEXmvv2pxEbpy+uET19Wx/NffvTsL9HsGLRIBOIRxFtGnnnnXeqsrJSKSkpysnJUf/+/dWqVSudOXNGd955Z8iDBpD4zOSEmFkm+XFet4BJw5F4vH+13NMpJss9sWiQCSSykAKZF154QefOnWtw/Ny5c3rxxRfDHhSAxBYoJ8TMMklKsyRN/Ga233NGXmXdcsuU/+quFRMHau29/yV7eopWbjske3qKnr6tT1jfA0BkBZUjU1FRIcMwZBiGKisrlZb21T/umpoavfPOO+rQoYPlgwSQeALlhJjxwIjaGZH6dWSSbNLEb2brvuG9tGX/yYDLP4ZhqKyi2u8504d9Q+/vKNW3f/dhUG0MAMRWUIFMmzZtZLPZZLPZdPnlDZuc2Ww2zZkzx7LBAUCfLm31tVaHVVZZ7T72tVap6tOlrXsZa9KyYtnkvR+Sa3ko0Dnv7yj12rOptLxKk5fXFr8b3fsSS78bgPAFley7du1aGYahIUOG6NVXX1Vm5lc1DVJSUtS1a1d16tQpIgMNFcm+QGyY7Ugd6Bq+GkIakqbn91C39i29dpuu/1n+xjMsx+G30WWkEnsB+Gb2+R3SrqX9+/erS5custni/x80gQwQmNU7Zcx2pA40pkBdtOtyZKRqbP8u6ta+pc/v4Ot7Fu45rrGLNwb8jBUTB4bd6BKAORHtfr1mzRq1atVKP/jBDzyOv/LKKzp79qwmTJgQymUBxIAVMyd1BepI7epjNCzH4TNYqnEa+vOGvaaDGKm2/9GTH+zWnYO6aViOw+s5rh1B9UWi0SWA6Ahp19L8+fPVvn37Bsc7dOhA92sggbhmTuoHDN47QJsTqCN1oNL+q0uOaPDja4KuIeMKnJ7fsE9jF2/U4MfXmB6/1Y0ug1HjNFS457hWbjukwj3HA/ZuAuAppBmZAwcOKDu74bbIrl276sCByDRxA2AtK2ZOvAlndsPXklQoXMGYmWUsV2PHQLufrO51ZPVsGNAUhTQj06FDB/3zn/9scHz79u1q1471YyARhDtz4k2N09CxOruL/Kk/u+EvsApFMB2qrSriF4xIzIYBTVFIgczYsWN1zz336MMPP1RNTY1qamq0Zs0aTZ06VWPGjLF6jAAiwOq8ELNLQr46OQcKrEIRTDBmRRE/swLNhknmAjAAIS4tzZ07V/v27dPQoUPVrFntJZxOp37yk5+QIwMkCCvzQswuCfmb3YhkIq3Za1tRxM+MYGbD2CUF+BdSIJOSkqK//vWvmjt3rrZv36709HRdeeWV6tq1q9XjAxAhVuWFBLMk5K+Ts9nA6vt9L9GrxYckyfQyVDBJur52NlmJXVKAdUIKZFwuv/xyrxV+AcQ/s1VxA81GmF0SmjWyl24flO3zemYDq8e/f7Xyczo2SJL1JlJJuuGK5S4poLExHcjMmDFDc+fOVcuWLTVjxgy/5z7xxBNhDwxA5LnyQuoHBf5mTuozO2vQvnWqkpNsOn/Rqb8U7tP+E2fVNbOFfpzXTSnNkoIKrOouAX2wo1RLNuxr8HmR7FAdrljtkgIaI9OBzNatW3XhwgX3n31JhGq/AL4Sbl5IMLML89/Z0aAB5Lx3PtXEb2brgRE5QQVWriWgvO7tdG12ZljBWF1WVzn2xqrZMAAhtihIJLQoQFMSjYewt88c/PiagLML37sqS4s/2uvzOv/ft7Ld3a5D+R5WfPdo13WhjgzgW0R7LSUSAhk0FeE8FMMNAly7lqSGswuGpAl5XfTixgPy91+bJJv02dwblNIspKoQYbOiP1QoYhF8AonA8kDmlltuMf3hr732mulzI41ABk1BOA9hq2YFvF0nySYFUwpl1sheuuubl5l/g0UCNaik+zUQfWaf36b/18dut7t/MjIyVFBQoI8//tj9+pYtW1RQUCC73R7eyAEEJZzialZWlx2em6X19w/RiokDddegbpKCC2Ikaf+Js5Ki338oElWOAUSH6WTfpUuXuv98//3364c//KEWLlyo5ORkSVJNTY1+/vOfM+sBRFmoxdUi0WspOcmm/tmZmvG3bcF8BbeumS1ikjdCXRcgcYW0GP3888/rl7/8pTuIkaTk5GTNmDFDzz//vGWDAxBYqA/hSM1ChNpqIMkmdWydGpP+Q5Go60JXayA6QiqId/HiRX322Wf6xje+4XH8s88+k9PptGRgAMwJ9SEcqVmIUGct7hqcrXnvfmZ5N24zrK7rwm4kIHpCmpG54447dNddd+mJJ57Q+vXrtX79ev3+97/XT3/6U91xxx1WjxGAH66HsK9Hu68mjZGqLhvs+Um22q3XQ3p2jFmeipXdr+lqDURXSDMy//M//yOHw6Hf//73OnKk9h9lVlaW7r33Xv33f/+3pQME4F+oxdUiVV020HUlqXVasm7qfam6tfuqsu/KbYdMXT9SeSpWVDmORN4RAP9CCmSSkpJ033336b777lNFRYUkkeQLxFAoD+FIVZc1c93fff/qBmMyO5NzrLJaNU4jIoFAuFWO6WoNRF/IBfEuXryov//979qzZ49uu+02tW7dWocPH1ZGRoZatWpl9ThDRh0ZNCWhFFeLVD5HsNcNVCG4rnjNN1m57ZCmvrwt4Hl/GNNbo3tfEvkBAQksopV99+/fr+HDh+vAgQOqrq7Wrl27dNlll2nq1Kmqrq7WwoULwxq8lQhkgMAiVV022Ov6qhBcn9lqu9Gumlu457jGLt4Y8LwVEwcyIwMEYPb5HdLS0tSpU9WvXz9t375d7dp99Y/x5ptv1sSJE0O5JIAYcjVgjPV1fS2R1Wcm3yQWO4foag1EX0i7lj766CM9+OCDSklJ8TjerVs3HTpkLmEPALxxVQieNbKX3/Pq72KqW7flDx/sjsnOISt3PwEwJ6QZGafTqZqamgbH//3vf6t169ZhDwpA05acZFP71qmmzj1aWeV19sWbaOwcsmL3EwDzQgpkvvvd72rBggVatGiRJMlms+n06dOaPXu2RowYYekAATRNZncx7Tt2Rgs+2B0wQdglGjuHwt39BMC8kOvIDB8+XDk5OaqqqtJtt92m3bt3q3379lqxYoXVYwTQBJnNN1lRdMB0EFNXpPsmRSrvCICnkHJkOnfurO3bt+vXv/61pk+frj59+uixxx7T1q1b1aFDB6vHCKAJMpNvMubaLiqtqA7p+sFWIAYQn4Kekblw4YJ69uypt956S+PGjdO4ceMiMS4ACJhvUn0x+N5u7BwCGpegA5nmzZurqopW9gCiw1++SeGe40Fdi51DQOMTUo7M5MmT9fjjj+tPf/qTmjUL6RIAmgCrCtL5yjcx09epLnYOAY1PSFHI5s2bVVBQoP/7v//TlVdeqZYtW3q8/tprr1kyOACJKxoF6QL1dTIkTc/voW7tW7JzCGikQgpk2rRpo1tvvdXqsQBoJFytBurPkrgK0gVqLRAM6rYATVtQgYzT6dTvfvc77dq1S+fPn9eQIUP08MMPKz09PVLjA5BgapyG5qza4XWpJ1IF6ajbAjRdQW2/njdvnn71q1+pVatWuuSSS/THP/5RkydPjtTYACSgor0nAvZJqttawCquPJrRvS9RXvd2BDFAExFUIPPiiy/qmWee0Xvvvac33nhDq1at0ksvvSSnM/gtkPU99thjstlsmjZtmvtYVVWVJk+erHbt2qlVq1a69dZbVVZWFvZnAYgcs4XmIl2QDkDTEFQgc+DAAY8WBPn5+bLZbDp8+HBYg9i8ebOee+45XXXVVR7Hp0+frlWrVumVV17R2rVrdfjwYd1yyy1hfRaAyDJbaI6CdACsEFQgc/HiRaWlef7Hp3nz5rpw4ULIAzh9+rTGjRunxYsXq23btu7j5eXlWrJkiZ544gkNGTJE11xzjZYuXap//OMf2rhxY8ifByCwup2kC/ccV43TfBMA15ZoXws7NtXuXqIgHQArBJXsaxiGbr/9dqWmftWVtqqqSnfffbfHFuxgtl9PnjxZI0eOVH5+vh555BH38S1btujChQvKz893H+vZs6e6dOmiwsJCDRw40Ov1qqurVV39VcnyiooK02MBYH7btK8aMYG2REsUpANgnaACmQkTJjQ4Nn78+JA//OWXX1ZxcbE2b97c4LXS0lKlpKSoTZs2Hsc7duyo0tJSn9ecP3++5syZE/KYgKbM7LbpQMEOW6IBREtQgczSpUst++CDBw9q6tSpev/99xssV4XjgQce0IwZM9y/V1RUqHPnzpZdH2iszG6bdjoNTV6+NWCww5ZoANEQs/4CW7Zs0dGjR9W3b1/3sZqaGq1bt05PPfWU3nvvPZ0/f16nTp3ymJUpKyuTw+Hwed3U1FSPpS8A5pjdNv3gyhLTNWJ8tRYAAKsElexrpaFDh+qTTz7Rtm3b3D/9+vXTuHHj3H9u3ry5CgoK3O/ZuXOnDhw4oLy8vFgNG2i0zG6HPnHGd3J/pGrEAIAvMZuRad26tXJzcz2OtWzZUu3atXMfv+uuuzRjxgxlZmYqIyNDv/jFL5SXl+cz0RdA6KzcDk2NGADREtetq5988kklJSXp1ltvVXV1ta6//no988wzsR4W0CgF6iRtk5TZMkXHz5wPeC1qxACIFpthGOYLRCSgiooK2e12lZeXKyMjI9bDAeKaa9eS5H3b9NO39dXct3f4DXYc9jStv38ISb0AwmL2+R2zHBkA8ce1bdph95xRcdjT9Oz4vhpxVZZmj8qRpAYF76gRAyAWmJEBLOarUFwifVag65otmgcAoTL7/CaQASwUzQd8rIOJaAZsAJoeApkvEcggWnxVxXU92l2F4hLtswAgFsiRAaIoUFVcqbZQXDDNF+PhswAg3hHIABYwWxXXikJx0fwsAIh3BDKABcwWgLOiUFw0PwsA4l1cF8QD4p0r4XV32WlT51tRKM7sNShKB6ApIJABQuRt15AvrkJx/bMzw/5cMxV4rfosAIh3LC0BIXDtGjIbxEjWFYpLTrJRlA4AvkQgAwTJ364hb1xVca3cDh2oAi9brwE0FSwtAUEKtGvIZcp/ddegr38tYoXihudmaViOg6J0AJo0AhkgSGZ3A/Xo2Fp53duZOjfUKrnJSTbTnwEAjRGBDBAkq3cNxbrVAAAkMnJkgCC5dg35mi+xqTYQMbNryFfScGl5lSYtK9bqkiPhDxgAGjECGSBIVu0aotUAAISPQAYIgRW7hmg1AADhI0cGCFG4u4ZoNQAA4SOQAcIQzq4hWg0AQPhYWgJixMqkYQBoqghkgBih1QAAhI9ABoghf0nDT9/WV/b0FK3cdkiFe46zewkAvCBHBogxb0nDJ89Ua+7bFMkDgECYkQHigCtpeHTvS1R+7rwmL99KkTwAMIFABogjFMkDgOAQyABxhCJ5ABAcAhkgjlAkDwCCQ7Iv4kaN0wi5Sm5jQZE8AAgOgQziwuqSI5qzil06riJ5peVVXvNkbKrdmk2RPACoxdISYm51yRFNWlbMLh1RJA8AgkUgg5hil05DVnTWBoCmgqUlxFQwu3RCbc6YiMLtrA0ATQWBDGKKXTq+hdNZGwCaCpaWEFPs0gEAhINABjHl2qXja8HEptrdS+zSAQB4QyCDmGKXDgAgHAQyiDl26QAAQkWyL+ICu3QAAKEgkEHcYJcOACBYLC0BAICERSADAAASFoEMAABIWOTIAEGocRokJANAHCGQAUxaXXJEc1bt8OgNlWVP0+xROWwRB4AYYWkJMGF1yRFNWlbcoMFlaXmVJi0r1uqSIzEaGQA0bQQyQAA1TkNzVu2Q4eU148ufma99og27j6nG6e0sAECkEMgAARTtPdFgJqa+U2cvaNySTRr8+BpmZwAgighkgACOVvoPYupiqQkAootABvChxmmocM9x7S47bfo9roWlOat2sMwEAFHAriXAC287lMwyJB0pr1LR3hO0XACACCOQAepx7VAKdz4lmCUpAEBoWFoC6vC3QylYHVqnWXAVAIA/BDJAHWZ2KElSy5Rkn6/ZVFsor392poUjAwB4QyAD1GF2OWjMtZ1lU23QUpfr99mjcmhdAABRQCAD1GF2OSg/x6Fnx/eVw+55vsOepmfH96VlAQBECcm+QB39szOVZU9TaXmV1zwZm2qDFVezyGE5DppIAkAMEcgAdSQn2TR7VI4mLSuWTfIIZrwtGyUn2dhiDQAxxNISUM/w3CyWjQAgQTAjA3gxPDeLZSMASAAEMoAPLBsBQPxjaQkAACQsAhkAAJCwCGQAAEDCIpABAAAJK6aBzPz583XttdeqdevW6tChg2666Sbt3LnT45yqqipNnjxZ7dq1U6tWrXTrrbeqrKwsRiMGAADxJKaBzNq1azV58mRt3LhR77//vi5cuKDvfve7OnPmjPuc6dOna9WqVXrllVe0du1aHT58WLfccksMRw0AAOKFzTAMb5XYY+I///mPOnTooLVr1+pb3/qWysvL9bWvfU3Lly/X97//fUnSZ599pl69eqmwsFADBw5scI3q6mpVV1e7f6+oqFDnzp1VXl6ujIyMqH0XAAAQuoqKCtnt9oDP77jKkSkvL5ckZWZmSpK2bNmiCxcuKD8/331Oz5491aVLFxUWFnq9xvz582W3290/nTt3jvzAAQBATMRNION0OjVt2jQNGjRIubm5kqTS0lKlpKSoTZs2Hud27NhRpaWlXq/zwAMPqLy83P1z8ODBSA8dAADESNxU9p08ebJKSkq0fv36sK6Tmpqq1NRUi0YFAADiWVzMyEyZMkVvvfWWPvzwQ1166aXu4w6HQ+fPn9epU6c8zi8rK5PD4YjyKAEAQLyJaSBjGIamTJmi119/XWvWrFF2drbH69dcc42aN2+ugoIC97GdO3fqwIEDysvLi/ZwAQBAnInp0tLkyZO1fPlyrVy5Uq1bt3bnvdjtdqWnp8tut+uuu+7SjBkzlJmZqYyMDP3iF79QXl6e1x1LAACgaYnp9mubzeb1+NKlS3X77bdLqi2I99///d9asWKFqqurdf311+uZZ54xvbRkdvsWAACIH2af33FVRyYSCGQAAEg8CVlHBgAAIBgEMgAAIGERyAAAgIRFIAMAABIWgQwAAEhYBDIAACBhEcgAAICERSADAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAEhaBDAAASFgEMgAAIGERyAAAgIRFIAMAABIWgQwAAEhYBDIAACBhEcgAAICERSADAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAEhaBDAAASFgEMgAAIGERyAAAgIRFIAMAABIWgQwAAEhYBDIAACBhEcgAAICERSADAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAEhaBDAAASFgEMgAAIGERyAAAgIRFIAMAABIWgQwAAEhYBDIAACBhEcgAAICERSADAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAElazWA8gEdU4DRXtPaGjlVXq0DpN/bMzlZxki/WwAABocghkgrS65IjmrNqhI+VV7mNZ9jTNHpWj4blZMRwZAABND0tLQVhdckSTlhV7BDGSVFpepUnLirW65EiMRgYAQNNEIGNSjdPQnFU7ZHh5zXVszqodqnF6OwMAAEQCgYxJRXtPNJiJqcuQdKS8SkV7T0RvUAAANHEEMiYdrfQdxIRyHgAACB+BjEkdWqdZeh4AAAgfgYxJ/bMzlWVPk69N1jbV7l7qn50ZzWEBANCkEciYlJxk0+xROZLUIJhx/T57VA71ZAAAiCICmSAMz83Ss+P7ymH3XD5y2NP07Pi+1JEBACDKKIgXpOG5WRqW46CyLwAAcYBAJgTJSTbldW8X62EAANDksbQEAAASFoEMAABIWAQyAAAgYSVEIPP000+rW7duSktL04ABA1RUVBTrIQEAgDgQ94HMX//6V82YMUOzZ89WcXGxrr76al1//fU6evRorIcGAABiLO4DmSeeeEITJ07UHXfcoZycHC1cuFAtWrTQ888/H+uhAQCAGIvrQOb8+fPasmWL8vPz3ceSkpKUn5+vwsJCr++prq5WRUWFxw8AAGic4jqQOXbsmGpqatSxY0eP4x07dlRpaanX98yfP192u93907lz52gMFQAAxEBcBzKheOCBB1ReXu7+OXjwYKyHBAAAIiSuK/u2b99eycnJKisr8zheVlYmh8Ph9T2pqalKTU11/24YhiSxxAQAQAJxPbddz3Ff4jqQSUlJ0TXXXKOCggLddNNNkiSn06mCggJNmTLF1DUqKysliSUmAAASUGVlpex2u8/X4zqQkaQZM2ZowoQJ6tevn/r3768FCxbozJkzuuOOO0y9v1OnTjp48KBat24tm826xo4VFRXq3LmzDh48qIyMDMuui4a419HBfY4O7nN0cJ+jI5L32TAMVVZWqlOnTn7Pi/tA5kc/+pH+85//6KGHHlJpaal69+6t1atXN0gA9iUpKUmXXnppxMaXkZHBP5Io4V5HB/c5OrjP0cF9jo5I3Wd/MzEucR/ISNKUKVNMLyUBAICmo9HtWgIAAE0HgUyIUlNTNXv2bI8dUogM7nV0cJ+jg/scHdzn6IiH+2wzAu1rAgAAiFPMyAAAgIRFIAMAABIWgQwAAEhYBDIAACBhEciE6Omnn1a3bt2UlpamAQMGqKioKNZDSmjz58/Xtddeq9atW6tDhw666aabtHPnTo9zqqqqNHnyZLVr106tWrXSrbfe2qAPF4Lz2GOPyWazadq0ae5j3GdrHDp0SOPHj1e7du2Unp6uK6+8Uh9//LH7dcMw9NBDDykrK0vp6enKz8/X7t27YzjixFNTU6NZs2YpOztb6enp6t69u+bOnevRm4f7HJp169Zp1KhR6tSpk2w2m9544w2P183c1xMnTmjcuHHKyMhQmzZtdNddd+n06dPWD9ZA0F5++WUjJSXFeP75541//etfxsSJE402bdoYZWVlsR5awrr++uuNpUuXGiUlJca2bduMESNGGF26dDFOnz7tPufuu+82OnfubBQUFBgff/yxMXDgQOO6666L4agTW1FRkdGtWzfjqquuMqZOneo+zn0O34kTJ4yuXbsat99+u7Fp0ybjiy++MN577z3j888/d5/z2GOPGXa73XjjjTeM7du3GzfeeKORnZ1tnDt3LoYjTyzz5s0z2rVrZ7z11lvG3r17jVdeecVo1aqV8Yc//MF9Dvc5NO+8847x61//2njttdcMScbrr7/u8bqZ+zp8+HDj6quvNjZu3Gh89NFHxte//nVj7Nixlo+VQCYE/fv3NyZPnuz+vaamxujUqZMxf/78GI6qcTl69KghyVi7dq1hGIZx6tQpo3nz5sYrr7ziPufTTz81JBmFhYWxGmbCqqysNHr06GG8//77xre//W13IMN9tsb9999vDB482OfrTqfTcDgcxu9+9zv3sVOnThmpqanGihUrojHERmHkyJHGnXfe6XHslltuMcaNG2cYBvfZKvUDGTP3dceOHYYkY/Pmze5z3n33XcNmsxmHDh2ydHwsLQXp/Pnz2rJli/Lz893HkpKSlJ+fr8LCwhiOrHEpLy+XJGVmZkqStmzZogsXLnjc9549e6pLly7c9xBMnjxZI0eO9LifEvfZKm+++ab69eunH/zgB+rQoYP69OmjxYsXu1/fu3evSktLPe6z3W7XgAEDuM9BuO6661RQUKBdu3ZJkrZv367169frhhtukMR9jhQz97WwsFBt2rRRv3793Ofk5+crKSlJmzZtsnQ8CdFrKZ4cO3ZMNTU1DZpWduzYUZ999lmMRtW4OJ1OTZs2TYMGDVJubq4kqbS0VCkpKWrTpo3HuR07dlRpaWkMRpm4Xn75ZRUXF2vz5s0NXuM+W+OLL77Qs88+qxkzZuhXv/qVNm/erHvuuUcpKSmaMGGC+156++8I99m8mTNnqqKiQj179lRycrJqamo0b948jRs3TpK4zxFi5r6WlpaqQ4cOHq83a9ZMmZmZlt97AhnEncmTJ6ukpETr16+P9VAanYMHD2rq1Kl6//33lZaWFuvhNFpOp1P9+vXTo48+Kknq06ePSkpKtHDhQk2YMCHGo2s8/va3v+mll17S8uXLdcUVV2jbtm2aNm2aOnXqxH1uQlhaClL79u2VnJzcYBdHWVmZHA5HjEbVeEyZMkVvvfWWPvzwQ1166aXu4w6HQ+fPn9epU6c8zue+B2fLli06evSo+vbtq2bNmqlZs2Zau3at/vjHP6pZs2bq2LEj99kCWVlZysnJ8TjWq1cvHThwQJLc95L/joTn3nvv1cyZMzVmzBhdeeWV+vGPf6zp06dr/vz5krjPkWLmvjocDh09etTj9YsXL+rEiROW33sCmSClpKTommuuUUFBgfuY0+lUQUGB8vLyYjiyxGYYhqZMmaLXX39da9asUXZ2tsfr11xzjZo3b+5x33fu3KkDBw5w34MwdOhQffLJJ9q2bZv7p1+/fho3bpz7z9zn8A0aNKhB+YBdu3apa9eukqTs7Gw5HA6P+1xRUaFNmzZxn4Nw9uxZJSV5PsaSk5PldDolcZ8jxcx9zcvL06lTp7Rlyxb3OWvWrJHT6dSAAQOsHZClqcNNxMsvv2ykpqYaf/7zn40dO3YYP/vZz4w2bdoYpaWlsR5awpo0aZJht9uNv//978aRI0fcP2fPnnWfc/fddxtdunQx1qxZY3z88cdGXl6ekZeXF8NRNw51dy0ZBvfZCkVFRUazZs2MefPmGbt37zZeeuklo0WLFsayZcvc5zz22GNGmzZtjJUrVxr//Oc/jdGjR7MtOEgTJkwwLrnkEvf269dee81o3769cd9997nP4T6HprKy0ti6dauxdetWQ5LxxBNPGFu3bjX2799vGIa5+zp8+HCjT58+xqZNm4z169cbPXr0YPt1PPnf//1fo0uXLkZKSorRv39/Y+PGjbEeUkKT5PVn6dKl7nPOnTtn/PznPzfatm1rtGjRwrj55puNI0eOxG7QjUT9QIb7bI1Vq1YZubm5RmpqqtGzZ09j0aJFHq87nU5j1qxZRseOHY3U1FRj6NChxs6dO2M02sRUUVFhTJ061ejSpYuRlpZmXHbZZcavf/1ro7q62n0O9zk0H374odf/Jk+YMMEwDHP39fjx48bYsWONVq1aGRkZGcYdd9xhVFZWWj5Wm2HUKYEIAACQQMiRAQAACYtABgAAJCwCGQAAkLAIZAAAQMIikAEAAAmLQAYAACQsAhkAAJCwCGQAAEDCIpABAEk2m01vvPFGrIcBIEgEMgCirrCwUMnJyRo5cmRQ7+vWrZsWLFgQmUEBSEgEMgCibsmSJfrFL36hdevW6fDhw7EeDoAERiADIKpOnz6tv/71r5o0aZJGjhypP//5zx6vr1q1Stdee63S0tLUvn173XzzzZKk73znO9q/f7+mT58um80mm80mSXr44YfVu3dvj2ssWLBA3bp1c/++efNmDRs2TO3bt5fdbte3v/1tFRcXR/JrAogSAhkAUfW3v/1NPXv21De+8Q2NHz9ezz//vFy9a99++23dfPPNGjFihLZu3aqCggL1799fkvTaa6/p0ksv1W9+8xsdOXJER44cMf2ZlZWVmjBhgtavX6+NGzeqR48eGjFihCorKyPyHQFET7NYDwBA07JkyRKNHz9ekjR8+HCVl5dr7dq1+s53vqN58+ZpzJgxmjNnjvv8q6++WpKUmZmp5ORktW7dWg6HI6jPHDJkiMfvixYtUps2bbR27Vp973vfC/MbAYglZmQARM3OnTtVVFSksWPHSpKaNWumH/3oR1qyZIkkadu2bRo6dKjln1tWVqaJEyeqR48estvtysjI0OnTp3XgwAHLPwtAdDEjAyBqlixZoosXL6pTp07uY4ZhKDU1VU899ZTS09ODvmZSUpJ7acrlwoULHr9PmDBBx48f1x/+8Ad17dpVqampysvL0/nz50P7IgDiBjMyAKLi4sWLevHFF/X73/9e27Ztc/9s375dnTp10ooVK3TVVVepoKDA5zVSUlJUU1PjcexrX/uaSktLPYKZbdu2eZyzYcMG3XPPPRoxYoSuuOIKpaam6tixY5Z+PwCxwYwMgKh46623dPLkSd11112y2+0er916661asmSJfve732no0KHq3r27xowZo4sXL+qdd97R/fffL6m2jsy6des0ZswYpaamqn379vrOd76j//znP/rtb3+r73//+1q9erXeffddZWRkuK/fo0cP/eUvf1G/fv1UUVGhe++9N6TZHwDxhxkZAFGxZMkS5efnNwhipNpA5uOPP1ZmZqZeeeUVvfnmm+rdu7eGDBmioqIi93m/+c1vtG/fPnXv3l1f+9rXJEm9evXSM888o6efflpXX321ioqK9Mtf/rLBZ588eVJ9+/bVj3/8Y91zzz3q0KFDZL8wgKiwGfUXlwEAABIEMzIAACBhEcgAAICERSADAAASFoEMAABIWAQyAAAgYRHIAACAhEUgAwAAEhaBDAAASFgEMgAAIGERyAAAgIRFIAMAABLW/w9Y9MBy40+TIwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(y_test,y_pred);\n",
+ "plt.xlabel('Actual');\n",
+ "plt.ylabel('Predicted');"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "1e707ec3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByyklEQVR4nO3deXxTZfY/8E+WrnShLdCFtbIqUkBARFwQ64DLKILOoIioKKAgIiiK62/GBUfHZXRUFBVXRB3RGR0FlSougyyVzYVFwbK2he57m+T+/jjfp/cmTdqkTZq0/bxfr7zS3CQ3TyNyD+c5z3lMmqZpICIiIgoh5mAPgIiIiMgVAxQiIiIKOQxQiIiIKOQwQCEiIqKQwwCFiIiIQg4DFCIiIgo5DFCIiIgo5DBAISIiopDDAIWIiIhCDgMUIiIiCjlWX9/w9ddf47HHHkN2djaOHj2KDz74AJMmTap/XtM03H///Vi+fDmKi4sxduxYPP/88+jfv3/9awoLC3HzzTfjo48+gtlsxpQpU/CPf/wDMTExXo3B4XDgyJEjiI2Nhclk8vVXICIioiDQNA1lZWVIS0uD2dxEjkTz0SeffKLdfffd2urVqzUA2gcffOD0/COPPKLFx8drH374obZ9+3bt4osv1tLT07Wqqqr610ycOFEbOnSo9v3332vffPON1q9fP+2KK67wegwHDx7UAPDGG2+88cYbb23wdvDgwSav9SZNa/5mgSaTySmDomka0tLSsGjRItx2220AgJKSEiQnJ+PVV1/F1KlT8csvv+Ckk07C5s2bMXLkSADAmjVrcMEFF+DQoUNIS0tr8nNLSkrQuXNnHDx4EHFxcc0dPhEREbWi0tJS9OzZE8XFxYiPj2/0tT5P8TRm//79yM3NRWZmZv2x+Ph4jB49Ghs2bMDUqVOxYcMGdO7cuT44AYDMzEyYzWZs3LgRl156aYPz1tTUoKampv5xWVkZACAuLo4BChERURvjTXmGX4tkc3NzAQDJyclOx5OTk+ufy83NRbdu3Zyet1qtSExMrH+Nq6VLlyI+Pr7+1rNnT38Om4iIiEJMm1jFs2TJEpSUlNTfDh48GOwhERERUQD5NUBJSUkBAOTl5Tkdz8vLq38uJSUF+fn5Ts/bbDYUFhbWv8ZVRERE/XQOp3WIiIjaP78GKOnp6UhJScG6devqj5WWlmLjxo0YM2YMAGDMmDEoLi5GdnZ2/WuysrLgcDgwevRofw6HiIiI2iifi2TLy8vx66+/1j/ev38/tm3bhsTERPTq1QsLFizAgw8+iP79+yM9PR333nsv0tLS6lf6nHjiiZg4cSJuuOEGLFu2DHV1dZg3bx6mTp3q1QoeIiIiav98DlC2bNmCc845p/7xwoULAQAzZszAq6++isWLF6OiogKzZs1CcXExzjjjDKxZswaRkZH173nrrbcwb948nHvuufWN2p5++mk//DpERETUHrSoD0qwlJaWIj4+HiUlJaxHISIiaiN8uX63iVU8RERE1LEwQCEiIqKQwwCFiIiIQg4DFCIiIgo5DFCIiIjI2d69gGEPvGBggEJERERC04CXXgKGDQOWLAnqUBigEBEREVBYCFx2GXDDDUBlJfDkk8DatUEbjs+N2oiIiKid+eor4KqrgMOH9WNJSYDdHrQhMYNCRETUUdXVAXfdBYwf7xycnHsusGMHcMEFQRsaMyhEREQd0a+/AldeCWzerB8LCwMeeghYtAgwBzeHwQCFiIioI9E04PXXgXnzgPJy/fiAAcDKlcCIEcEbmwEDFCIioo6iuBiYMwd45x3n49dfDzz1FNCpE+BwAFu3AsePA126AMOHByWbwgCFiIioI/j2W2DaNODAAf1YQgKwfDkwZYo8zsoCHnkE2L0bqK0FwsOBgQOBO++UOpVWxCJZIiKiQHA4gOxsWaqbnS2Pg8FmA+6/Hzj7bOfgZNw4YPt25+Bk9mwpjo2JAVJT5X7HDjmeldWqw2YGhYiIyN9CJROxf79kTTZs0I9ZrcBf/gLccQdgscgxh0PGW1YGdO8OmExyPCpKHh8+LM+PG9dq0z3MoBAREflTSzMR/sq8rFwpHWGNwUnfvsB338nSYhWcAFJzsnu39D5RwYliMgGJifL81q3NG0szMEAhIiLyF9dMRFSUZBxUJqKsTJ73FHRkZQETJwKTJwPXXCP3Eyf6Nr1SWgpMny6Zk9JS/fiMGRJgnHpqw/ccPy6ZnogI9+eMjJTnjx/3fhwtxACFiIjIX1qSifBHDciGDZI1efNN/VhcHPD228CrrwKxse7f16WLTEN52iCwulqe79Kl6TH4CQMUIiKipng77dLcTERLMy92O/DAA8CZZ0rdiTJ2rAQ4U6c2/vsNHy41MgUF0ifFSNNkn56BA+V1rYQBChERUWN8mXZpbiaiJZmXAweAc84B7rtP3zvHYpFC2K++Anr3bvp3NJulgDc2VgpiKyslGKqslMdxcfJ8K/ZDYYBCRETkia/TLs3NRDQ38/Luu0BGBvDNN/qxPn2Ar7+WgMXqw2Ld8eOBF16Q81VUAEePyn1GBrBsWav3QeEyYyIiIneas/RWZSJmz5bnExMluKiuluDEUybCmHmJimo4FtfMS3k5MH8+sGKF8+uuvBJ47jkgPr55v/P48fL7hEAnWWZQiIiI3GnutEtzMhG+ZF42b5Z7Y3ASGwu88Qbw1lvND04Us1n245kwQe6DtGkgMyhERETueDPtUlTkfumtr5kIbzIvt98OPPoocO+90h1WGT1aep6ccEKLf+VQwgCFiIjIHV+nXVypTIS3VOZFdaAtKpLzZ2QAM2cCDz8sRa+KySQN1+6/HwgL8+lXawsYoBAREbmjpl127HCuQQH0aZeMDP8uvXWXedm/H5g1SwIWpWdP6XVy1ln+++wQwxoUIiIid4K19FZlXs44QzIql1/uHJz86U+yyV87Dk4ABihERESeBWvp7Q8/SJCyfLl+rFMn4JVXgFWrgISEwHxuCOEUDxERtQ8OR2CWx44fL9mKVauAnBxpfDZ1qm89RrzlcABPPgksWQLU1enHR46UQtj+/f3/mSGKAQoREbV9WVl6cWltrRSXDhwoUzAtzXK4O/frr/vn3EZHj8qGfp9/rh8zmYA77pCusOHh/vusNsCkaa4LrkNfaWkp4uPjUVJSgri4uGAPh4iIgkl1ey0rk54lERGy8qagQOpHXnih+YFEY+cODwfmzgUyM1uerfnPf4DrrpPzKt27S2+Tc85p/nlDjC/Xb9agEBFR29XSTfaac26bTepQDh+WdvKXXup5b56mVFVJkHPJJc7ByeTJUgjbjoITXzFAISKitqslm+w159xlZVKHUl0tNSiaJvee9uZpzI4dUlvy3HP6seho4MUXgX/9Sz63A2OAQkREbVdzN9lr7rmPHpUdg8PDZcdgTZN7X7I1mgb84x/AqFHAzz/rx4cPB7KzgRtuaBhsdUAMUIiIqO0ydnt1x7Xbq8MhQcDatXLfWDDheu7KSvlZrd7RNAkkrFbvszV5ecCFFwILFkjwoyxaBGzYAAwa5PWv3t4xQCEiorbLl032srKkVmTyZOCaa+S+sdoR13PbbBLQmEz648hImZYBms7WfPKJ9E/59FP9WEoK8NlnwN//7jkL1EExQCEiorZJ9T0591zJdDTW7fWrr6RGZMcOICYGSE2V+8ZqR1w7ydpsEpzY7dKjxGKRAENNx3jam6e6GrjlFsmc5Ofrxy+6SD7/vPMC9hW1ZQxQiIio7TFmQ556SqZe6uok2+Ha7XXcuMZX+pSWyqZ7n37acNrH2ElWBSg2m7y3Vy8JgICG2Rrlp5+AU08Fnn5aPxYRAfzzn7K0uGvX1vi22iQ2aiMiorbFU2+S48clgzFvnnNvkuxsfTUOIMGLzSa1IzYbUF4ObNkCTJ8u7eRdG7wZN/D74gsJLmpr5f0Oh2RICgud9+bRNOD556W2pLpaH/uQIcDbbwODB7f619bWMINCRERtR2N9T3r0kCzKunXOjdPUapzaWmDvXuC334Dffwd+/VV+VgFE586ep33UBn533AG89ppkVIqK5DxFRRJ4qL15jh2TviZz5zoHJ/PnA5s2MTjxEgMUIiJqO5rT96RLFwlscnKkMZrFAoSFSS2JpumFr+HhLWvw5nAAzz4rGZiPPtKPd+sG/Pe/srQ4MrJlv38HwikeIiJqO7zpe1JU5LySZuhQmcpRq25MpoaBh6ZJcAI0DHRGjNBf52l6acsW4Pzz5TOMTj1Vak2Sk1v+u3cwzKAQEVHb4WvfE0Baxlutcqurk+BE05yXJZtMsvJHcbdk2NP0UkUFUFLiHJyYTLL6p6BACmXJZwxQiIiodbk2S7PZvG+e5kvfE+X4cQkkeveWoMLh0IMJs1nfJdgYYLgLdFynlzRN6k1ycpzHEh4uDdf695cC3ObuBdTBcYqHiIhaT1aWXLB375YMhQoWrFY9WHBdRWOkepPMni29SRITJdvhbiWNorIu4eHAgAGSKamrk+XINTX6qhtjh9jCQimEdQ101PSSzSaBSXGx8/hMJinWVc3bPE0VUZOYQSEiotah6jdUs7SYGKkXUTd1rKmN94y9SSoqGvY9cQ1s3GVdTCbJhJjNEtxYLBJ8FBQAhw41HugUFsoeOq7BSViYBDkqIwO0bC+gDo4ZFCIiCjzX+g0AOHhQAobISMlo5OVJhqN7d8mOPPKI9B8xu/m3tLE3yfHjEjwYlxYbqazL1VcDP/6o16CoYlmTSYKI33+Xn+PjJUByDXQGD5Zz/f6783GTSYITh0OmkFT2BPDcXZaaxACFiIgCz7V+o6JCLt5qoz2rVaZbKivlAu/N1IjqTeIt16JYh0NuZrMsBe7USW+Tv2yZBDwqSNm7F7jyyobBSVqaZH9UIGJsfe9pqoi8wikeIiIKHFUQu2aNBCVqebDNpmcxAD1gUIWq/pwaUdkbu12yIP36ScFsZKQeIFVUSKO2xETnPih2O7BihQQYW7bo54yOlmDE4ZDVOmrTQNVd1nUvIHeZHWoUMyhERBQYxoLYigqp2aiqkiJSFRioIEXT5CKuClX9OTVizN6YzZIpqaiQaSX1ecbsjeqD8ssv0tvk88+dzzdrluw+vGePPr1UVAQ8+qh8TlGRjD0jw3OxLzWJAQoREfmfa0OzxEQJOiorZZpEZTCqqqR+Q23AFx3t/6kRd83djBkcTZNMSUmJ/BwdLc8fOSIFs0piIrB8uWxQCDScXho/3ruaGPIKAxQiIvIv14JYNY2TlgYcOCDBwuHD8jgnR69FSU6WAMbTcuHmMjZ3U91iVQbHZpPgxOGQIt38fPnM2lrnc5xzDvD665L98cTXmhhqFEM7IiLyL0/75cTFAb16SZBQUyNTIQkJ+q28vPHlws3lbpmxqhdRnWVVoa7d7hycWK0SbH3+eePBCfkdMyhERORfje2XExcnNSAHDwK33gpMnCh75Wzf3vKpEYfD/RSLu+ZuERHO3V1Npobt8yMigPXrgdGj9WJfTt+0GgYoRETkX+6mVIxqaiRImThRnxJp6dSIa4da1460qrmbek1+vt7B1mZr2Io+MlJ+D6u16XNTQDD8IyIi/2rOfjlNcd2/xxhQuHaoTU1135F2/HhZ7rx6tWRvVMt6V6r1fUUF8MUX3p2b/I4BChER+ZeaUomNlSmVysqW9QbJypJsy+TJwDXXyP3EiXLc0w7DUVHO/UxUQGM2y5TSgQPOuxer5yIj9cClslKCGW/PTX7FAIWIiPzP1/1yXKmMyd/+BsyYITUq7jIYL77oviAX0PuZqI60gKwaGjdO3mdkteo9UYydYHNyvD83+RVrUIiIKDB82S/HSNV87NolS39tNqlZqauT7IXKYBw+LIGGp4JcQDIiRUXy+atWAXPmSL8TV8apHpNJNg+MiPD+3OR3DFCIiChw3PUG8bTaBnBu8Kaatlmt0tDtwAFZphwXJ0FEQoIcczikS21CQsNMh+qx8s9/Ah9/7PxceLjeA8W1VgaQ90VEeC725UaAAcUAhYiIWk9jK2LGjXOuJykr0wMUi0UyKLm5UttSViY/V1RIcFNSIgFPSooEMIC8Ny9PghtjcGIyyTnKyyU4CQ/XC2NVgFNTIz8PHiw7IBsbzqlzcyPAgGKAQkRErcO1/b3KTqh6kkWLnOtJrFY9cFD79FRXA8eO6cuEzWYJSvLyJOBQbfStVmlTX17uPIawMHneYpEdigEJlMLC5D2api8/tlqByy6TOhTVPyUyUsbg72631IDfv1W73Y57770X6enpiIqKQt++ffHAAw9AM6TPNE3Dfffdh9TUVERFRSEzMxN71R8UIiJquzwtB/Zmtc3y5RKwqJqP6GjnpcBqx+Pjx2VqBpD3JycD6elSp2K3S0Cxf3/D4KRTJ+Dkk4H4eDmP2SyBCSCfUVcn74+KkiDGbJbzNrfYt7Gl0dQkv2dQ/va3v+H555/Ha6+9hsGDB2PLli249tprER8fj/nz5wMAHn30UTz99NN47bXXkJ6ejnvvvRcTJkzAzz//jMjISH8PiYiIWkNWFrB0qUyJqEDj5JOBJUskKGhqtc2RI3pHV1XzkZoqAUdtrQQMJpPeit5qlecBmbIZOFA61B475lxTkpIiwUGXLnq2Q2Vn1M1ul9fFxEhgVFWl15eMGOF7sS+bu7WYSdPcVQY130UXXYTk5GS8/PLL9cemTJmCqKgovPnmm9A0DWlpaVi0aBFuu+02AEBJSQmSk5Px6quvYurUqU1+RmlpKeLj41FSUoI4NddIRETBk5UFTJ8uF3BjpsBslgv6/PnAU09JQOHuwu5wSHYiNVUCFWPNR1mZHKuslPc6HBJEpKVJYAJIgHHoUMMVNX/6k9zmzWv42Xv26Lsp19UBffpIIKVpMqWTkSGN3XydwvE0lVVQION94YUOG6T4cv32+xTP6aefjnXr1mHPnj0AgO3bt+Pbb7/F+eefDwDYv38/cnNzkZmZWf+e+Ph4jB49Ghs2bHB7zpqaGpSWljrdiIgoRDgcwOLFUgficEh2QtV02O1SzPrPf8qF33W/G0WtiJk1q2GDN4tFpme6d5dlwt26yWqe2Fh5TX4+8PPPzsFJVBSwYoUsLe7TR2+9b5SaKudWGRmLpfnN5IzfhS+N48gjv0/x3HnnnSgtLcWgQYNgsVhgt9vx0EMPYdq0aQCA3NxcAEBycrLT+5KTk+ufc7V06VL85S9/8fdQiYjIH7KzZVoHkMBEZT7U8l2HQ7Ib4eHSN6R3b32lDSCvyc+X4yNGAM8/Dzz6qEyPFBXJ+zIy9JU+u3cDW7ZIYFFdrdejKHFxwKZNMqXicOjTOzk58hlqfLGxEujk5Mix4mLJdqjPak6Ww9NOzkDD5m4t3X+onfN7gPLuu+/irbfewsqVKzF48GBs27YNCxYsQFpaGmbMmNGscy5ZsgQLFy6sf1xaWoqePXv6a8hERNQSGzfKFIkxOLHbJYAwVhF06gSUlgL79gE9esjFurBQpnYcDilsvewyCSwWL5a+Ju5qPiZMAL780v0+OiaTnKO8XPbRUYFOWZncfvxRMieJiRLclJZKkLJokRTEtnSn4sZ2cgbY3M0Hfg9Qbr/9dtx55531tSRDhgxBTk4Oli5dihkzZiAlJQUAkJeXh1RV3PR/j4cNG+b2nBEREYjw9B+biIhCi6ZJwGLsK6JpUoCqMhl5eRIwlJZKMNC9uwQNatnxjTdKrcaECfJ+tSImP1+Ou2ZNAH1J8ptvAh99JEFKZKQEJElJejB0+LB8dkxMy7Il7jS1kzObu3nN7zUolZWVMLtEnhaLBY7/m29LT09HSkoK1q1bV/98aWkpNm7ciDFjxvh7OEREFGijR8tFV2U0NE0PTkwm/edOnWT65YQTpBi1a1d5PHiwvsLGXa2G2ixw0iTg0kulf4kxMxMZKfUuJpNkcRwOeX91tSwJVv1SunSRz4qLk6mef/1LimD9WbAaiJ2cOyi/Z1D++Mc/4qGHHkKvXr0wePBgbN26FU888QSuu+46AIDJZMKCBQvw4IMPon///vXLjNPS0jBp0iR/D4eIiAJtxAi58G/bJpkDlckA9PuoKAlQ1M/HjsnFOiWl4XSKamO/cyewYAHwwQcSaFRU6AWtSteushLHZpMgCZDsis2m91A5elRf7WM2S9+UggJ9iXFzeGrXr3Zynj2bzd1ayO8ByjPPPIN7770XN910E/Lz85GWlobZs2fjvvvuq3/N4sWLUVFRgVmzZqG4uBhnnHEG1qxZwx4oRERtkdkstR5XXy2Bh3H6RXWE7dFDP1ZdrS8Xdjd9X1qqt7F/7jn3e+WYTHKOigqZTlIZFIfDOWtjtUrQVFkpS5OBlteBNNXjRO3krF7jWujbQZcY+8rvfVBaA/ugEBGFINWobedOyVC461eieoz06SO9TWJjnWs1SktlA0CbTV8B5EpN46j+JYAEAKqJW3i4HLdY5FhdnRTAqutFZaUENqtX+76SxpceJ41tithB+XL95l48RETUPK4X4HHj9I6rX3wBPPusBAwWi7zWOM3x4IOSddmxQ2/KpmmSObHbPQcn6nMdDn26R3WCVT1TuneX81RVyWO1jw/Qsk3+XHucqAJgVTdz+LA8P26cPt3DpcTNxgCFiMjfOsK/nD1Nc6jlwcOGAXfdBbz/vnRsdTfNYTY712o4HHpzNk/JfZNJgg5AghJViGuzNczWHDggY4uKkmmdysqW1YH4o8dJR/iz4ScMUIiI/Kkj7MHiaZpjyxbg4oslQDCb5Xfv3x+48kpZ0tu7NzB1qjyXnS1TL4sW6UFMcbH75cOKsbYkPFwyMrGxwB13yMZ9xmyN1SoBi8Uin330aMvrQFra46Qj/NnwI9agEBH5S0fYg8XhkCW/xqkZQK8dURmLgQOdm7DFxsqta1d5/bFj+kW6f3/JJrz/vnPztbAwvRbFyGqVY2azZGs++QQoKWk8o+OPjEV2NjB5sgQ87nqcNFbb0hH+bHiBNShERK3N1/qEtsjhAFaulOXEMTH6cWPtiOqHUlAgzdhURkQFHtu2yX3XrrLsuK4O+OabhsuHVSGsu39D22ySGenaVV5z/Lg0dPN1x2FfqR4nrsGZ+g481bZ0hD8bAcAAhYjIH1pjDxZv6heaW+PQ1PvU9MS2bRJ8FBfLa1NSJFiortaX+tbVyXN2u2QKVIHs8eN68Wtenr4s2CgmRu9rompNjFTBq8MhWZiEBL0ra6CLUpvb44T78zQLAxQiIn/wtT7B10DCm/qF5tY4NPU+4/RETIwEJyaTTGn8/rtMUagVNCrjUVurr5xRgUh1tXMDN9fsSHg4MGCA7MlTV+d552OLRQ+KbDZg6FDPv5u/NafHCffnaRYGKERE/uDLHiy+BhKe6hd27JDjL7wgr2vqNc05t9pZ2Dg9cfy41FoAEkgUFsrPKuCIiJDjxn14TKbGC2DVUuGDB2XvnKgoOe+BA87v0zR9SbHVKrft21s38zB+vG/TSdyfp1k42UVE5A/e7sFSVCQX/h07JBuRmir3KiDIynJ+r2v9QlRUwz1rli6VW2OvUfva+Hrue+4Bdu1ynp6Ij9d7kbieTxXEqnb3muZ5ugaQc6q9dDTNOdOgpowiIvSLv5oiioqSVUFmc3AyD2o6acIEuW8s+8X9eZqFAQoRkT+o+oTYWKlPUP08KivlcVycrCgxZiOaCiSMRamqTbuRql/48Ue5eVPjYORNbcS+ffI7qKBB02TFjOrSqt6nAhCTSXYRVl1e6+rkd3Q9v3pPZKSePVFLk9XUjtWqvzcyUp5TbfMHDJDPaAuZB2/+bHB/ngb4bRAR+YuqT8jIkCmQo0flPiND+nQkJHhfLKl28F24UP7lfeiQ7OJbWur8vshIuaDX1DRe41Bb2zDT4E1thMMhF04VNFRWypREWJgEVmFhEjT06iXLhaOi5LUqgAEk+Kiudj63xSLBhcqaqCXDJ5ygt8mvqtKLblV2JipKvqfWzjw4HLLMeO1auffU5daTpv5sdIAlxr5iDQoRkT81Vp+wdq13xZJffAG89FLDotSqKqnJ6NVL31emulo/n681DsbaCNVp1WbTm5xVV+vdWX//XbI8qi+JCj6MQQMg4z1wALj5ZuC774DPP3f+TNVkTdP07EpkpAQ6w4ZJlumKKyRrZJwOsdslqElOlu+hNXcG9leDNV9rVzo4BihERP7mabmrN8WSYWHABx80LEqtqtKnTXJz9XbuhYXAkCHy886dvvXnULURW7bIeauq9OBDZUdGjpSg4cYbJYujpnLUJn0Wi9TRGH+H8HDgnXeAX37Rj1utwCWXyMW5okICH7WjcWWlHmxs3SpBmrv+J3a7LE9OSGi9nYG9KVD2ZQzcn8drDNuIiFqLN8WSaWmyy69xGig1VQIBlXFQfTdU/cKSJXLztcbBbJYiz5ISqRtRq2PsdnlcUiLPZ2YCc+ZI9iQvT+5tNnlt1656sORwyOfl5TkHJ4MGAZs2Af/6F7B8uQQXdrsEKna7Ps1x1lnAww/LeSIj5RYRod+r7+ndd4E1awIfnHhTROyu+Jj8ggEKEVFr8aZY8tJLJRAxTgPFxsqKlagofZmta/1Cc2ocHA55T2O7Br/wgkw5LVsmGZXevSVgUqtu8vIkkCkrA37+WWpkjOebPVtqNlT2Zvx4CS5WrwZefVXuVbCxapWcKyxM3w1Y7UasalaqqqQWpzWmRXxpsEZ+xykeIqLW1FSjr/h44LnnGk4Dqb1sCgslu/HEE7IJn/FC7WuNw+bNwG+/yc/uVtloGvDrr7IrsWub9pgYmWqqqJD6FBU4KYmJwMsvA5MmNTyvp2mOnBx9jx13zGbJ3OTkuH/e39hgLagYoBARtbbGAgmHo/H9XiorpZjUNThRfKlxeP99PdvhKUDRNOmD0rOnHCso0AtFTzhBApzy8oa/3+uvy/h90bu33nXW3e/mcMjzvXv7dt7mYoO1oGKAQkQUDJ4CCV/3e2nu3juA3g1WMdbFGAMWm01WEhk3/3PHZAJmzpQMUXOmYKZOBW65RbISxmXKamx1dVIgO3Wq7+dujuZuDkh+wRoUIqJQ46meZMgQ6YtSVyd1HV98Ib1SJk8GrrlG7idObNiN1pPRo/Wf1c7B6uZal3LkSOPBidUqwcNXX8mtOaxWmU6yWvV9dhwOuVebEarnWwMbrAWVSdPcreUKbaWlpYiPj0dJSQniVC8AIqL2xpgd2b9fpmT27JEpFodD6kIiI6VoVS1/LSiQC6o3y19tNql5qaz0/JrISH3VTmOGDJHi1sOHJbBas6b5F+7HH5fVPCUl+rLn+HgJThYtat45W8JffVDIp+s3AxQiolDn2osjPFxWslRWSlDQp4++1FfTvA8SHA5ZArx3r+fXJCcDx441vZS2Tx8ZW2WlZHtWr25Zvw+bTVb15ORIzcnUqQ0zJy2Z3vJVa35WO+bL9Zs1KEREocy1F4fJJAGAWl1is8kUkApQXJe/NhYkbN0qWZdu3STzYpzCsVgk4Kiq8q7Ph2qF76+VLVYrcNVVnp9v7awGG6y1OoZ/REShynWzQFWkaWw3b7VKcGCcpvG0944rtYy2e3fJuPTpI9NFffrI4y5dGhbSeqKW4lZVyf3evc3bs8YbKqO0Y4cEUp06yb2nHaGpTWIGhYgoFKkMwbZtkt0oLpaAQjVJM5n0IEUVkiquy189TZe4LqM1bv5XXCyv9ybAUBv9lZbKe8xm4KGHApPVUBmlggIpFi4q0pclh4dLwPXII7KMm1MwbRoDFCKiUGOsOXHdLDAnRzYLjIyUx+oiXF0tWYSoKCA/XwIRhwN47DG5YBsLTm+5RQpOb73VeS+e2lqZ5nG3iqcxVqsET0eOyOPERMlqOBzN37PGk61bge3bpfeKpslnWyzyc3W1BFvbtzc9vUUhjwEKEVEoca05AdxvFpiSIh1ca2sl6Dh6VA8sVFblD3+QwATQ28c7HJJ1WLJEjk+YIMuCbTa50Kvlxkp4uNS3WCwN61QAvbtrbq58bliY9Ac5fjwwWY38fAnYHA7nDq9ql+SaGnk+P79ln0NBxwCFiCiUuNv/JSUFOHDAebPAsjI9WFCBh8p6WCySxdi/Xw82TCbn/W2qq2Up7/Dhku2orJRAwshiAfr1k4AjNVUCprw8eW9kpKzwqayU4MjhkOCgri6wWQ0VJKldlV1ZLPJ8QUHLPoeCjgEKEVEocbf/S1ycTOvk5uoNzAoKJBDo1Uvuc3LkfWFh8vzhw87TNHV1+kVdZTqKi6WQtba2YXCSmiq9RwoL5XFhodxqauS85eUSJCUmyliLiiQgCXRWIynJOdPj2t3V4dBXIFGbxgCFiCiUeNr/JS5O3yywuFguwsnJ8prKSskaqGkcq1UCEkUV1LruceNwyLmMwsOB9HSpfVHTQXFxwL598nxYmJ4dqayUW8+eesDkjj+zGt26AZ07y7hUtkb9fjab/Ny5s7yO2jSWOBMRhRK1/0tBgXMtiFJVJQFEWJierVAt4VU2obGN/+x2OYdrxgSQlTgnnijBCaCvBjJmXozUYzWl41q/oj7Xn1mN4cOBoUNljFFR8vvU1cl9VJQcHzqU++O0AwxQiIhCiTf7v8yapWdZAAkQzGY9ONA0vd5EPVaFszU17gMfq1UCCJUFUZvhpaVJL5QePdwHBN27y3RPTIx8Rl2dHqg4HPLYn1kN9f0kJemf37u33EdFSQaK++O0C/wvSEQUajxtFpiRASxbJgGKMcsSHa13lVVTHWqPHkXtBuwqPFyCErtd3xDQGAxdeqm8LzER6N8f6NtXGrn17SuPVVakT5/Wy2qo72foUAmCKirkfuhQ+X64P067wL14iIhCVWP7vxh7pVitMm1TUiLvsVolqxAWBhw8KBdwd3/Vm0wy9RIeLsGEzSaZjk6d9AZr8fGyS3JMjAQ9lZXyOqtVgo+iIjn/zJnAe+/JeKKj9bqTyko5RyACB+6P0+Zws0AiokAJpYvinDnAyy833Gm4UyeZIgoPl7qSffskcDBSHWNVxsVikSzM4sXAxIn67+VwyOMtW+R11dV6PQsgz4eFScGumsI5doy7/pJb3CyQiCgQWnuDusY8/jjwyit6NsO4kqW6Gjj9dMlgeNqXRtWkqCXHqmj2D39w7lViNjs3cwsLk+PGoKhLFwmIDh2S+yVLpJA32AEctWkMUIiIvGGcUklKkmyDakA2YwYwbx6Qmdn8C7K7zIzD4X4PHZtNmqzZbDLNolbT2O3yHrsd+Pxz5/OrAEZRAYnJ1PjqH4cDWLtWpnjq6vRmbOr1ZrN8J6qR2+HDwOrVwJo1DEyoRRigEBE1xbX9vLqQ19VJjcWxY8A99wBPPgkMGSIZBF8yKu4yMxER0pitsrLhHjrJyVJvEhbmHJyoVT2uTCaga1cJftztsaOOqTb1RqqzbWqqBEMFBZIpUf1W1MqgykqpPUlMlNc31jU2lKbJKGQxQCEiaoq79vOlpbIXjsom2Gxywf36a+Dnn4E33vAuSHGXmTl8WFrbAxIEhIU576Fz7rn6UmJAfnbX1wTQe5iUlbkvlDWeR63WMXLtbKuWIRt7oxh3U46MlHEeP+759w2VaTIKaQxZiYia4nqR1jTJIrgu21VFpXl5Umza1I7ArpkZNV1j7Liqur9arXLxt9mAb77RnwP05cWu1GZ9YWHO/U+M0zqq4ZvrFJBi7GwLONe7qO9CjQ/Qm7t16dLwXCoY27FDpoxSU+Ve7XjsqV6GOiQGKERETXG9SFdUyIUY0C/2asmuKiL98UfZ5waQQCI7W2o5srP1wMJdZqawUN8E0NiiXj22WGRJsdol2FgTYqReq6Z+jMGScRWOaq5mtcoUjesUj7vOtmpXZVWUGxEh71XN3QYObNjzxF0wZjbrzdbKyuT5poI66jAYoBARNcX1Im3sK6KCCFUwajLpe+Fs3ChZgQkTgIsuAq64Qu4nTJDj7jYGdJ2qMbaoVxsFqkJYQL93lZamr85prJuEpkmQkJwsK3BcMx+qc6vVKkHXr7/KOFTLfEDf1Vg1d3PXydVdMGYUFQVs2wasXMkghQAwQCEiappr+3ljxsK4VNfVnj3A9OlSl3L8uGQJVJ3K9OnA/v3OmRlAHhupGo/a2oa7E3tisUhGoykREdIRtl8/GYO7zIdiDHJUG30VnBUWOne6dVdL4i4YA6SWZ+9e+V4LCoCFC6XvCqd7OjwGKERE3jC2nzdSdR6qaBTQ+4V8/rnUo6jurqo5mqpTWb4cGDDAefokMVE/l8rM2O2NZ0EsFnmf2rQPkAu+ynB4YrNJYHLkiOfMh5qasduBwYMlmOnTR8Y9dKh0ie3dG/jXv2RpsadCV9dpMkCCkwMHZJxqSoo1KfR/GKAQEXlr/Hi5CH/0kexDo7IIxloRdQFOT5cMCSCBiXqt2axnW376Sfa6MW4MqGkNd/1tbMojLEwu7MnJwAknSObEZJKLvgpqwsOlwDYiQh8LIEFHeXnjmQ/j1IzZLF1q4+PlXn1uQYHz5oSuY8/OBvLzpShWBWOaJsuo7XZ9lVJkpARarEkhMEAhIvKN2QyMGiUX9NRUuUjbbDJ9oVrGp6RI0zZVfOpac2GsU3E4Gm4MGBkpF2mLxfMF2mSS16mMjM0mgc6AATJtowIVtRmgolraqx2Qb7658cyHp6kZJTJSnne3rDgrS6ZrJk8GrrtOArbSUrkvLJRaFrNZvgeLRd/c0GRy7qdCHRL7oBARNcf48cDrrwNLl0rxaE2NXMRPPll6lfz8s2/nGjdOb162f7+0so+Pl4ZsroWwnTtL5gNouMwXkMfR0TImm01fhqymjFTAZLUCI0c23iTNODUTFdXweU/Lij113q2rk/eoQl+LRc6bmioBltJUPxVq9xigEBE1l2tgYeyKqjbrU9kBVzabPD96tDw2m6XzqsMhq3zy8iQIMdaeqOCipsZ5qW90tF4Uq4pWTzgB2LVLAhzjewE9KxMdrW/w54lawbRjh3MXXeNnZWQ4F9d66rwbFSVTX4cOyefm5UnNiWtzOKDxfirUIXCKh4goEEaMkKJSQO9D4lqnMniw3g5e1Wo8+qg0YnPt/Go26++vqtKXHGuaXOAdDuelvg88IIGRMTBxbdRmNkuha2NcVzBVVjb8LNfi2saWFJtMcrykRIIoVXdj1Fg/FeowGKAQETWXscbimmvkXi2RNZsl2EhJkUDBuNGeqlO5/npZ6bNsmWRNLrhA9toxrnSxWqWniQo2FFXHYrVKwHL0qPNSX7WqR63sCQvTu8paLPpz27c3/XsaVzCpOpnGlhV7U7dSV9ewQLipwIc6FE7xEBE1h6caix07gFmzgNtuk+mMyy8HXntNMgYqU6A6ry5dKu8vLXXuGKuYTEDPnnLB1zS5sKsdi3v0ABIS5GKeng7cf79Mm6gpprVr5b53b5lKqa7Wa1BUY7bycu9rPBqbznLlbd1KZqYUHKu9eYqK5HhGBvfmIQYoREQ+UVMxt90m0xC9e+sX6ago+Zd/Tg5w663yuKxMgoJu3WRpbkWFLLndt0/qM2pr3XeDVefMz5fXqCJYh0POm5ioT5ccPSrnN+4erIKE8HBZEl1ZKVNCqqW9apfvS42HqpNpii91K2az94EPdSj8E0BE5C01pXPxxTI1Uloqrd9LS+V51XjMbteboKnVM0VFctGtqNAv2Lm58tjIbAZ69ZKpGJNJbyuvac7TQ+ocnpb5GtvzA879S4DA1nj4WreiAp8JE+SewQmBAQoRkXeMO/GGhztv3HfggEzhqMZjqjdJdbVe72G3y8W5uloea1rDfXcsFrl16iRBitqAD5D3R0XJ8bg4/T2eVrsYg4RDhyRQKS6W+0OHAl/j4WvdCpELTvEQUcfkcHg/reC6bLaqSi9aVct9jxyRe7U7sKonqa3Vu6yqOhB3betVu/y6Osm+xMXJ46Ii6Xty7JjzdBLgeZmvMn48MGcO8PDDwMGDeg1KfLwEW4EOEnypWyFywQCFiDqerCy9MLO2VoKDgQMbFmaqIGbDBmDnTn3ZbHS0FLqqOg6rVZ/Ocdf51eHw3BFWtcC3WJybrqlpoYwMYPFi4MYbJQhKTJRpnepqCU4ay4RkZUm2IixMMi9msz7VsmyZBAuBDlK8rVshcmHStMZ2oApNpaWliI+PR0lJCeKMqU4iIqDx7Iin1TcFBTId8sILctE2BjFlZTKFEx0tS35jY+VYTo7eDdWYNQH0/XkaY7VKVuTQIb3OJCpKVu6o4ENNh3gbVBm/g4kTPReqHj4swc+aNcxoUKvx5frNDAoRtS+NXcjHjfPc4bR7d7loqw3qbrxRD2LUapyqKglKeveWIKV3b6mtqKpqGJx4w2KR8yQnS/2KwyHjVbUaxuDD1+mSppqlGfe6YYaDQhADFCJqPxrrTTJ7NrBoUdMX7V27gHvucQ5iVGajqkrqQ44elcAiNlZatefkyPOHD3uuMTGKitKLZH/7TYpizzwTuOwy6WniKfjwZrpEZY/WrJFAx10beYB73VDIY16PiNoH10LWqCi5oKvsSFkZsHy5vqmfO5GRslR41y59bxtAghTVEVbTpIYjL09fEZOYCEyapBfNNpZBSU6WJmuqr4k/Z9mNnW2ffFJW7ezdqy+DNuJeNxTimEEhovbBmymNI0f0zfZcO5yWlUmwoVbaVFZKdiElRWpB4uLkYq6WEh8+LAGQWhFz1lnAiy/qG/g15sABycSYzRI8VVfL/jvr18vnxMQ0Xl9ipDImX3wBPPusZGWSkuRWVSW/x4EDzsuTm1r9QxQCmEEhovbBdf+XykrJHFRWyuPISLlPTZXMhzGIKCsDfv9dLugqA6Jpeo+T0lK5qekQi0WKZVVDtWXLJOsSFtZ0cJKfr++1ExUlwY6qP1HTPjEx+rRUVpbnc6mMyaWXAvfdJ0FTRYUe/PToIWOqrZXn7HbudUNtRkD+ZB4+fBhXXXUVkpKSEBUVhSFDhmDLli31z2uahvvuuw+pqamIiopCZmYm9u7dG4ihEFFHoVq7FxYCe/ZIbcf+/XK/Z48cDw+XfXJcm5cdOKA3TVM7BNtsekfYo0f1zAkg0z8pKZKV6d5dgo7rrmvYFdY1k6OWDwNyrrg4mSqy2yWQUMGEpunTUqpoF9Db7K9dK0HRrFkSyKjzWq2SjcnJkffGxgJ9+kggVFMjvVDYLI3aCL9P8RQVFWHs2LE455xz8Omnn6Jr167Yu3cvEhIS6l/z6KOP4umnn8Zrr72G9PR03HvvvZgwYQJ+/vlnRKp/5RBRx+NL8zRXw4cDXbsC27bJY7Vrr5quqawEBgyQlTcXXgi88YZcsFXmQlFZEBUo2O16e3q1g3BqqrzWbtczLEapqRLYFBXp2QyzWf8c9TsVFcmUkNWqBzMOh7zHdaVNSYnz6qTiYnlt7956Ya7aobi21rmQd+BAGeett0rGhc3SqA3we4Dyt7/9DT179sSKFSvqj6Wnp9f/rGkannrqKdxzzz245JJLAACvv/46kpOT8eGHH2Lq1Kn+HhIRhYKmgg9f+3w0xl2Rqt0u++ZMmybZBbNZAhpAsiOKpunt6evq9GOqiVrXrnLRLy+XDI2xXX10NPDyy8Cf/gSsXAksXCjTNZ07y3RRebl8lupCq4IgY8GsatQG6CttvvgCeOklfXWS3a7vcHzggGwUqKalTCY5R1WVZI0SEyWr0qmTBCdcUkxthN9D6P/85z8YOXIkLr/8cnTr1g3Dhw/H8uXL65/fv38/cnNzkZmZWX8sPj4eo0ePxoYNG/w9HCIKBcbVJddcI/cTJ+r1FcZ9bmJiJAPhbR2GsnWrtIPv0UOmNGw2CQBUAzXVRVV1fLXb5eJvpDbks9nkZqQ6vubnS72KCqSUiAhg1Spg6lQ9kLFYJDgxmyVA6NZNrztRn2ds6GazyXnUCqLqasnofPCB8+okNeUTFqb/HpGRMvaqKv13OHhQxpmbG7iNAYkCxO8Byr59+/D888+jf//+WLt2LW688UbMnz8fr732GgAg9//+pZKcnOz0vuTk5PrnXNXU1KC0tNTpRkRtRFPBxxdfNL082FiH4Y7DIe3oy8r0jqyAHoiorIimSYBisUiGxm6XqRPXLqvuVuKo4tvaWn2HYKVTJ+CMM2TqSFE1MaogFnBerqyyM+Hh8rMal5o+Uitt0tJk9ZFxdZLVqmefVJv9yEj9dzWOvaJCMjcTJnBah9oUv/9pdTgcOOWUU/Dwww9j+PDhmDVrFm644QYsW7as2edcunQp4uPj6289e/b044iJKGC86U1yzz2yAsabjqfuqOzMQw9JXcahQ3JBVj1JFJVJsdslyKipkbHU1enZEcB9ozVjQGMUFgYkJEgQcdddzgHA8OGStXBdMRQXJ6t/LBZ5f0SEvhdPSooEO8aVNpdeKmM09m5RewGpWhVNk99Z1bqo785kkmAwJkYKaxsL8ohCjN8DlNTUVJx00klOx0488UQcOHAAAJCSkgIAyMvLc3pNXl5e/XOulixZgpKSkvrbwYMH/T1sIgqEpnqTJCTI88XFzpkPo8hICSjcdTw1ZmfUVIpiszWddVGZkogI5yDFlcq0GIWFSdO1kSPdr4gxm6V+JjZWgo3KSn2jvtJSCVKefBJ4+23gmWekj0pNjUwfFRUBQ4bIeTMzG2ZiAMm0WCx6HYux2DYsTIKmvn2B/v0l8GksyCMKQX4PUMaOHYvdu3c7HduzZw969+4NQApmU1JSsG7duvrnS0tLsXHjRowZM8btOSMiIhAXF+d0I6I2wLU3iVFpqVy4S0vlX/+//ea+66mnjqeu2Rmg4VSNax0J4BzEqN2Hu3SRiz0gn9XUXjrR0cDjjwMffigt5T0V8Y4fL5sPZmTIVMvRo/oy3xdeAObMkamXAQM8f5anTExsrJ6JMZv1AC86Wtrlq2yMydR4kEcUovy+iufWW2/F6aefjocffhh/+tOfsGnTJrz44ot48cUXAQAmkwkLFizAgw8+iP79+9cvM05LS8OkSZP8PRwiCiZjHYaxc2tpqXM3VfUa1RhNdT1trOOpa3ZGBSPh4Xr2xF1GRtWiGOtUVBGrWu3S1IXcYpHNBK1e/BXa1CZ/nvYP2rlTjr/wgmRiZs+WgC4xUQKO6mo9E3PZZbJ6KCbG/d47bGtPbZDfMyijRo3CBx98gLfffhsnn3wyHnjgATz11FOYNm1a/WsWL16Mm2++GbNmzcKoUaNQXl6ONWvWsAcKUVthbBiWne15KsXdv/41zbnpmapHUc3GbDZ5vqKi8Y6nrtkZNb1hNssFXE3buE7dGJfxAvJcRYVM1fznP8Dddzf9+1dXNz5d4vr9ALK8d8IEuVe/izc1Oo88IgFOY5mYhx4Chg2T6SPXoEwFeVzFQ22MSdP8uVNV6ygtLUV8fDxKSko43UPU2nztV2LMECQmykX5t9/0/h/JyXrWoKhIsigOhyzJHTLE83mzs2W5ckyMvjvw3r16u3rjFI/JJDUaKoBRRa8xMRIoPfEEcOWVMmUzfbreHt8dlYH5xz+AefNa9v24/g6uKislEFm9WgKbxnrJuH7PKstSWChBHjvHUgjw5frNNWdE5L3m9CtxrcPIz5cLbXi4XOxzc6XhmWozkJIiG/DdfXfj9R2u2RnXJbx1dXKRVlM+ERFAz57ACSdI8eiAAfK+YcOASy6RepApUxoPToCGK3la8v00VqMDNKwdMZvdZ2Lcfc/GLAuDE2qDuJsxEXnHdTpCTZuo6YjDh/XpCNfpGGMdxoYNsrFdebmeRVFZiaoq+Vd/QgIwZkzjfTvUKhljbUZMjGRk1OZ74eH61FFkpNSXqMyCmj6aPBkYNUoyHp4+RzHWrowa1fLvx1ONjuJr7UhT9S5EbQj/1BKRd5paMtxUvxL1r/85c/Si1rAwvUbEbJbHqovr0KFNj8ld1gCQJbvPPCPt5j/5RGpLRo50ziwMGSLvnz/fOTg58UTnGhUVlBiDE7VypqXfj6cVOupzm1M70liWhagNYQaFiLzjzXREUVHTK2C2b9c3tTP27lA1I+q57du92zfG26zB+PH6awDg73+X4EYxmYDFi6Uj7NVXS4bHXUfZsDDJ1BQWOh9vzvfjLgvkWjvirkCYqAPgn3oi8o671u1G3k5HHD8uF9zevfV9aerq5D4qSo6bzb717PAma6BeU1sLXHWVtNhXuncH1q2TKZjUVOkxkpCg90ZRLBY5HhEhBbnGFUzN/X5YO0LkFjMoROQdNR2xY4d0Ka2q0jMeUVGe+5W4Uhfy8HDpclpZqZ8nOlrOG4ieHVVVwG23Ac8953z80kuB5ctlakb9nl27Atu2SfYkPFx/bV2dFPmGhQEPPiiBilqhM26c/v0Ya1CAxvu5AKwdIXKDAQoReUdNR0yfDvz0k3PvE7V7rzfTEcZAp3t3KVxVmrqQN9eOHcAVVwA//6wfi4oCbr0VOPNMaS+fkNBw7MY+KjabPt1jNkuQVlOjr9BprKGaN9M1KsNDRAA4xUNEvnLNDPiqsT1qGmvM1hyaBjz9NHDqqc7BSb9+EgC9+SZw7bWykmfiRFkGvHUrcOwY0KOH8xSU6qmieqxUV3vfUG3IEGDhQjlPY43tiKgeG7URkXccDrmIq8yH6xTP4cNyYV6zxrvgwteGb77Ky5Pg49NPnY9ffjnwww9SBGtsLV9QIEHT9dcDTz0ltSgmkwRO5eWydFmt3qmrk/1u1N8/jTVU278feP99YM+ewPyeRG0IG7URkf+5LqONjpYLdHS0d8uMXY0fL8HM6tXAq6/KfWON2Xzx6acSLBmDk5QUeVxcLAGHp9byH3wgWZKaGvm9VO8UQF6r9u4xLkX21FAtLEw2Fdy50/vGdkQEgAEKEXnL166n3vB3z47qamDBAuCCC6SYVbnoIgkKunZtulfJkSNSX2LsTeK6FDoiQgIz4+e6FvZ6u88Op3uI3GKAQkTeMS6j1TSZ0igpkXtVkxGI1Tfebkz400/A6NGyR44SGQk8+6w0auva1bsgq65OVvYYa2QiI/WsitksmRDj+PLyJOhxOPTxtbSxHVEHx1U8ROQdtfpmyxbJIlRX63vgREZKlmHkSP+uvvGmTkXTpF/IwoUyJmXIEODtt4HBg/Vj3raWz8yUVvbqs4uKZGpGtcy3WCQQKSjQ2+rn5ACXXaaPr65OD4Y0reFyam8b2xF1UAxQiMg7ZrNMxXz1ld6mXl2oy8vlwjthgv96dxh35zUWsxqX9WZkADNnSobE6OabgUcf1WtHFNclzo31KjGbG/YmKSqS8+7eLYFJWZm8rnt3yYgYx7dokQQ7hYVycw3oEhICk3Eiaie4ioeIvKNW8WzZomcHHA65QIeHS8AycqT3q3i8+azGVgx17y71ImoXZEA+NylJ9vGZMkVW2rg2PTMGPu56lTTVvVVNOc2ZI/1T+vRpGOgcPiwZnMJCadlvMjWsY1E7KW/axIZs1GH4cv1mBoWIvKNqKlJT9emJmhrJbCQkSBChaipa2nBMfVZkpLSUr6lxDobMZlkqbNSpkwQkZWXA119Lpic2Vm7GaSHVWn7pUuDHH/XfYcgQYMmSplcRqeZtx4/LyqDG6ktUEzp3GwESUaMYoBCRd1SBaW0tcPCgc9Bw/DiQnOz7Kh6bDVi1Suo3evcGpk6VTMPx4zJtVF4un2G1ynSS3S7HXPXoAXTrpvcrsdv183fq5Dwt5I9lzN4U2+bnS2amRw/JpBi/r+hoCWKOHfNPQEfUDjFAISLvdOmiF4Nqmh40aJpkT3JyJJPibU3F448DDz8sK4FUbcYttwB33QWcdZYUldrtepGp3S5BgZHFIoFNQoI8PnpUf4/Dodd9dO8u0y5qWe+NNzasbdm50/sgxptiW7NZPisxUV7vWiTrcMh4WSRL5BYnPonIO0OHygVWFciqPWrMZnmsnhs6tOlzPf64TKcUFUmQER4u90VFcvzNN/VpEIdDAgHX4MRslpqR+Hh5XFgogZKq5zDWe6hpl127gHvuaXlvElVsa+yVoqhi2xNOkEBE7W5sbGwHBG5ZNlE7wQCFiLyzfbv8699qlSJZh0Muxg6HPFbPbd/e+HlsNsmc2Gz68mTVmTUyUo6vWKFnJqqrGwYMFoss+7VaJRjYs0emnWw2GUt1tR6YqI6vkZGSxdi3r+W9SbzZT+jBB4FBgxoPYgYO9O+ybKJ2hAEKEXnn+HG5MPfu7byJnt0uj3v31utRGrNqlUzrhIW5DxLCwqSWRE3xeBIRIdmHQ4fktSqjA+hBU1iYc8ZCTbv4oxuuKrZ13RgwI0NWAmVmtt6miETtEGtQiMg7qu4iPBzo379hTUVVlXdTFqqGpbELs6a5rzdRS3VraiR4UX1O1FSTeq/xPOpeTbscOdJ0ozZvp13Gj2/YK8W4pFkFMcaGb+HhEsRws0CiRjFAISLvuDY5U0togYZNzhrTu7cEFGpFi/Ec7gphAb1GRdWUWK3y89Gj+ioZlSFRWRerVV6ralPUtMujj3rXqM1baj8hT5oKYojILQYoROQdVXcxe7ZMUbhrcubNlMXUqbJaRxXIqmLW2tqGUzpxcRLI1NbKlI0qaE1OltqOmhrpy5KUpGd0amv1Zb12u0y7DBumZyzM5pb/Ds357riUmMgn7CRLRL7xZn+cpqhVPDabBCk2m/PzkZFSBNutmwQkrtNJlZUS4AASZLibrikslFqWJ54ArrxSjqksxv79wPvvS3Ftc38HIvIZO8kSUeCMHy99Stw1WPPWokWS3bj/fucN/gCgb18Jgq6/Xp+KUYWugD4VM2SIPN650/10TWWlZE6uvFK6yroGVQMGSJDkrh0+EQUdAxQi8o27DMrrr/uWfdi3D3j11YbByQknyK7Ev/wCTJ4smQ5PUzFLlsh7mpqu+eor95sO7twpe+m88AKnX4hCEKd4iNorh8P/hZmedhguKJDltN50YX3zTTlHZaV+TO3nU1go446Lkymerl3l+WPHPE/FNDblNG6c86aD7jb1y8jwzwaHRNQkX67fDFCI2iN/1Im4ct1h2NeLfUkJMHcu8NZbzseTkoDOnaWfid0u54qKAnr1ksAnJga4/HK59zSd5CkYy86WTExMjPs6lcpKKaJdvZpZFKJWwBoUoo7MU5ajpRvmqR2GvenC6nqx37BBakF+/10/ppq+JSTIjsV2uzRWUyt6NE0yKTk5wJNPShATEeF+OsnTKhlvNvUrKvL/fjiByF4RdTD8P4aoPXE4JHPS0r1m3PHmYu/ahdVmA/76V+CMM5yDE/X6sDDJYlRX603YVI+U0lLgwAEJXOx2CVBiYvRAKyur6TEbN/VzJxD74WRlSaZp8mTgmmvkfuJE78ZLRPUYoBC1J75kObzlcMhUyd698tjbi31OjtSA3H+/c0DUpYssLa6pkdeUlem7GQP6z8XFEpiEh8tx1VLf35v6+XM/HJW92rFDgqnUVN+DKiICwACFqH1pTpajMcZswIMPynTIr79KdsPI9WK/apXsavzdd/prVB1Mr16ybNhkkgxLUZHerA2QY+HhMk7VMda46Z+/N/XzV2O2QGaviDogBihE7Yk/pzRcswFpaUBKimQy9u2TIMf1Yj9/PjBzJnDFFVIUq8THAyedJOcxmeQ8Fos8V1MjUz11dfKzxSLTOcaAJTLSuReKPzf181djtkBkr4g6MBbJErUnrvvlNHevGddsgDqPCoBycoC8PAko1OZ3kyYBCxYAv/2mnyc6WoKPE05wzlLExUkmJTdXggW1E7HZLMFLZKScv65OMicpKc6/i7839fOHYBXkErVTDFCI2hN/7ZfTWDYgLk4CjuJi4O67gVNPBb74QvbXMbasP+00+az5893vHhwXJ9kSdR6rVW8/X1Iijx0OCWSMyxEDtalfSxmzV/7YKZmog+MUD1F7448pjaayAeoC3LkzcMcdEmCo4MRkksfffAP88Y+NF6kWFUnL+ptuAubMAdaulZ4kr74qS4t79pR6l0DWjvhLaxfkErVzzKAQtUctndLwJhtgs0njNdeCWZMJeP556W+yaJFvGR3XLMeAAXrDuaIifTqpOQ3nAt2bxF/ZKyICwE6yRKEvGE2/Gusaa7PJNExVlfN7zGa90ZqqHVm6VIKUlnS29cfvH4jOuqHwWURtDFvdE7UXwbywGzvSqmxAURFw8KCs5DEKC9MbrQESpFRXSxYlL0+vJwlGd1V/7B/kK3aSJXKLAQpRe9CSC6u//hWvzrNrlxSzlpW5f53Knqilw4BkWux2qSe56irvP9OfWrp/EBH5lS/Xb/4fSRSKWtL0y5/dTMePB15+Wc7hGpwYa1McDgmEjJkVs1mCgJwc/TXZ2VIIm53dOg3L2JuEqM1igEIUipp7YfV3N9N//1umJzZt0o+ZzUD//kBysvMxVXtiHIvJJBsCBmt/Gn931iWiVsMAhSgUNffC6q+MQWUlcOON0nytoEA/HhUlwUlcnNSXqCkdFYxomvysgpX4eKBbt+DtTxOIzQKDkQki6oAYoBCFouZeWP2RMdi2DRg5UnqmKNHR0ogtLk5vOa+6viqaJjebTd+d+M47gb//PXj70/i7Nwl3KiZqNQxQiEJRcy+sLckYOBzSHG30aOCXX/Tjp5wC/PADMH26XqirpKRIoGEsjnU4JLuydKnUsASzBsSfmwVyp2KiVsUAhSgUNffC2tzAJjcXuPBCYOFCybAot98ObNigv8fduVNSpBtsXBzQty+wYoUsLV60KDRqQPzRWZc7FRO1OgYoRKGqORfW5gQ2//2vvtRWSU0FPv8cePRRybg0de6jR6Vo9sUXgauvlukdoOmMjmr2tndvYOs5xo+X30+10V+9Wh57u+Saq4GIWh37oBCFuuY0/fKmD0p1NbB4MfDMM87vvfhiWVrsqXDUlx4rjfUhKS2VJchms+zp422vlmA0QVu7VmpOUlPdf5bDIUHaq68CEyYEdixEbRgbtRFR4xfyH38ErrhC7pXISOCJJ2TTPtcsgS/nduWuI21BgWRhAKBHDznuTRO6YLWRz86WgtiYGPd7E1VWSnZr9erA7phM1MYxQCEi9zQNePZZ4LbbnKddMjKAt98GTjopMJ9rDCxqaqQrraZJjxTj/8ONdXcNRst6hR1pifyCnWSJqKFjx2T65uabnYOTBQuAjRsDF5wAzjUg99wjq3z69XMOTgD39RwOB7B5sxTsFhYGp0jVn6uBiMgr/L+JqCP47DP5F/7HH+vHkpOBTz6RpcWRkYEfg9ks0x/9+8tjb1b2qL4jF18s/VlKS6Wg1th2v7WKVP2xGoiIvGYN9gCIKIBqaoC77pLaEqMLLpDlwN26tf6YjCt73NVzqF4t+/cDjz8uwUhEhAQ4Fous/MnJkemh2Fh5j9ppOdAt68ePB8aN407FRK2AAQpRe/XLL8CVV0rmQYmIAB57DJg3r+lC2EBR/VQ81XMUFkpflfff1/uOVFbK60wmCV5qayWDoQKU5rSsby6VCSKigGLYT9TeaJpMRYwY4RycDB4stRw33xy84ATwrp5jyhRgzx6970h0tGRJbDb5/axWycBUVjavZT0RhTwGKETtSUGBLIedM0dvggZIxmTzZslMhIKm6jnS05070JpM0rHWYpFNCDUNsNvlPSxSJWqXOMVD1F5kZcl+OUeO6Me6dJFak4suCt64PGmsniM7u2GdSlwc0KuXtOWvqpIgpbZWgppA90EholbHAIWorautBe67T9rSG9sanXce8Npr0v3U3/zVzdVTPYenOpW4OGmWpopk1VQWMydE7Q7/ryZqy/buBU4/Hfjb3/TgJCxMVr+sWROY4EQt/Z08Wdq/T54sj/25m29jdSpHjkhtyt//DowaxeCEqJ3i/9lEbZGmAa+8AgwbJtMhyqBB0nRt4cLAXLhVN9cdOySTkZoq9zt2yHF/BinsO0LUobHVPVFbU1QEzJoF/Otfzsdnz5Z+J9HRgfncYLV7D8bmgEQUECHV6v6RRx6ByWTCggUL6o9VV1dj7ty5SEpKQkxMDKZMmYK8vLxAD4Wo7Vu/XoIAY3CSmCgt5JctC1xwAkiQsHu3vvTXKJDdXFWdyoQJrDch6kAC+n/65s2b8cILLyAjI8Pp+K233oqPPvoI7733HtavX48jR45g8uTJgRwKUdtWVwfcfTdwzjnAoUP68XPOkYzGpZcGfgzHjzsv/XVlbFFPRNRCAQtQysvLMW3aNCxfvhwJCQn1x0tKSvDyyy/jiSeewPjx4zFixAisWLEC//vf//D9998HajhEbddvvwFnnAE8/LBeCGu1yuZ4n38u0y3ecjikZmXtWrn3ZXM9Y4t6d1qzmysRtXsBC1Dmzp2LCy+8EJmZmU7Hs7OzUVdX53R80KBB6NWrFzZs2OD2XDU1NSgtLXW6EbV7mga8/roUwm7apB/v1w/43/+AO+6QxmXe8nb1jacgRi39LShwXs6sxspurkTkRwEJUFatWoUffvgBS5cubfBcbm4uwsPD0blzZ6fjycnJyM3NdXu+pUuXIj4+vv7Ws2fPQAybKHSUlADTpgEzZgDl5frx666TGo9Ro3w7n7erbxoLYrxpUc9urkTkJ37/m+TgwYO45ZZb8NZbbyHST1u4L1myBCUlJfW3gwcP+uW8RCHpu++AoUOBt9/Wj3XuDLz7LvDyyxJY+MLhkOkgtfFeVJQEEVFR8risTJ7/4oumgxgu/SWiVuL3TrLZ2dnIz8/HKaecUn/Mbrfj66+/xj//+U+sXbsWtbW1KC4udsqi5OXlISUlxe05IyIiEOGpMI+ovbDZgAcfBB54wLk25KyzgDfekDbvzeHN6ptdu4B77tGDGPU6FcQcPixBzLhxjbeoJyLyE78HKOeeey527tzpdOzaa6/FoEGDcMcdd6Bnz54ICwvDunXrMGXKFADA7t27ceDAAYwZM8bfwyFqG37/XaZ0/vc//ZjFAvz1r77XmrjyZvVNfj6wbx/QtWvTS4jVUl93LeqJiPzE7wFKbGwsTj75ZKdjnTp1QlJSUv3xmTNnYuHChUhMTERcXBxuvvlmjBkzBqeddpq/h0MU+t5+W3YfNhZ/n3ACsHIlMHp0y89vXH2jNt4zqq6WgMPhaDyIKSriEmIiajVByck++eSTuOiiizBlyhScddZZSElJwerVq4MxFKLgKSuTItgrr3QOTqZPl0yFP4ITwLvVNyecIE3euISYiEIEW90TBcPGjRKY7NunH4uLk0LTK67w/+epVTxlZTJdExkpQUdhoXzuc8/Jbsit3caeiDqUkGp1T0QGdrs0XBs71jk4Of10YPv2wAQnQNOrbzIzuYSYiEIKMyhE3vDHhnUHDwJXXQV8/bV+zGwG7rtP2thbrf77rOb+HllZslpn924prA0Pl+mhO+/kEmIiajFfrt8MUIia4o+L9nvvyQ7ExcX6sd69gbfekmyKPz+rpbh7MBEFCAMUIn8x1m4kJckql5oaKTiNjZVpk8YCh/Jy4JZbgFdecT4+dSrw/PPSgM1fn0VEFOJYg0LkD952YPW04d6WLcAppzgHJzExwGuvyRJiY3DS0s8iImpnGKAQeeJNB1bVvMzI4ZAVMWPGAHv36sdPPRXYtg24+uqG52vuZxERtVMMUIg88aYDa22tc/Oyw4eB886T7q82mxwzmaQI9ttvgb59/fdZRETtmN87yRK1eapIVGU/qquliZkr1+ZlH34IzJwpvUWUHj2AN98Ezj678c/0ptsrG6URUQfCAIXIyHUVTXGxBBy9e0svEEV1YM3IkFU2c+ZIEavRlCnAiy/K9ExTVLdXT43S1GcNH+6XX5OIKNRxiodIUatoduyQYtbUVCA5WZqr7dsHHDvWsHnZZZcBo0Y5ByfR0cBLL8nSYm+CE0AKYtkojYioHpcZEwESDEyc6D6DUVoK5OTIsc6dpU5kwACgXz9ZoVNbq792xAhZoTNgQPPGEQp9UIiIAsSX6zeneIiAxlfRxMVJcWtRkRS79u8PPP64tIhXTCbg9tuBBx6QoKK5xo8Hxo1jozQi6vAYoBAB3q2iAaQW5KqrnFfTpKUBr78OnHuu83ua25HVbJZMDBFRB8YAhQhoehVNZaV0hb3/fufjkyZJvUlSkvNxTtUQEbUI88ZEgL6KpqBAVs0YVVQAv/4qAYoSFSVTPKtXuw9OXIttY2Lk8ezZ8jwRETWKAQoR4H4Vjd0OHDoE7NolPytDh0ob+9mzG9arsGU9EZFfMEAhUsaPl+XCGRmycueXX4C8POfX3HorsHEjcNJJ7s/BlvVERH7BGhQio/HjpWvr9OlSj6IkJ8smfxMmNP5+b4pti4rYsp6IqAnMoBAp1dWSIbnwQud29RdcIPUjTQUngHOxrafPYMt6IqImMUAhAoCffwZGjwaeeko/FhEBPPMM8PHHQLdu3p2nsWJb1bJ+4EC2rCciagIDFOrYNA14/nnpO7Jjh3785JOlEHbevIa1JI1hy3oiIr/g35LUcR0/Ln1MbrpJpl6Um28GNm2SIKU5jMW2FRXA0aNyn5EBPPccEB8PrF0LZGdzNQ8RkQcskqWOad06KYQ9elQ/1rUrsGKF1KC0lLuW9UVFwKOPsnkbEZEXmEGhjqW2Fli8GDjvPOfgZMIEmeLxR3CiqJb1EyYAJSXAjTeyeRsRkZcYoFDHsXs3MGYM8NhjegFreDjwxBPAJ58AKSmB+Vw2byMi8hkDFGr/NE32yznlFOCHH/TjJ54oTdduvTWwRats3kZE5DMGKNS+FRYCl18O3HCDrKRR5syRVTrDhgV+DN40b6utZfM2IiIDFslSYDkczoWiw4e33hLbr76SQthDh/RjSUmSTZk0qXXGADS9UzKbtxERNcAMCgVOVhYwcSIweTJwzTVyP3Fi4AtC6+qAu++WlTHG4OTcc6UotTWDE4DN24iImoEBCgVGVpasTmntVSu//gqccQbw8MN6MBAWJst7P/sMSEsLzOc2hs3biIh8xr8Ryf+CsWpF02Qzv+HDpcmaMmAA8P33wO23BzcAaKx527Jl7INCROSCNSjkf76sWhkxouWfV1wsRa/vvON8/PrrZW+dTp1a/hn+4K55W2vW5BARtSEMUMj/vFm1UlTkn1Ur334LTJsGHDigH0tIAJYvB6ZMafn5/U01byMiokbxn27kf8ZVK+74Y9WKzQbcfz9w9tnOwcm4ccD27aEZnBARkdcYoJD/BXrVyv79wFlnAX/9q17HYrVKYewXXwA9e7Zs/EREFHQMUMj/ArlqZeVKaa62YYN+rG9f4LvvgCVLAIvFb78GEREFDwMUCgx/r1opLZWma9Omyc/KjBlSdHrqqf4dPxERBRWLZClw/LVqZcMGCUz279ePxcVJADR1ql+HTEREoYEBCgVWS1at2O1SV/KXv8jPytixwJtvAn36+GWIREQUehigUGg6cAC46irgm2/0Y2YzcN990sbeyj+6RETtGf+Wp9Dz7rvArFlASYl+rHdv4K23JHtCRETtHgMUCh3l5cD8+cCKFc7Hr7gCeP55ID4+MJ8bzB2XiYjILQYoFBo2bwauvFI2+1NiYoDnnpOpHteW+f6SlSX7Au3eLd1vw8OlR8udd3J/HCKiIOI/Eym47HYJEE4/3Tk4GT0a2LZNlhYHMjjxtOPyNdcAf/sbkJ3t300NiYjIKwxQKHgOHQLOO08arNlscsxkAu65R4pj+/YN3Gd72nHZZpN+LYcPS0HupZcCEydKMENERK2GAQoFx+rV0rTtyy/1Yz17Al99BTzwABAWFtjPd7fjclkZkJMjewVZrdKW32qVjMrs2QxSiIhaEQMUal0VFXKxnzJFdjRWLr9cNvk766zWGYe7HZePHpUpp/BwaZmvaXLfvbsEL488wukeIqJWwgCFWs/WrdK07cUX9WOdOgGvvAK88w6QkBD4MTgcUleyd688rq6W+8pK2X1Z9VfRNMmsWK1yn5goGZetWwM/RiIi4ioeagUOB/Dkk1JrUlenHx85Ujb/69+/dcbhumKnuFh2Vu7dWx+nypzYbFKXEh0tz0VGSsbn+PHWGSsRUQfHAIUC6+hR2dDv88/1YyYTcMcd0sI+PLx1xqFW7JSVSd1JRITcDh0C9u0DunaVcdnteqCSkqLXp1RXy1i7dGmd8RIRdXAMUChwPvoIuO4656xD9+7AG28A55zTeuNwXbGjgo4uXSToyMnR62FsNpl2SkmRDQkByagUFkpR7/DhrTduIqIOjDUo5H9VVcDcucDFFzsHJ5deKoWwrRmcAO5X7ChxcbKcOSFBMixpaTK1Y7VKYFNZKUuO4+KkeRs7zBIRtQr+bUv+tWOH1JY895x+LDpaCmPff1+ChNbmbsWOUWSk3F90EfDaa8DQobLa6OhRuc/IAJYtY2dZIqJWxCke8g9NA555Bli8WFbDKMOHSyHsoEHBG5uayqmpkeyIK2N9yYgRwLhx3JuHiCjIGKBQy+XlAddeC3z6qfPxRYuAhx7ynLloLcOHy/46O3Y416AA7utLzGYJVIiIKGj4z0JqmU8+kYu7MThJSQE++wz4+9+DH5wAEnDceScQGyv1JJWVrC8hIgpx/BuZmqe6GrjlFuDCC4H8fP34RRdJpuK884I3NnfGjwdeeEGCKdaXEBGFPE7xkO9++gm44gpg5079WGSkZExuuilwuw+31PjxrC8hImojGKCQ9zQNeP55qS1RLeIBYMgQ4O23gcGDgzc2b7G+hIioTeA/Hck7x44Bl1wi/U2Mwcn8+cCmTW0jOCEiojaDGRRq2uefA1dfDeTm6se6dQNWrAAuuCB44yIionbL7xmUpUuXYtSoUYiNjUW3bt0wadIk7N692+k11dXVmDt3LpKSkhATE4MpU6YgLy/P30OhlqqpAW67DfjDH5yDk4kTpSMsgxMiIgoQvwco69evx9y5c/H999/j888/R11dHf7whz+goqKi/jW33norPvroI7z33ntYv349jhw5gsmTJ/t7KNQSu3YBp50GPP64fiw8HHjqKeC//5WlxERERAFi0jRNC+QHHDt2DN26dcP69etx1llnoaSkBF27dsXKlStx2WWXAQB27dqFE088ERs2bMBpp53W5DlLS0sRHx+PkpISxKkN3cg/NA1YvhxYsED21FFOOkk6wg4dGrShERFR2+bL9TvgRbIlJSUAgMTERABAdnY26urqkJmZWf+aQYMGoVevXtiwYUOgh0ONKSgApkyRTfOMwcmNNwKbNzM4ISKiVhPQIlmHw4EFCxZg7NixOPnkkwEAubm5CA8PR+fOnZ1em5ycjFxjnYNBTU0Nagz7u5SWlgZszB1WVpYUwh4+rB9LSgJeeUV2JSYiImpFAc2gzJ07Fz/++CNWrVrVovMsXboU8fHx9beePXv6aYSE2lpp856Z6RycZGZKR1gGJ0REFAQBC1DmzZuHjz/+GF9++SV69OhRfzwlJQW1tbUoLi52en1eXh5SPBReLlmyBCUlJfW3gwcPBmrYHcvevcDYscDf/ia1JwAQFgY89hiwdi2Qlhbc8RERUYfl9wBF0zTMmzcPH3zwAbKyspCenu70/IgRIxAWFoZ169bVH9u9ezcOHDiAMWPGuD1nREQE4uLinG7UApomPUyGDwe2bNGPDxgAfP+9LC1m+3ciIgoiv9egzJ07FytXrsS///1vxMbG1teVxMfHIyoqCvHx8Zg5cyYWLlyIxMRExMXF4eabb8aYMWO8WsFDLVRUBMyZA7z7rvPxG24AnnwS6NQpOOMiIiIy8PsyY5OHjeJWrFiBa665BoA0alu0aBHefvtt1NTUYMKECXjuuec8TvG44jLjZvrmG2DaNMA4RZaQALz0EsA+NEREFGC+XL8D3gclEBig+KiuDvjrX4GHHwYcDv34uHHAG28AhhohIiKiQPHl+s29eNq7ffska/L99/oxqxV44AHg9tsBiyV4YyMiIvKAAUp79uabwE03AWVl+rG+faUj7KmnBm9cRERETeBSjfaopAS46ipg+nTn4OSaa4CtWxmcEBFRyGMGpb353/9kSuf33/Vj8fHACy8Af/5z0IZFRETkC2ZQ2gubTQphzzrLOTg54wxg+3YGJ0RE1KYwg9Ie5ORI1uS77/RjFgtw//3AXXexEJaIiNocBiht3TvvyO7D/7drNAAgPR146y3AQ2deIiKiUMcpnraqrEyKXqdOdQ5OrroK2LaNwQkREbVpzKC0RZs2AVdeCfz2m34sNhZ47jkJUIiIiNo4ZlDaErtdusGOHescnJx2mmRNGJwQEVE7wQxKW3HwoPQ1Wb9eP2Y2A3ffDdx3n3SHJSIiaid4VWsL/vUvYNYs2YlY6dVLOsWeeWbwxkVERBQgnOIJZeXlwPXXA5df7hyc/PnP0tuEwQkREbVTzKCEquxs4IorgL179WOdOgHPPgtcfTVgMgVvbERERAHGDEqocTiARx+VZcLG4GTUKCmEnTGDwQkREbV7DFBCyZEjwB/+ANxxB1BXJ8dMJmDJEukS269fcMdHRETUSjjFEyr+/W9g5kygoEA/1r27FMKOGxe0YREREQUDMyjBVlkJ3HgjMGmSc3AyeTKwYweDEyIi6pCYQQmmbdukI+wvv+jHoqOBp56S1TusNSEiog6KGZRgcDiAJ58ERo92Dk5OOQX44QfghhsYnBARUYfGAKW15eYCF1wALFwI1Nbqx2+/HdiwARg4MHhjIyIiChGc4mlN//0vcO21wLFj+rHUVOD114HMzOCNi4iIKMQwg9IaqquB+fOBiy5yDk4uvlgKYRmcEBEROWEGJdB+/FEKYXfu1I9FRkoNyuzZrDUhIiJygxmUQNE04J//BEaOdA5OMjKALVuAOXMYnBAREXnAACUQjh2T6ZubbwZqavTjCxYAGzcCgwcHbWhERERtAad4/O2zz2S/nNxc/Vi3bsBrrwETJwZvXERERG0IMyj+UlMDLFoETJjgHJycf74UwjI4ISIi8hozKP7wyy9SCLttm34sIgJ47DFg3jzWmhAREfmIAUpLaBrw4ovArbcCVVX68ZNOAt5+WwpiiYiIyGec4mmuggLZ0G/OHOfgZO5cWaXD4ISIiKjZmEFpjnXrgKuvBo4c0Y916QK88grwxz8Gb1xERETtBDMovqitBe64AzjvPOfg5LzzpBCWwQkREZFfMIPirT17pBA2O1s/FhYGPPKI9DcxM9YjIiLyFwYoTdE0mbqZPx+orNSPDxwohbDDhwdvbERERO0U/9nfmKIi4E9/Aq6/3jk4mTVLMikMToiIiAKCGRRP1q8HrroKOHRIP5aYCLz0EnDppcEbFxERUQfADIqrujrg7ruBc85xDk7OOQfYvp3BCRERUStgBsXot9+kEHbTJv2Y1Qo8+CBw222AxRK8sREREXUgDFCU9euBiy4Cysv1Y/36AStXAqNGBW9cREREHRCneJSMDCAhQX983XXA1q0MToiIiIKAAYqSkAC89RaQlAS8+y7w8stATEywR0VERNQhcYrH6Mwzgd9/Z2BCREQUZMyguGJwQkREFHQMUIiIiCjkMEAhIiKikMMAhYiIiEIOAxQiIiIKOVzFY+RwSO+T48eBLl1kM0AzYzgiIqLWxgBFycoCHnkE2L0bqK0FwsOBgQOBO+8Exo8P9uiIiIg6FKYHAAlOZs8GduyQZcapqXK/Y4ccz8oK9giJiIg6FAYoDodkTsrKgO7dgagomdaJipLHZWXyvMMR7JESERF1GAxQtm6VaZ2kJMBkcn7OZAISE+X5rVuDMz4iIqIOiAHK8eNScxIR4f75yEh5/vjx1h0XERFRB8YApUsXKYitqXH/fHW1PN+lS+uOi4iIqANjgDJ8uKzWKSgANM35OU0DCgvl+eHDgzM+IiKiDogBitksS4ljY4HDh4HKSimIrayUx3Fx8jz7oRAREbUaXnUB6XPywgtARgZQUQEcPSr3GRnAsmXsg0JERNTK2KhNGT8eGDeOnWSJiIhCAAMUI7MZGDEi2KMgIiLq8JgeICIiopDDAIWIiIhCTlADlGeffRZ9+vRBZGQkRo8ejU2bNgVzOERERBQighagvPPOO1i4cCHuv/9+/PDDDxg6dCgmTJiA/Pz8YA2JiIiIQkTQApQnnngCN9xwA6699lqcdNJJWLZsGaKjo/HKK68Ea0hEREQUIoISoNTW1iI7OxuZmZn6QMxmZGZmYsOGDcEYEhEREYWQoCwzPn78OOx2O5KTk52OJycnY9euXQ1eX1NTgxrDXjmlpaUBHyMREREFT5tYxbN06VLEx8fX33r27BnsIREREVEABSVA6dKlCywWC/Ly8pyO5+XlISUlpcHrlyxZgpKSkvrbwYMHW2uoREREFARBmeIJDw/HiBEjsG7dOkyaNAkA4HA4sG7dOsybN6/B6yMiIhAREVH/WPu/XYc51UNERNR2qOu2uo43Jmit7hcuXIgZM2Zg5MiROPXUU/HUU0+hoqIC1157bZPvLSsrAwBO9RAREbVBZWVliI+Pb/Q1QQtQ/vznP+PYsWO47777kJubi2HDhmHNmjUNCmfdSUtLw8GDBxEbGwuTyeTXcZWWlqJnz544ePAg4uLi/Hpu0vF7bh38nlsHv+fWwe+59QTqu9Y0DWVlZUhLS2vytSbNmzxLB1JaWor4+HiUlJTwf4AA4vfcOvg9tw5+z62D33PrCYXvuk2s4iEiIqKOhQEKERERhRwGKC4iIiJw//33O60aIv/j99w6+D23Dn7PrYPfc+sJhe+aNShEREQUcphBISIiopDDAIWIiIhCDgMUIiIiCjkMUAyeffZZ9OnTB5GRkRg9ejQ2bdoU7CG1aUuXLsWoUaMQGxuLbt26YdKkSdi9e7fTa6qrqzF37lwkJSUhJiYGU6ZMabBHE/nmkUcegclkwoIFC+qP8Xv2j8OHD+Oqq65CUlISoqKiMGTIEGzZsqX+eU3TcN999yE1NRVRUVHIzMzE3r17gzjitslut+Pee+9Feno6oqKi0LdvXzzwwANO7dH5Xfvu66+/xh//+EekpaXBZDLhww8/dHrem++0sLAQ06ZNQ1xcHDp37oyZM2eivLw8MAPWSNM0TVu1apUWHh6uvfLKK9pPP/2k3XDDDVrnzp21vLy8YA+tzZowYYK2YsUK7ccff9S2bdumXXDBBVqvXr208vLy+tfMmTNH69mzp7Zu3Tpty5Yt2mmnnaadfvrpQRx127Zp0yatT58+WkZGhnbLLbfUH+f33HKFhYVa7969tWuuuUbbuHGjtm/fPm3t2rXar7/+Wv+aRx55RIuPj9c+/PBDbfv27drFF1+spaena1VVVUEcedvz0EMPaUlJSdrHH3+s7d+/X3vvvfe0mJgY7R//+Ef9a/hd++6TTz7R7r77bm316tUaAO2DDz5wet6b73TixIna0KFDte+//1775ptvtH79+mlXXHFFQMbLAOX/nHrqqdrcuXPrH9vtdi0tLU1bunRpEEfVvuTn52sAtPXr12uapmnFxcVaWFiY9t5779W/5pdfftEAaBs2bAjWMNussrIyrX///trnn3+unX322fUBCr9n/7jjjju0M844w+PzDodDS0lJ0R577LH6Y8XFxVpERIT29ttvt8YQ240LL7xQu+6665yOTZ48WZs2bZqmafyu/cE1QPHmO/355581ANrmzZvrX/Ppp59qJpNJO3z4sN/HyCkeALW1tcjOzkZmZmb9MbPZjMzMTGzYsCGII2tfSkpKAACJiYkAgOzsbNTV1Tl974MGDUKvXr34vTfD3LlzceGFFzp9nwC/Z3/5z3/+g5EjR+Lyyy9Ht27dMHz4cCxfvrz++f379yM3N9fpe46Pj8fo0aP5Pfvo9NNPx7p167Bnzx4AwPbt2/Htt9/i/PPPB8DvOhC8+U43bNiAzp07Y+TIkfWvyczMhNlsxsaNG/0+pqBtFhhKjh8/Drvd3mCjwuTkZOzatStIo2pfHA4HFixYgLFjx+Lkk08GAOTm5iI8PBydO3d2em1ycjJyc3ODMMq2a9WqVfjhhx+wefPmBs/xe/aPffv24fnnn8fChQtx1113YfPmzZg/fz7Cw8MxY8aM+u/S3d8j/J59c+edd6K0tBSDBg2CxWKB3W7HQw89hGnTpgEAv+sA8OY7zc3NRbdu3Zyet1qtSExMDMj3zgCFWsXcuXPx448/4ttvvw32UNqdgwcP4pZbbsHnn3+OyMjIYA+n3XI4HBg5ciQefvhhAMDw4cPx448/YtmyZZgxY0aQR9e+vPvuu3jrrbewcuVKDB48GNu2bcOCBQuQlpbG77oD4RQPgC5dusBisTRY1ZCXl4eUlJQgjar9mDdvHj7++GN8+eWX6NGjR/3xlJQU1NbWori42On1/N59k52djfz8fJxyyimwWq2wWq1Yv349nn76aVitViQnJ/N79oPU1FScdNJJTsdOPPFEHDhwAADqv0v+PdJyt99+O+68805MnToVQ4YMwfTp03Hrrbdi6dKlAPhdB4I332lKSgry8/OdnrfZbCgsLAzI984ABUB4eDhGjBiBdevW1R9zOBxYt24dxowZE8SRtW2apmHevHn44IMPkJWVhfT0dKfnR4wYgbCwMKfvfffu3Thw4AC/dx+ce+652LlzJ7Zt21Z/GzlyJKZNm1b/M7/nlhs7dmyDZfJ79uxB7969AQDp6elISUlx+p5LS0uxceNGfs8+qqyshNnsfHmyWCxwOBwA+F0Hgjff6ZgxY1BcXIzs7Oz612RlZcHhcGD06NH+H5Tfy27bqFWrVmkRERHaq6++qv3888/arFmztM6dO2u5ubnBHlqbdeONN2rx8fHaV199pR09erT+VllZWf+aOXPmaL169dKysrK0LVu2aGPGjNHGjBkTxFG3D8ZVPJrG79kfNm3apFmtVu2hhx7S9u7dq7311ltadHS09uabb9a/5pFHHtE6d+6s/fvf/9Z27NihXXLJJVz62gwzZszQunfvXr/MePXq1VqXLl20xYsX17+G37XvysrKtK1bt2pbt27VAGhPPPGEtnXrVi0nJ0fTNO++04kTJ2rDhw/XNm7cqH377bda//79ucy4NTzzzDNar169tPDwcO3UU0/Vvv/++2APqU0D4Pa2YsWK+tdUVVVpN910k5aQkKBFR0drl156qXb06NHgDbqdcA1Q+D37x0cffaSdfPLJWkREhDZo0CDtxRdfdHre4XBo9957r5acnKxFRERo5557rrZ79+4gjbbtKi0t1W655RatV69eWmRkpHbCCSdod999t1ZTU1P/Gn7Xvvvyyy/d/p08Y8YMTdO8+04LCgq0K664QouJidHi4uK0a6+9VisrKwvIeLmbMREREYUc1qAQERFRyGGAQkRERCGHAQoRERGFHAYoREREFHIYoBAREVHIYYBCREREIYcBChEREYUcBihEREQUchigEFFA/f777zCZTNi2bVuwh0JEbQgDFCLym2uuuQaTJk0K9jCIqB1ggEJEZFBXVxfsIRARGKAQdVjjxo3DzTffjAULFiAhIQHJyclYvnw5KioqcO211yI2Nhb9+vXDp59+CgCw2+2YOXMm0tPTERUVhYEDB+If//hH/fn+3//7f3jttdfw73//GyaTCSaTCV999VX98/v27cM555yD6OhoDB06FBs2bPBqnDk5OfjjH/+IhIQEdOrUCYMHD8Ynn3xS//xPP/2Eiy66CHFxcYiNjcWZZ56J3377DQDgcDjw17/+FT169EBERASGDRuGNWvW1L9XTT+98847OPvssxEZGYm33noLAPDSSy/hxBNPRGRkJAYNGoTnnnuu2d81ETVDQLYgJKKQd/bZZ2uxsbHaAw88oO3Zs0d74IEHNIvFop1//vnaiy++qO3Zs0e78cYbtaSkJK2iokKrra3V7rvvPm3z5s3avn37tDfffFOLjo7W3nnnHU3TZCv3P/3pT9rEiRO1o0ePakePHtVqamq0/fv3awC0QYMGaR9//LG2e/du7bLLLtN69+6t1dXVNTnOCy+8UDvvvPO0HTt2aL/99pv20UcfaevXr9c0TdMOHTqkJSYmapMnT9Y2b96s7d69W3vllVe0Xbt2aZqmaU888YQWFxenvf3229quXbu0xYsXa2FhYdqePXs0TdPqx9anTx/t/fff1/bt26cdOXJEe/PNN7XU1NT6Y++//76WmJiovfrqqwH6r0FErhigEHVQZ599tnbGGWfUP7bZbFqnTp206dOn1x87evSoBkDbsGGD23PMnTtXmzJlSv3jGTNmaJdcconTa1QQ8NJLL9Uf++mnnzQA2i+//NLkOIcMGaL9v//3/9w+t2TJEi09PV2rra11+3xaWpr20EMPOR0bNWqUdtNNNzmN7amnnnJ6Td++fbWVK1c6HXvggQe0MWPGNDleIvIPazCzN0QUXBkZGfU/WywWJCUlYciQIfXHkpOTAQD5+fkAgGeffRavvPIKDhw4gKqqKtTW1mLYsGE+f1Zqamr9eQcNGtTo++bPn48bb7wRn332GTIzMzFlypT6c23btg1nnnkmwsLCGryvtLQUR44cwdixY52Ojx07Ftu3b3c6NnLkyPqfKyoq8Ntvv2HmzJm44YYb6o/bbDbEx8d79bsSUcuxBoWoA3O9sJtMJqdjJpMJgNRyrFq1CrfddhtmzpyJzz77DNu2bcO1116L2tpanz/LeN6mXH/99di3bx+mT5+OnTt3YuTIkXjmmWcAAFFRUV59dlM6depU/3N5eTkAYPny5di2bVv97ccff8T333/vl88joqYxQCEir3z33Xc4/fTTcdNNN2H48OHo169ffTGqEh4eDrvd7vfP7tmzJ+bMmYPVq1dj0aJFWL58OQDJynzzzTduV97ExcUhLS0N3333XYPf46STTvL4WcnJyUhLS8O+ffvQr18/p1t6erp/fzEi8ohTPETklf79++P111/H2rVrkZ6ejjfeeAObN292umj36dMHa9euxe7du5GUlOSXKZEFCxbg/PPPx4ABA1BUVIQvv/wSJ554IgBg3rx5eOaZZzB16lQsWbIE8fHx+P7773Hqqadi4MCBuP3223H//fejb9++GDZsGFasWIFt27bVr9Tx5C9/+Qvmz5+P+Ph4TJw4ETU1NdiyZQuKioqwcOHCFv9ORNQ0BihE5JXZs2dj69at+POf/wyTyYQrrrgCN910U/0yZAC44YYb8NVXX2HkyJEoLy/Hl19+iT59+rToc+12O+bOnYtDhw4hLi4OEydOxJNPPgkASEpKQlZWFm6//XacffbZsFgsGDZsWH3dyfz581FSUoJFixYhPz8fJ510Ev7zn/+gf//+jX7m9ddfj+joaDz22GO4/fbb0alTJwwZMgQLFixo0e9CRN4zaZqmBXsQREREREasQSEiIqKQwwCFiILq/PPPR0xMjNvbww8/HOzhEVGQcIqHiILq8OHDqKqqcvtcYmIiEhMTW3lERBQKGKAQERFRyOEUDxEREYUcBihEREQUchigEBERUchhgEJEREQhhwEKERERhRwGKERERBRyGKAQERFRyGGAQkRERCHn/wPLz3prSnmp+QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.regplot(x=y_test,y=y_pred,ci=None,color ='red');"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79c2fe28",
+ "metadata": {},
+ "source": [
+ "#### Difference between Actual and Predicted Values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "7c9a8b48",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Actual Value \n",
+ " Predicted Value \n",
+ " Difference \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 521 \n",
+ " 91 \n",
+ " 76.507812 \n",
+ " 14.492188 \n",
+ " \n",
+ " \n",
+ " 737 \n",
+ " 53 \n",
+ " 58.953125 \n",
+ " -5.953125 \n",
+ " \n",
+ " \n",
+ " 740 \n",
+ " 80 \n",
+ " 76.960938 \n",
+ " 3.039062 \n",
+ " \n",
+ " \n",
+ " 660 \n",
+ " 74 \n",
+ " 76.757812 \n",
+ " -2.757812 \n",
+ " \n",
+ " \n",
+ " 411 \n",
+ " 84 \n",
+ " 87.539062 \n",
+ " -3.539062 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 408 \n",
+ " 52 \n",
+ " 43.546875 \n",
+ " 8.453125 \n",
+ " \n",
+ " \n",
+ " 332 \n",
+ " 62 \n",
+ " 62.031250 \n",
+ " -0.031250 \n",
+ " \n",
+ " \n",
+ " 208 \n",
+ " 74 \n",
+ " 67.976562 \n",
+ " 6.023438 \n",
+ " \n",
+ " \n",
+ " 613 \n",
+ " 65 \n",
+ " 67.132812 \n",
+ " -2.132812 \n",
+ " \n",
+ " \n",
+ " 78 \n",
+ " 61 \n",
+ " 62.492188 \n",
+ " -1.492188 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
200 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Actual Value Predicted Value Difference\n",
+ "521 91 76.507812 14.492188\n",
+ "737 53 58.953125 -5.953125\n",
+ "740 80 76.960938 3.039062\n",
+ "660 74 76.757812 -2.757812\n",
+ "411 84 87.539062 -3.539062\n",
+ ".. ... ... ...\n",
+ "408 52 43.546875 8.453125\n",
+ "332 62 62.031250 -0.031250\n",
+ "208 74 67.976562 6.023438\n",
+ "613 65 67.132812 -2.132812\n",
+ "78 61 62.492188 -1.492188\n",
+ "\n",
+ "[200 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pred_df=pd.DataFrame({'Actual Value':y_test,'Predicted Value':y_pred,'Difference':y_test-y_pred})\n",
+ "pred_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3acf1fbc",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/notebook/catboost_info/catboost_training.json b/notebook/catboost_info/catboost_training.json
new file mode 100644
index 0000000..ba7c000
--- /dev/null
+++ b/notebook/catboost_info/catboost_training.json
@@ -0,0 +1,1004 @@
+{
+"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"},
+"iterations":[
+{"learn":[14.59871775],"iteration":0,"passed_time":0.147788617,"remaining_time":147.6408284},
+{"learn":[14.22518863],"iteration":1,"passed_time":0.1487169599,"remaining_time":74.20976297},
+{"learn":[13.8866124],"iteration":2,"passed_time":0.1495376472,"remaining_time":49.69634474},
+{"learn":[13.52356875],"iteration":3,"passed_time":0.1503048824,"remaining_time":37.42591571},
+{"learn":[13.18870211],"iteration":4,"passed_time":0.1511683207,"remaining_time":30.08249582},
+{"learn":[12.9124226],"iteration":5,"passed_time":0.1521207779,"remaining_time":25.20134221},
+{"learn":[12.60003351],"iteration":6,"passed_time":0.1530873544,"remaining_time":21.7165347},
+{"learn":[12.32990573],"iteration":7,"passed_time":0.1540249243,"remaining_time":19.09909062},
+{"learn":[12.0660619],"iteration":8,"passed_time":0.1548264651,"remaining_time":17.0481141},
+{"learn":[11.77309809],"iteration":9,"passed_time":0.1556374338,"remaining_time":15.40810595},
+{"learn":[11.49227636],"iteration":10,"passed_time":0.1563768659,"remaining_time":14.05970185},
+{"learn":[11.26264833],"iteration":11,"passed_time":0.1571106773,"remaining_time":12.93544576},
+{"learn":[11.04260393],"iteration":12,"passed_time":0.157963854,"remaining_time":11.99310184},
+{"learn":[10.79916926],"iteration":13,"passed_time":0.1588334147,"remaining_time":11.18641049},
+{"learn":[10.5541002],"iteration":14,"passed_time":0.1597001499,"remaining_time":10.48697651},
+{"learn":[10.31918115],"iteration":15,"passed_time":0.160580411,"remaining_time":9.875695274},
+{"learn":[10.10004441],"iteration":16,"passed_time":0.1613927222,"remaining_time":9.332296822},
+{"learn":[9.894556723],"iteration":17,"passed_time":0.162112597,"remaining_time":8.844142792},
+{"learn":[9.690174082],"iteration":18,"passed_time":0.1629316712,"remaining_time":8.412419445},
+{"learn":[9.506034866],"iteration":19,"passed_time":0.1639871268,"remaining_time":8.035369216},
+{"learn":[9.338524633],"iteration":20,"passed_time":0.1654205111,"remaining_time":7.711746683},
+{"learn":[9.170203312],"iteration":21,"passed_time":0.1663705749,"remaining_time":7.395928283},
+{"learn":[9.010299969],"iteration":22,"passed_time":0.167387711,"remaining_time":7.110338856},
+{"learn":[8.843866678],"iteration":23,"passed_time":0.1682539253,"remaining_time":6.842326294},
+{"learn":[8.690548059],"iteration":24,"passed_time":0.1690473619,"remaining_time":6.592847116},
+{"learn":[8.555307687],"iteration":25,"passed_time":0.1698221215,"remaining_time":6.361797937},
+{"learn":[8.413851302],"iteration":26,"passed_time":0.1708132784,"remaining_time":6.155604439},
+{"learn":[8.29256019],"iteration":27,"passed_time":0.1717490655,"remaining_time":5.962146129},
+{"learn":[8.162193833],"iteration":28,"passed_time":0.1725042176,"remaining_time":5.775917079},
+{"learn":[8.040736294],"iteration":29,"passed_time":0.1732172693,"remaining_time":5.600691708},
+{"learn":[7.921220278],"iteration":30,"passed_time":0.1740177569,"remaining_time":5.439458272},
+{"learn":[7.809589039],"iteration":31,"passed_time":0.1748534027,"remaining_time":5.289315433},
+{"learn":[7.699675801],"iteration":32,"passed_time":0.1756734188,"remaining_time":5.147763513},
+{"learn":[7.60645267],"iteration":33,"passed_time":0.1764319273,"remaining_time":5.012742405},
+{"learn":[7.498880302],"iteration":34,"passed_time":0.1771467624,"remaining_time":4.884189307},
+{"learn":[7.401158744],"iteration":35,"passed_time":0.1779858148,"remaining_time":4.766064596},
+{"learn":[7.306431077],"iteration":36,"passed_time":0.1787178328,"remaining_time":4.651493863},
+{"learn":[7.223863468],"iteration":37,"passed_time":0.1794464242,"remaining_time":4.542827896},
+{"learn":[7.143477682],"iteration":38,"passed_time":0.1802004241,"remaining_time":4.440323271},
+{"learn":[7.062817131],"iteration":39,"passed_time":0.1809447255,"remaining_time":4.342673412},
+{"learn":[6.990793435],"iteration":40,"passed_time":0.1818400453,"remaining_time":4.253283011},
+{"learn":[6.931862224],"iteration":41,"passed_time":0.1828514984,"remaining_time":4.170755605},
+{"learn":[6.858296558],"iteration":42,"passed_time":0.1840598517,"remaining_time":4.096401816},
+{"learn":[6.786268161],"iteration":43,"passed_time":0.1849023191,"remaining_time":4.017423116},
+{"learn":[6.717118549],"iteration":44,"passed_time":0.1857232669,"remaining_time":3.941460443},
+{"learn":[6.652948106],"iteration":45,"passed_time":0.1866938605,"remaining_time":3.871868324},
+{"learn":[6.589686076],"iteration":46,"passed_time":0.1874593323,"remaining_time":3.8010371},
+{"learn":[6.531283097],"iteration":47,"passed_time":0.1882424278,"remaining_time":3.733474819},
+{"learn":[6.471368031],"iteration":48,"passed_time":0.1890955471,"remaining_time":3.66999725},
+{"learn":[6.416481395],"iteration":49,"passed_time":0.189875727,"remaining_time":3.607638813},
+{"learn":[6.369870822],"iteration":50,"passed_time":0.1906159907,"remaining_time":3.546952454},
+{"learn":[6.325678067],"iteration":51,"passed_time":0.1913317877,"remaining_time":3.488125668},
+{"learn":[6.275766122],"iteration":52,"passed_time":0.1920481858,"remaining_time":3.43150249},
+{"learn":[6.224773967],"iteration":53,"passed_time":0.1927579813,"remaining_time":3.376834265},
+{"learn":[6.182249254],"iteration":54,"passed_time":0.193489338,"remaining_time":3.324498626},
+{"learn":[6.139904173],"iteration":55,"passed_time":0.1941824717,"remaining_time":3.273361666},
+{"learn":[6.100525536],"iteration":56,"passed_time":0.1948702351,"remaining_time":3.22390582},
+{"learn":[6.062568564],"iteration":57,"passed_time":0.1956144764,"remaining_time":3.17704891},
+{"learn":[6.030559288],"iteration":58,"passed_time":0.1965277256,"remaining_time":3.134450675},
+{"learn":[5.997931376],"iteration":59,"passed_time":0.1974295828,"remaining_time":3.093063464},
+{"learn":[5.964103835],"iteration":60,"passed_time":0.1981637649,"remaining_time":3.050422545},
+{"learn":[5.933729724],"iteration":61,"passed_time":0.198891164,"remaining_time":3.009030836},
+{"learn":[5.901932711],"iteration":62,"passed_time":0.1996641602,"remaining_time":2.969608224},
+{"learn":[5.873727795],"iteration":63,"passed_time":0.2004325265,"remaining_time":2.931325699},
+{"learn":[5.846485734],"iteration":64,"passed_time":0.2012452786,"remaining_time":2.89483593},
+{"learn":[5.820630862],"iteration":65,"passed_time":0.2024793553,"remaining_time":2.865389665},
+{"learn":[5.793646238],"iteration":66,"passed_time":0.203248424,"remaining_time":2.830310144},
+{"learn":[5.765388646],"iteration":67,"passed_time":0.2040823166,"remaining_time":2.797128221},
+{"learn":[5.747073912],"iteration":68,"passed_time":0.2048559339,"remaining_time":2.764070645},
+{"learn":[5.722315217],"iteration":69,"passed_time":0.2056053652,"remaining_time":2.731614137},
+{"learn":[5.699970599],"iteration":70,"passed_time":0.2064102637,"remaining_time":2.700776549},
+{"learn":[5.682732647],"iteration":71,"passed_time":0.2072836817,"remaining_time":2.671656342},
+{"learn":[5.663525791],"iteration":72,"passed_time":0.2080896108,"remaining_time":2.642453003},
+{"learn":[5.642381613],"iteration":73,"passed_time":0.2090689797,"remaining_time":2.616187503},
+{"learn":[5.621404779],"iteration":74,"passed_time":0.2098190521,"remaining_time":2.58776831},
+{"learn":[5.602460129],"iteration":75,"passed_time":0.2106191,"remaining_time":2.560684848},
+{"learn":[5.587337574],"iteration":76,"passed_time":0.2113198783,"remaining_time":2.533094126},
+{"learn":[5.572393026],"iteration":77,"passed_time":0.2120937762,"remaining_time":2.507057201},
+{"learn":[5.558425806],"iteration":78,"passed_time":0.2128829233,"remaining_time":2.481837625},
+{"learn":[5.541518902],"iteration":79,"passed_time":0.2136914874,"remaining_time":2.457452106},
+{"learn":[5.526157283],"iteration":80,"passed_time":0.214548985,"remaining_time":2.434203917},
+{"learn":[5.511746977],"iteration":81,"passed_time":0.2153156692,"remaining_time":2.410485175},
+{"learn":[5.504975022],"iteration":82,"passed_time":0.215770087,"remaining_time":2.383869515},
+{"learn":[5.493980522],"iteration":83,"passed_time":0.2165325631,"remaining_time":2.361236045},
+{"learn":[5.480745463],"iteration":84,"passed_time":0.2173293462,"remaining_time":2.339486491},
+{"learn":[5.464052013],"iteration":85,"passed_time":0.218077174,"remaining_time":2.317703919},
+{"learn":[5.449143727],"iteration":86,"passed_time":0.2189353873,"remaining_time":2.297563317},
+{"learn":[5.438255432],"iteration":87,"passed_time":0.2197187834,"remaining_time":2.277085573},
+{"learn":[5.425927931],"iteration":88,"passed_time":0.2205417908,"remaining_time":2.257455859},
+{"learn":[5.412331217],"iteration":89,"passed_time":0.2214262398,"remaining_time":2.238865314},
+{"learn":[5.400691499],"iteration":90,"passed_time":0.2222474081,"remaining_time":2.220031801},
+{"learn":[5.391618744],"iteration":91,"passed_time":0.2229821412,"remaining_time":2.200736785},
+{"learn":[5.380766572],"iteration":92,"passed_time":0.2236979582,"remaining_time":2.181656431},
+{"learn":[5.372207183],"iteration":93,"passed_time":0.2244847095,"remaining_time":2.163650498},
+{"learn":[5.362918837],"iteration":94,"passed_time":0.2254869335,"remaining_time":2.148059735},
+{"learn":[5.348292324],"iteration":95,"passed_time":0.2263625958,"remaining_time":2.13158111},
+{"learn":[5.339772295],"iteration":96,"passed_time":0.22746443,"remaining_time":2.117529694},
+{"learn":[5.331515983],"iteration":97,"passed_time":0.2283758305,"remaining_time":2.101989787},
+{"learn":[5.323861644],"iteration":98,"passed_time":0.2291391898,"remaining_time":2.08539808},
+{"learn":[5.313277281],"iteration":99,"passed_time":0.2299235777,"remaining_time":2.069312199},
+{"learn":[5.30685627],"iteration":100,"passed_time":0.2306782987,"remaining_time":2.053265253},
+{"learn":[5.29652059],"iteration":101,"passed_time":0.2314369175,"remaining_time":2.03755247},
+{"learn":[5.288350766],"iteration":102,"passed_time":0.2321533156,"remaining_time":2.02176237},
+{"learn":[5.27993346],"iteration":103,"passed_time":0.2329002921,"remaining_time":2.006525594},
+{"learn":[5.271789139],"iteration":104,"passed_time":0.2336971139,"remaining_time":1.991989685},
+{"learn":[5.262684686],"iteration":105,"passed_time":0.2344194533,"remaining_time":1.977084823},
+{"learn":[5.251619772],"iteration":106,"passed_time":0.2352034906,"remaining_time":1.962959973},
+{"learn":[5.241012171],"iteration":107,"passed_time":0.2359309799,"remaining_time":1.948615131},
+{"learn":[5.232684032],"iteration":108,"passed_time":0.2367573924,"remaining_time":1.935328777},
+{"learn":[5.224267141],"iteration":109,"passed_time":0.237517985,"remaining_time":1.921736424},
+{"learn":[5.216324968],"iteration":110,"passed_time":0.238511516,"remaining_time":1.910240881},
+{"learn":[5.211102527],"iteration":111,"passed_time":0.2393026168,"remaining_time":1.897327891},
+{"learn":[5.206364257],"iteration":112,"passed_time":0.2400754628,"remaining_time":1.884486155},
+{"learn":[5.196937641],"iteration":113,"passed_time":0.2411054732,"remaining_time":1.873854818},
+{"learn":[5.190746047],"iteration":114,"passed_time":0.2419453071,"remaining_time":1.861926928},
+{"learn":[5.181885213],"iteration":115,"passed_time":0.2432315205,"remaining_time":1.853591932},
+{"learn":[5.178293568],"iteration":116,"passed_time":0.2440268795,"remaining_time":1.841672945},
+{"learn":[5.170991438],"iteration":117,"passed_time":0.245036718,"remaining_time":1.831545638},
+{"learn":[5.166257212],"iteration":118,"passed_time":0.2457987733,"remaining_time":1.819737137},
+{"learn":[5.161421246],"iteration":119,"passed_time":0.2466124271,"remaining_time":1.808491132},
+{"learn":[5.158223542],"iteration":120,"passed_time":0.2474336254,"remaining_time":1.79747237},
+{"learn":[5.15470988],"iteration":121,"passed_time":0.2479856196,"remaining_time":1.784683393},
+{"learn":[5.146388143],"iteration":122,"passed_time":0.248760309,"remaining_time":1.773681228},
+{"learn":[5.139529364],"iteration":123,"passed_time":0.2497158541,"remaining_time":1.764121679},
+{"learn":[5.134276023],"iteration":124,"passed_time":0.2505001419,"remaining_time":1.753500993},
+{"learn":[5.128536065],"iteration":125,"passed_time":0.2513259389,"remaining_time":1.74332437},
+{"learn":[5.123300353],"iteration":126,"passed_time":0.251971071,"remaining_time":1.73205311},
+{"learn":[5.116200518],"iteration":127,"passed_time":0.2527876504,"remaining_time":1.722115868},
+{"learn":[5.108728704],"iteration":128,"passed_time":0.2536703561,"remaining_time":1.712766513},
+{"learn":[5.104075866],"iteration":129,"passed_time":0.2546307502,"remaining_time":1.704067328},
+{"learn":[5.100317606],"iteration":130,"passed_time":0.2553960417,"remaining_time":1.694192063},
+{"learn":[5.095814182],"iteration":131,"passed_time":0.2561295826,"remaining_time":1.684246043},
+{"learn":[5.092146915],"iteration":132,"passed_time":0.2570465263,"remaining_time":1.675634122},
+{"learn":[5.085258329],"iteration":133,"passed_time":0.257894696,"remaining_time":1.666692588},
+{"learn":[5.079219421],"iteration":134,"passed_time":0.2587798665,"remaining_time":1.658108033},
+{"learn":[5.076476829],"iteration":135,"passed_time":0.2595322433,"remaining_time":1.648793075},
+{"learn":[5.072133867],"iteration":136,"passed_time":0.2604301381,"remaining_time":1.640519775},
+{"learn":[5.067031564],"iteration":137,"passed_time":0.2612236134,"remaining_time":1.631701121},
+{"learn":[5.061358312],"iteration":138,"passed_time":0.2619581361,"remaining_time":1.622632771},
+{"learn":[5.056759124],"iteration":139,"passed_time":0.2628859654,"remaining_time":1.614870931},
+{"learn":[5.050254],"iteration":140,"passed_time":0.2638510084,"remaining_time":1.607432739},
+{"learn":[5.048376474],"iteration":141,"passed_time":0.2644541102,"remaining_time":1.597898778},
+{"learn":[5.042603751],"iteration":142,"passed_time":0.2652781138,"remaining_time":1.589813591},
+{"learn":[5.037477349],"iteration":143,"passed_time":0.266138036,"remaining_time":1.58204277},
+{"learn":[5.03230489],"iteration":144,"passed_time":0.2670491961,"remaining_time":1.574669398},
+{"learn":[5.025976187],"iteration":145,"passed_time":0.2678052499,"remaining_time":1.566477284},
+{"learn":[5.01952451],"iteration":146,"passed_time":0.268550443,"remaining_time":1.558323319},
+{"learn":[5.017569424],"iteration":147,"passed_time":0.2693753484,"remaining_time":1.550728357},
+{"learn":[5.008962367],"iteration":148,"passed_time":0.2701402992,"remaining_time":1.542881843},
+{"learn":[5.003880266],"iteration":149,"passed_time":0.2709003607,"remaining_time":1.535102044},
+{"learn":[4.996387564],"iteration":150,"passed_time":0.2716399331,"remaining_time":1.527300021},
+{"learn":[4.993361683],"iteration":151,"passed_time":0.2725218774,"remaining_time":1.520385211},
+{"learn":[4.99005752],"iteration":152,"passed_time":0.2733598677,"remaining_time":1.513305934},
+{"learn":[4.986908764],"iteration":153,"passed_time":0.2742073453,"remaining_time":1.506359832},
+{"learn":[4.985207175],"iteration":154,"passed_time":0.2750147573,"remaining_time":1.499273999},
+{"learn":[4.979003494],"iteration":155,"passed_time":0.2758022411,"remaining_time":1.492160843},
+{"learn":[4.973142217],"iteration":156,"passed_time":0.2766160152,"remaining_time":1.485269432},
+{"learn":[4.967056696],"iteration":157,"passed_time":0.2774267836,"remaining_time":1.478438935},
+{"learn":[4.961460696],"iteration":158,"passed_time":0.278296755,"remaining_time":1.471997301},
+{"learn":[4.954240363],"iteration":159,"passed_time":0.2790295644,"remaining_time":1.464905213},
+{"learn":[4.952320707],"iteration":160,"passed_time":0.2797041184,"remaining_time":1.457588542},
+{"learn":[4.948337777],"iteration":161,"passed_time":0.2806609356,"remaining_time":1.451813976},
+{"learn":[4.943228639],"iteration":162,"passed_time":0.2815577082,"remaining_time":1.445790195},
+{"learn":[4.938545759],"iteration":163,"passed_time":0.2823394311,"remaining_time":1.439242466},
+{"learn":[4.935330572],"iteration":164,"passed_time":0.2831691098,"remaining_time":1.433007313},
+{"learn":[4.932051543],"iteration":165,"passed_time":0.2839556419,"remaining_time":1.426620514},
+{"learn":[4.928964153],"iteration":166,"passed_time":0.284681478,"remaining_time":1.419998031},
+{"learn":[4.922860227],"iteration":167,"passed_time":0.285434436,"remaining_time":1.413580064},
+{"learn":[4.917668772],"iteration":168,"passed_time":0.2862342935,"remaining_time":1.407459751},
+{"learn":[4.910365386],"iteration":169,"passed_time":0.2870128804,"remaining_time":1.401298181},
+{"learn":[4.906457206],"iteration":170,"passed_time":0.2877249803,"remaining_time":1.394877244},
+{"learn":[4.901996508],"iteration":171,"passed_time":0.2884750728,"remaining_time":1.388705583},
+{"learn":[4.896816173],"iteration":172,"passed_time":0.2891446815,"remaining_time":1.382211859},
+{"learn":[4.891123132],"iteration":173,"passed_time":0.2899159044,"remaining_time":1.376267454},
+{"learn":[4.887630202],"iteration":174,"passed_time":0.2906485535,"remaining_time":1.370200324},
+{"learn":[4.885259712],"iteration":175,"passed_time":0.2914395441,"remaining_time":1.364466956},
+{"learn":[4.880659728],"iteration":176,"passed_time":0.2928303699,"remaining_time":1.3615785},
+{"learn":[4.877299723],"iteration":177,"passed_time":0.2936529711,"remaining_time":1.356082822},
+{"learn":[4.874038772],"iteration":178,"passed_time":0.2944008394,"remaining_time":1.350296587},
+{"learn":[4.86943698],"iteration":179,"passed_time":0.295197266,"remaining_time":1.344787545},
+{"learn":[4.861268711],"iteration":180,"passed_time":0.2959740595,"remaining_time":1.339241739},
+{"learn":[4.858673056],"iteration":181,"passed_time":0.2968061786,"remaining_time":1.333997001},
+{"learn":[4.854036207],"iteration":182,"passed_time":0.2975154331,"remaining_time":1.328251961},
+{"learn":[4.85130244],"iteration":183,"passed_time":0.2982395059,"remaining_time":1.322627374},
+{"learn":[4.847510084],"iteration":184,"passed_time":0.2991386564,"remaining_time":1.317827054},
+{"learn":[4.845691673],"iteration":185,"passed_time":0.2999663171,"remaining_time":1.312755818},
+{"learn":[4.842058646],"iteration":186,"passed_time":0.3007295646,"remaining_time":1.307449925},
+{"learn":[4.838623675],"iteration":187,"passed_time":0.3015070795,"remaining_time":1.302253982},
+{"learn":[4.834602161],"iteration":188,"passed_time":0.3023154733,"remaining_time":1.297237295},
+{"learn":[4.830858976],"iteration":189,"passed_time":0.3031658874,"remaining_time":1.292444046},
+{"learn":[4.827590511],"iteration":190,"passed_time":0.3040415797,"remaining_time":1.287799152},
+{"learn":[4.822246226],"iteration":191,"passed_time":0.3047967118,"remaining_time":1.282686162},
+{"learn":[4.816686395],"iteration":192,"passed_time":0.3055930325,"remaining_time":1.277790556},
+{"learn":[4.814797121],"iteration":193,"passed_time":0.3064245104,"remaining_time":1.273083275},
+{"learn":[4.811639392],"iteration":194,"passed_time":0.3073000413,"remaining_time":1.268597606},
+{"learn":[4.804813432],"iteration":195,"passed_time":0.3083467637,"remaining_time":1.26485101},
+{"learn":[4.80251613],"iteration":196,"passed_time":0.3091970238,"remaining_time":1.260331016},
+{"learn":[4.800087884],"iteration":197,"passed_time":0.3099049059,"remaining_time":1.255271387},
+{"learn":[4.794773135],"iteration":198,"passed_time":0.3106133989,"remaining_time":1.250257952},
+{"learn":[4.791664833],"iteration":199,"passed_time":0.3113942501,"remaining_time":1.245577001},
+{"learn":[4.785989873],"iteration":200,"passed_time":0.3123012623,"remaining_time":1.241436361},
+{"learn":[4.782387142],"iteration":201,"passed_time":0.3131308781,"remaining_time":1.237021984},
+{"learn":[4.778623704],"iteration":202,"passed_time":0.3138946652,"remaining_time":1.232384474},
+{"learn":[4.775772178],"iteration":203,"passed_time":0.3148198031,"remaining_time":1.228414526},
+{"learn":[4.77023101],"iteration":204,"passed_time":0.3157363177,"remaining_time":1.224440842},
+{"learn":[4.764496689],"iteration":205,"passed_time":0.3164919909,"remaining_time":1.219876897},
+{"learn":[4.763138716],"iteration":206,"passed_time":0.3172794246,"remaining_time":1.215471419},
+{"learn":[4.758053283],"iteration":207,"passed_time":0.3180632315,"remaining_time":1.21108692},
+{"learn":[4.755063788],"iteration":208,"passed_time":0.3188337329,"remaining_time":1.20668652},
+{"learn":[4.752465267],"iteration":209,"passed_time":0.3196904691,"remaining_time":1.202645098},
+{"learn":[4.748067377],"iteration":210,"passed_time":0.3203951448,"remaining_time":1.198065257},
+{"learn":[4.744163298],"iteration":211,"passed_time":0.3210719127,"remaining_time":1.193418241},
+{"learn":[4.736670896],"iteration":212,"passed_time":0.3219631352,"remaining_time":1.18960088},
+{"learn":[4.73349255],"iteration":213,"passed_time":0.3228417927,"remaining_time":1.185764715},
+{"learn":[4.731864595],"iteration":214,"passed_time":0.3236558673,"remaining_time":1.18172026},
+{"learn":[4.728398311],"iteration":215,"passed_time":0.3243920432,"remaining_time":1.177422972},
+{"learn":[4.723865975],"iteration":216,"passed_time":0.3252252244,"remaining_time":1.173508528},
+{"learn":[4.723483365],"iteration":217,"passed_time":0.3259483554,"remaining_time":1.169227587},
+{"learn":[4.72095416],"iteration":218,"passed_time":0.3267474815,"remaining_time":1.165250151},
+{"learn":[4.716173382],"iteration":219,"passed_time":0.3275684877,"remaining_time":1.161379183},
+{"learn":[4.710563974],"iteration":220,"passed_time":0.328347866,"remaining_time":1.157389084},
+{"learn":[4.707160263],"iteration":221,"passed_time":0.3291304806,"remaining_time":1.153439252},
+{"learn":[4.70408351],"iteration":222,"passed_time":0.3298486521,"remaining_time":1.149293286},
+{"learn":[4.702501831],"iteration":223,"passed_time":0.3306110538,"remaining_time":1.145331151},
+{"learn":[4.700269738],"iteration":224,"passed_time":0.3314669727,"remaining_time":1.141719573},
+{"learn":[4.695346302],"iteration":225,"passed_time":0.3322176119,"remaining_time":1.137771821},
+{"learn":[4.689769299],"iteration":226,"passed_time":0.3329602301,"remaining_time":1.133824925},
+{"learn":[4.687919514],"iteration":227,"passed_time":0.333801481,"remaining_time":1.130240102},
+{"learn":[4.682982074],"iteration":228,"passed_time":0.3345507318,"remaining_time":1.126369494},
+{"learn":[4.679578702],"iteration":229,"passed_time":0.3352908052,"remaining_time":1.122495304},
+{"learn":[4.675751423],"iteration":230,"passed_time":0.3362817734,"remaining_time":1.119483479},
+{"learn":[4.672710726],"iteration":231,"passed_time":0.3371914649,"remaining_time":1.116220022},
+{"learn":[4.6690533],"iteration":232,"passed_time":0.3380901211,"remaining_time":1.112940442},
+{"learn":[4.667595702],"iteration":233,"passed_time":0.3389268791,"remaining_time":1.109478587},
+{"learn":[4.664241291],"iteration":234,"passed_time":0.3396826925,"remaining_time":1.105775573},
+{"learn":[4.662246999],"iteration":235,"passed_time":0.3404737532,"remaining_time":1.102211642},
+{"learn":[4.658668443],"iteration":236,"passed_time":0.3412667275,"remaining_time":1.098677271},
+{"learn":[4.658017572],"iteration":237,"passed_time":0.341960803,"remaining_time":1.094849294},
+{"learn":[4.657656705],"iteration":238,"passed_time":0.3426914684,"remaining_time":1.091164048},
+{"learn":[4.653242871],"iteration":239,"passed_time":0.3434128561,"remaining_time":1.087474044},
+{"learn":[4.6507302],"iteration":240,"passed_time":0.3443522844,"remaining_time":1.084495369},
+{"learn":[4.647671336],"iteration":241,"passed_time":0.3451516367,"remaining_time":1.081094796},
+{"learn":[4.645506007],"iteration":242,"passed_time":0.346004753,"remaining_time":1.077883119},
+{"learn":[4.641297906],"iteration":243,"passed_time":0.3467694534,"remaining_time":1.074416831},
+{"learn":[4.63798107],"iteration":244,"passed_time":0.3475451047,"remaining_time":1.071006343},
+{"learn":[4.635062318],"iteration":245,"passed_time":0.348383158,"remaining_time":1.067808541},
+{"learn":[4.631606017],"iteration":246,"passed_time":0.3492768647,"remaining_time":1.064799511},
+{"learn":[4.630215494],"iteration":247,"passed_time":0.3500890558,"remaining_time":1.061560363},
+{"learn":[4.62729814],"iteration":248,"passed_time":0.3508565815,"remaining_time":1.058205995},
+{"learn":[4.624691756],"iteration":249,"passed_time":0.3516125996,"remaining_time":1.054837799},
+{"learn":[4.621840053],"iteration":250,"passed_time":0.352358454,"remaining_time":1.051460088},
+{"learn":[4.619602091],"iteration":251,"passed_time":0.3533196253,"remaining_time":1.04874238},
+{"learn":[4.613584029],"iteration":252,"passed_time":0.354126917,"remaining_time":1.045584217},
+{"learn":[4.6119388],"iteration":253,"passed_time":0.3548592756,"remaining_time":1.042224487},
+{"learn":[4.60870702],"iteration":254,"passed_time":0.3557118237,"remaining_time":1.039236505},
+{"learn":[4.604771557],"iteration":255,"passed_time":0.3564376699,"remaining_time":1.035896978},
+{"learn":[4.604231277],"iteration":256,"passed_time":0.3572088927,"remaining_time":1.032708978},
+{"learn":[4.600750354],"iteration":257,"passed_time":0.357907646,"remaining_time":1.029331292},
+{"learn":[4.596488253],"iteration":258,"passed_time":0.3586438319,"remaining_time":1.026081388},
+{"learn":[4.59470784],"iteration":259,"passed_time":0.3593692072,"remaining_time":1.022820051},
+{"learn":[4.588818005],"iteration":260,"passed_time":0.3600992113,"remaining_time":1.019591253},
+{"learn":[4.585054174],"iteration":261,"passed_time":0.360796022,"remaining_time":1.016288031},
+{"learn":[4.581471435],"iteration":262,"passed_time":0.36152281,"remaining_time":1.013088635},
+{"learn":[4.577555199],"iteration":263,"passed_time":0.3622576132,"remaining_time":1.009930316},
+{"learn":[4.57457145],"iteration":264,"passed_time":0.3630693434,"remaining_time":1.007003651},
+{"learn":[4.573029224],"iteration":265,"passed_time":0.3637876352,"remaining_time":1.003835053},
+{"learn":[4.571326203],"iteration":266,"passed_time":0.3645330888,"remaining_time":1.000759379},
+{"learn":[4.571019224],"iteration":267,"passed_time":0.3652850849,"remaining_time":0.9977189632},
+{"learn":[4.565766631],"iteration":268,"passed_time":0.3663115852,"remaining_time":0.9954415197},
+{"learn":[4.563383471],"iteration":269,"passed_time":0.3671762766,"remaining_time":0.9927358588},
+{"learn":[4.558165805],"iteration":270,"passed_time":0.3680717667,"remaining_time":0.9901266344},
+{"learn":[4.55629209],"iteration":271,"passed_time":0.3689485311,"remaining_time":0.987479892},
+{"learn":[4.549383848],"iteration":272,"passed_time":0.3697968305,"remaining_time":0.9847703142},
+{"learn":[4.546227503],"iteration":273,"passed_time":0.3706082701,"remaining_time":0.9819766574},
+{"learn":[4.540620977],"iteration":274,"passed_time":0.371374283,"remaining_time":0.9790776552},
+{"learn":[4.532898237],"iteration":275,"passed_time":0.372095851,"remaining_time":0.9760775222},
+{"learn":[4.529757367],"iteration":276,"passed_time":0.3728391405,"remaining_time":0.9731505364},
+{"learn":[4.52579294],"iteration":277,"passed_time":0.3736227069,"remaining_time":0.9703438647},
+{"learn":[4.521572155],"iteration":278,"passed_time":0.3743912446,"remaining_time":0.9675128579},
+{"learn":[4.518818099],"iteration":279,"passed_time":0.3751662146,"remaining_time":0.9647131232},
+{"learn":[4.514012334],"iteration":280,"passed_time":0.3764282948,"remaining_time":0.9631741778},
+{"learn":[4.508331416],"iteration":281,"passed_time":0.3772623476,"remaining_time":0.9605473957},
+{"learn":[4.506038537],"iteration":282,"passed_time":0.3779910492,"remaining_time":0.9576663686},
+{"learn":[4.505805643],"iteration":283,"passed_time":0.3787215543,"remaining_time":0.9548050454},
+{"learn":[4.501550352],"iteration":284,"passed_time":0.3795847428,"remaining_time":0.9522915476},
+{"learn":[4.494692643],"iteration":285,"passed_time":0.380346778,"remaining_time":0.9495370613},
+{"learn":[4.489330245],"iteration":286,"passed_time":0.3810700092,"remaining_time":0.9467000577},
+{"learn":[4.484826955],"iteration":287,"passed_time":0.3818685588,"remaining_time":0.944063937},
+{"learn":[4.478285428],"iteration":288,"passed_time":0.3826448212,"remaining_time":0.9413857021},
+{"learn":[4.475311671],"iteration":289,"passed_time":0.3833944128,"remaining_time":0.9386552864},
+{"learn":[4.471581298],"iteration":290,"passed_time":0.3841237456,"remaining_time":0.9358891258},
+{"learn":[4.469164956],"iteration":291,"passed_time":0.3849725408,"remaining_time":0.9334265716},
+{"learn":[4.462068024],"iteration":292,"passed_time":0.3857947124,"remaining_time":0.9309107906},
+{"learn":[4.458540976],"iteration":293,"passed_time":0.3865640015,"remaining_time":0.9282795411},
+{"learn":[4.455757458],"iteration":294,"passed_time":0.3873314772,"remaining_time":0.9256565811},
+{"learn":[4.453027414],"iteration":295,"passed_time":0.3881573343,"remaining_time":0.9231850114},
+{"learn":[4.450659338],"iteration":296,"passed_time":0.3889328353,"remaining_time":0.9206053308},
+{"learn":[4.444696901],"iteration":297,"passed_time":0.3897666377,"remaining_time":0.9181750995},
+{"learn":[4.442052813],"iteration":298,"passed_time":0.3906274058,"remaining_time":0.9158187674},
+{"learn":[4.440036756],"iteration":299,"passed_time":0.3914985852,"remaining_time":0.9134966989},
+{"learn":[4.435017051],"iteration":300,"passed_time":0.3923664125,"remaining_time":0.9111764863},
+{"learn":[4.429962125],"iteration":301,"passed_time":0.3931744557,"remaining_time":0.9087277154},
+{"learn":[4.427666256],"iteration":302,"passed_time":0.3940276439,"remaining_time":0.9063936231},
+{"learn":[4.425030004],"iteration":303,"passed_time":0.3947598422,"remaining_time":0.9037922703},
+{"learn":[4.422588771],"iteration":304,"passed_time":0.3954798171,"remaining_time":0.901175321},
+{"learn":[4.418936667],"iteration":305,"passed_time":0.3963403305,"remaining_time":0.8988895077},
+{"learn":[4.416887976],"iteration":306,"passed_time":0.3971110023,"remaining_time":0.8964101777},
+{"learn":[4.413773354],"iteration":307,"passed_time":0.3981740223,"remaining_time":0.8945987775},
+{"learn":[4.411129391],"iteration":308,"passed_time":0.3992413922,"remaining_time":0.8928019481},
+{"learn":[4.40850819],"iteration":309,"passed_time":0.4003065449,"remaining_time":0.8910048902},
+{"learn":[4.404880292],"iteration":310,"passed_time":0.4010488425,"remaining_time":0.8884972748},
+{"learn":[4.404593827],"iteration":311,"passed_time":0.4020753929,"remaining_time":0.8866277895},
+{"learn":[4.402139942],"iteration":312,"passed_time":0.4030312684,"remaining_time":0.8846085666},
+{"learn":[4.400284725],"iteration":313,"passed_time":0.4038192832,"remaining_time":0.8822293895},
+{"learn":[4.395805521],"iteration":314,"passed_time":0.4045203721,"remaining_time":0.8796712854},
+{"learn":[4.392838833],"iteration":315,"passed_time":0.405269082,"remaining_time":0.8772280129},
+{"learn":[4.389213061],"iteration":316,"passed_time":0.4060454346,"remaining_time":0.87485499},
+{"learn":[4.3861981],"iteration":317,"passed_time":0.4067795265,"remaining_time":0.8724013744},
+{"learn":[4.385054234],"iteration":318,"passed_time":0.4074907247,"remaining_time":0.8699096662},
+{"learn":[4.379364607],"iteration":319,"passed_time":0.4082202579,"remaining_time":0.867468048},
+{"learn":[4.378387619],"iteration":320,"passed_time":0.4089789877,"remaining_time":0.8650988557},
+{"learn":[4.375816727],"iteration":321,"passed_time":0.409860841,"remaining_time":0.8629989136},
+{"learn":[4.374600202],"iteration":322,"passed_time":0.4106605582,"remaining_time":0.8607343588},
+{"learn":[4.37098897],"iteration":323,"passed_time":0.4114501261,"remaining_time":0.8584576704},
+{"learn":[4.367418484],"iteration":324,"passed_time":0.4122517269,"remaining_time":0.8562151251},
+{"learn":[4.363584638],"iteration":325,"passed_time":0.4130324879,"remaining_time":0.853938334},
+{"learn":[4.360770706],"iteration":326,"passed_time":0.4137359213,"remaining_time":0.8515115445},
+{"learn":[4.358675808],"iteration":327,"passed_time":0.4144993693,"remaining_time":0.84921822},
+{"learn":[4.354228195],"iteration":328,"passed_time":0.4152563959,"remaining_time":0.8469210992},
+{"learn":[4.353773425],"iteration":329,"passed_time":0.4161725054,"remaining_time":0.8449562988},
+{"learn":[4.351648009],"iteration":330,"passed_time":0.416897029,"remaining_time":0.8426106115},
+{"learn":[4.348209927],"iteration":331,"passed_time":0.4177982046,"remaining_time":0.8406301225},
+{"learn":[4.345852733],"iteration":332,"passed_time":0.4186058269,"remaining_time":0.8384687284},
+{"learn":[4.34237339],"iteration":333,"passed_time":0.4195149388,"remaining_time":0.8365178121},
+{"learn":[4.340814362],"iteration":334,"passed_time":0.4202892475,"remaining_time":0.8343055212},
+{"learn":[4.339707068],"iteration":335,"passed_time":0.420985407,"remaining_time":0.8319473519},
+{"learn":[4.335430786],"iteration":336,"passed_time":0.4217523917,"remaining_time":0.8297383849},
+{"learn":[4.33521887],"iteration":337,"passed_time":0.42245838,"remaining_time":0.8274184838},
+{"learn":[4.328507238],"iteration":338,"passed_time":0.4232242514,"remaining_time":0.8252248678},
+{"learn":[4.326140732],"iteration":339,"passed_time":0.4240006642,"remaining_time":0.8230601128},
+{"learn":[4.323785636],"iteration":340,"passed_time":0.4246837988,"remaining_time":0.8207232357},
+{"learn":[4.320632534],"iteration":341,"passed_time":0.4254031024,"remaining_time":0.8184656181},
+{"learn":[4.31973724],"iteration":342,"passed_time":0.4261365631,"remaining_time":0.8162440874},
+{"learn":[4.318000924],"iteration":343,"passed_time":0.4268667075,"remaining_time":0.8140248841},
+{"learn":[4.312713628],"iteration":344,"passed_time":0.4276745812,"remaining_time":0.811961886},
+{"learn":[4.308220789],"iteration":345,"passed_time":0.4284998578,"remaining_time":0.8099390376},
+{"learn":[4.305890947],"iteration":346,"passed_time":0.4297618399,"remaining_time":0.8087449033},
+{"learn":[4.305137856],"iteration":347,"passed_time":0.4308542252,"remaining_time":0.8072326287},
+{"learn":[4.304787172],"iteration":348,"passed_time":0.431719187,"remaining_time":0.8052985408},
+{"learn":[4.30350134],"iteration":349,"passed_time":0.4326485418,"remaining_time":0.8034901491},
+{"learn":[4.30293809],"iteration":350,"passed_time":0.4335106582,"remaining_time":0.8015624421},
+{"learn":[4.299548459],"iteration":351,"passed_time":0.4342318154,"remaining_time":0.7993812966},
+{"learn":[4.294768408],"iteration":352,"passed_time":0.4349700352,"remaining_time":0.7972396963},
+{"learn":[4.294581479],"iteration":353,"passed_time":0.435675753,"remaining_time":0.795046713},
+{"learn":[4.292551604],"iteration":354,"passed_time":0.4365632579,"remaining_time":0.7931923981},
+{"learn":[4.288628894],"iteration":355,"passed_time":0.4373186805,"remaining_time":0.7911045793},
+{"learn":[4.287802767],"iteration":356,"passed_time":0.4380109926,"remaining_time":0.7889105554},
+{"learn":[4.284566905],"iteration":357,"passed_time":0.4387552339,"remaining_time":0.7868180452},
+{"learn":[4.27890232],"iteration":358,"passed_time":0.4395193732,"remaining_time":0.7847685745},
+{"learn":[4.276938023],"iteration":359,"passed_time":0.4404345123,"remaining_time":0.7829946886},
+{"learn":[4.273425094],"iteration":360,"passed_time":0.4412428961,"remaining_time":0.7810365945},
+{"learn":[4.269726505],"iteration":361,"passed_time":0.4420011041,"remaining_time":0.778996421},
+{"learn":[4.265565857],"iteration":362,"passed_time":0.4427088457,"remaining_time":0.7768747512},
+{"learn":[4.262117173],"iteration":363,"passed_time":0.4434988137,"remaining_time":0.7749045207},
+{"learn":[4.259185148],"iteration":364,"passed_time":0.4442192195,"remaining_time":0.772819738},
+{"learn":[4.257668507],"iteration":365,"passed_time":0.445055145,"remaining_time":0.770942519},
+{"learn":[4.253432436],"iteration":366,"passed_time":0.4458880657,"remaining_time":0.7690657918},
+{"learn":[4.250216667],"iteration":367,"passed_time":0.4468771345,"remaining_time":0.767462905},
+{"learn":[4.24514828],"iteration":368,"passed_time":0.4476495797,"remaining_time":0.7654929127},
+{"learn":[4.244015772],"iteration":369,"passed_time":0.4488341118,"remaining_time":0.7642310553},
+{"learn":[4.240329192],"iteration":370,"passed_time":0.4496919901,"remaining_time":0.7624158},
+{"learn":[4.236718014],"iteration":371,"passed_time":0.4505570522,"remaining_time":0.7606178193},
+{"learn":[4.233495944],"iteration":372,"passed_time":0.4514013445,"remaining_time":0.7587899277},
+{"learn":[4.230357491],"iteration":373,"passed_time":0.4521516989,"remaining_time":0.7568100629},
+{"learn":[4.227381215],"iteration":374,"passed_time":0.4532157095,"remaining_time":0.7553595158},
+{"learn":[4.226169067],"iteration":375,"passed_time":0.4539711822,"remaining_time":0.7533989833},
+{"learn":[4.225963861],"iteration":376,"passed_time":0.4548309642,"remaining_time":0.7516172167},
+{"learn":[4.224346548],"iteration":377,"passed_time":0.4556542164,"remaining_time":0.7497802185},
+{"learn":[4.222595381],"iteration":378,"passed_time":0.4563927367,"remaining_time":0.7478097349},
+{"learn":[4.219700938],"iteration":379,"passed_time":0.4572282323,"remaining_time":0.746003958},
+{"learn":[4.216356207],"iteration":380,"passed_time":0.4579486882,"remaining_time":0.7440163727},
+{"learn":[4.214326494],"iteration":381,"passed_time":0.4587174263,"remaining_time":0.7421135325},
+{"learn":[4.212901398],"iteration":382,"passed_time":0.4595204698,"remaining_time":0.7402718796},
+{"learn":[4.211331091],"iteration":383,"passed_time":0.4605080258,"remaining_time":0.7387316247},
+{"learn":[4.208624791],"iteration":384,"passed_time":0.4613801113,"remaining_time":0.7370097881},
+{"learn":[4.204659106],"iteration":385,"passed_time":0.4622594706,"remaining_time":0.7353039247},
+{"learn":[4.202968852],"iteration":386,"passed_time":0.462976029,"remaining_time":0.7333444594},
+{"learn":[4.197261935],"iteration":387,"passed_time":0.46369391,"remaining_time":0.7313934869},
+{"learn":[4.196934403],"iteration":388,"passed_time":0.4643487405,"remaining_time":0.7293498212},
+{"learn":[4.192479929],"iteration":389,"passed_time":0.4650516529,"remaining_time":0.7273884827},
+{"learn":[4.190243116],"iteration":390,"passed_time":0.4657637127,"remaining_time":0.7254478288},
+{"learn":[4.185852431],"iteration":391,"passed_time":0.4665167709,"remaining_time":0.7235770324},
+{"learn":[4.180967944],"iteration":392,"passed_time":0.4674412063,"remaining_time":0.7219766214},
+{"learn":[4.178283162],"iteration":393,"passed_time":0.4682845368,"remaining_time":0.7202548967},
+{"learn":[4.176341157],"iteration":394,"passed_time":0.4691001945,"remaining_time":0.7184952346},
+{"learn":[4.176041504],"iteration":395,"passed_time":0.4699588042,"remaining_time":0.7168058529},
+{"learn":[4.175564513],"iteration":396,"passed_time":0.4706888083,"remaining_time":0.7149253184},
+{"learn":[4.170830274],"iteration":397,"passed_time":0.4714175801,"remaining_time":0.7130487015},
+{"learn":[4.167804808],"iteration":398,"passed_time":0.4721336275,"remaining_time":0.711158672},
+{"learn":[4.165860548],"iteration":399,"passed_time":0.473085295,"remaining_time":0.7096279424},
+{"learn":[4.160950571],"iteration":400,"passed_time":0.4738894607,"remaining_time":0.707879768},
+{"learn":[4.158544115],"iteration":401,"passed_time":0.4747292244,"remaining_time":0.7061892443},
+{"learn":[4.154448767],"iteration":402,"passed_time":0.4754912396,"remaining_time":0.7043877669},
+{"learn":[4.15197457],"iteration":403,"passed_time":0.4763533561,"remaining_time":0.7027391094},
+{"learn":[4.149562679],"iteration":404,"passed_time":0.4770784909,"remaining_time":0.7008930915},
+{"learn":[4.149327961],"iteration":405,"passed_time":0.4777337322,"remaining_time":0.6989503373},
+{"learn":[4.147444889],"iteration":406,"passed_time":0.4784826424,"remaining_time":0.6971503856},
+{"learn":[4.147254809],"iteration":407,"passed_time":0.4796803165,"remaining_time":0.6960067337},
+{"learn":[4.144589165],"iteration":408,"passed_time":0.4804880176,"remaining_time":0.6942993114},
+{"learn":[4.141691034],"iteration":409,"passed_time":0.4811892868,"remaining_time":0.69244312},
+{"learn":[4.138893468],"iteration":410,"passed_time":0.4819286287,"remaining_time":0.6906471103},
+{"learn":[4.136964597],"iteration":411,"passed_time":0.4826486137,"remaining_time":0.688828604},
+{"learn":[4.133773523],"iteration":412,"passed_time":0.4834688301,"remaining_time":0.6871578772},
+{"learn":[4.131363444],"iteration":413,"passed_time":0.4842362414,"remaining_time":0.6854165155},
+{"learn":[4.130228592],"iteration":414,"passed_time":0.4850980973,"remaining_time":0.6838129805},
+{"learn":[4.12884186],"iteration":415,"passed_time":0.4859856222,"remaining_time":0.6822490465},
+{"learn":[4.12413494],"iteration":416,"passed_time":0.4868248549,"remaining_time":0.6806208403},
+{"learn":[4.119422508],"iteration":417,"passed_time":0.4877629564,"remaining_time":0.6791340685},
+{"learn":[4.117038244],"iteration":418,"passed_time":0.4885358725,"remaining_time":0.6774208637},
+{"learn":[4.116067631],"iteration":419,"passed_time":0.4891750632,"remaining_time":0.6755274682},
+{"learn":[4.110343455],"iteration":420,"passed_time":0.489944222,"remaining_time":0.6738187757},
+{"learn":[4.105604544],"iteration":421,"passed_time":0.4906806384,"remaining_time":0.6720696895},
+{"learn":[4.103390131],"iteration":422,"passed_time":0.4914425635,"remaining_time":0.670360187},
+{"learn":[4.096724402],"iteration":423,"passed_time":0.4922990591,"remaining_time":0.6687836275},
+{"learn":[4.093431279],"iteration":424,"passed_time":0.4930447131,"remaining_time":0.6670604942},
+{"learn":[4.091412744],"iteration":425,"passed_time":0.4938487186,"remaining_time":0.6654205738},
+{"learn":[4.091192901],"iteration":426,"passed_time":0.4946983611,"remaining_time":0.6638458102},
+{"learn":[4.088994581],"iteration":427,"passed_time":0.4954506278,"remaining_time":0.6621442969},
+{"learn":[4.087845355],"iteration":428,"passed_time":0.4962400153,"remaining_time":0.6604966171},
+{"learn":[4.083650279],"iteration":429,"passed_time":0.4970459243,"remaining_time":0.6588748299},
+{"learn":[4.079840652],"iteration":430,"passed_time":0.497752654,"remaining_time":0.6571258936},
+{"learn":[4.075707828],"iteration":431,"passed_time":0.4984754043,"remaining_time":0.6554028463},
+{"learn":[4.071345409],"iteration":432,"passed_time":0.4992258317,"remaining_time":0.6537206618},
+{"learn":[4.067460475],"iteration":433,"passed_time":0.4999944195,"remaining_time":0.6520664549},
+{"learn":[4.064914749],"iteration":434,"passed_time":0.5007342924,"remaining_time":0.6503790235},
+{"learn":[4.063823175],"iteration":435,"passed_time":0.501453576,"remaining_time":0.6486693048},
+{"learn":[4.058898471],"iteration":436,"passed_time":0.5021750939,"remaining_time":0.6469669975},
+{"learn":[4.054120355],"iteration":437,"passed_time":0.5030750701,"remaining_time":0.6454981493},
+{"learn":[4.052715901],"iteration":438,"passed_time":0.5038215156,"remaining_time":0.6438356953},
+{"learn":[4.052114167],"iteration":439,"passed_time":0.5046325645,"remaining_time":0.6422596275},
+{"learn":[4.051377267],"iteration":440,"passed_time":0.505657438,"remaining_time":0.6409580676},
+{"learn":[4.049275336],"iteration":441,"passed_time":0.5065111183,"remaining_time":0.639441638},
+{"learn":[4.047099198],"iteration":442,"passed_time":0.5072882925,"remaining_time":0.6378320066},
+{"learn":[4.044348685],"iteration":443,"passed_time":0.5079837706,"remaining_time":0.6361238209},
+{"learn":[4.042822379],"iteration":444,"passed_time":0.508663088,"remaining_time":0.634400031},
+{"learn":[4.041258611],"iteration":445,"passed_time":0.5093986126,"remaining_time":0.632750743},
+{"learn":[4.040044254],"iteration":446,"passed_time":0.5100988499,"remaining_time":0.6310618881},
+{"learn":[4.036860137],"iteration":447,"passed_time":0.510852437,"remaining_time":0.6294431813},
+{"learn":[4.036372284],"iteration":448,"passed_time":0.5117888894,"remaining_time":0.6280527351},
+{"learn":[4.03368231],"iteration":449,"passed_time":0.512617602,"remaining_time":0.6265326247},
+{"learn":[4.032439519],"iteration":450,"passed_time":0.5134059676,"remaining_time":0.624966466},
+{"learn":[4.032008634],"iteration":451,"passed_time":0.5142554083,"remaining_time":0.6234777959},
+{"learn":[4.030034932],"iteration":452,"passed_time":0.5150056912,"remaining_time":0.6218722143},
+{"learn":[4.028173412],"iteration":453,"passed_time":0.5157199352,"remaining_time":0.6202270586},
+{"learn":[4.023806097],"iteration":454,"passed_time":0.5165553709,"remaining_time":0.6187311586},
+{"learn":[4.020239186],"iteration":455,"passed_time":0.5173596268,"remaining_time":0.6172009583},
+{"learn":[4.017384838],"iteration":456,"passed_time":0.5184950652,"remaining_time":0.6160674407},
+{"learn":[4.016468229],"iteration":457,"passed_time":0.5192371624,"remaining_time":0.6144684324},
+{"learn":[4.014530169],"iteration":458,"passed_time":0.5199486411,"remaining_time":0.6128370694},
+{"learn":[4.012884822],"iteration":459,"passed_time":0.5206783146,"remaining_time":0.611231065},
+{"learn":[4.008924707],"iteration":460,"passed_time":0.5215136499,"remaining_time":0.6097524019},
+{"learn":[4.008286778],"iteration":461,"passed_time":0.5225874105,"remaining_time":0.6085541706},
+{"learn":[4.006444202],"iteration":462,"passed_time":0.5237524353,"remaining_time":0.6074623278},
+{"learn":[4.003284363],"iteration":463,"passed_time":0.5251480305,"remaining_time":0.606636518},
+{"learn":[3.999811484],"iteration":464,"passed_time":0.5260497125,"remaining_time":0.6052399918},
+{"learn":[3.997483319],"iteration":465,"passed_time":0.5269133919,"remaining_time":0.6038020414},
+{"learn":[3.99708333],"iteration":466,"passed_time":0.5276304513,"remaining_time":0.6021992089},
+{"learn":[3.995860263],"iteration":467,"passed_time":0.5283705146,"remaining_time":0.6006263115},
+{"learn":[3.994131111],"iteration":468,"passed_time":0.5290616044,"remaining_time":0.599001518},
+{"learn":[3.993125499],"iteration":469,"passed_time":0.5298281383,"remaining_time":0.5974657729},
+{"learn":[3.992954084],"iteration":470,"passed_time":0.5306901067,"remaining_time":0.5960404807},
+{"learn":[3.990635743],"iteration":471,"passed_time":0.5315957359,"remaining_time":0.5946664164},
+{"learn":[3.986678254],"iteration":472,"passed_time":0.5327708503,"remaining_time":0.5935945838},
+{"learn":[3.986393291],"iteration":473,"passed_time":0.5339378235,"remaining_time":0.5925132809},
+{"learn":[3.986152671],"iteration":474,"passed_time":0.5347962483,"remaining_time":0.5910905902},
+{"learn":[3.985596662],"iteration":475,"passed_time":0.535557472,"remaining_time":0.5895632675},
+{"learn":[3.983853457],"iteration":476,"passed_time":0.5363029056,"remaining_time":0.5880218441},
+{"learn":[3.983263928],"iteration":477,"passed_time":0.5370203056,"remaining_time":0.5864531371},
+{"learn":[3.980067202],"iteration":478,"passed_time":0.5378551299,"remaining_time":0.585015705},
+{"learn":[3.978115407],"iteration":479,"passed_time":0.5386190645,"remaining_time":0.5835039866},
+{"learn":[3.972661644],"iteration":480,"passed_time":0.5395107975,"remaining_time":0.5821332721},
+{"learn":[3.969938254],"iteration":481,"passed_time":0.5403873832,"remaining_time":0.5807482666},
+{"learn":[3.968211434],"iteration":482,"passed_time":0.5411646376,"remaining_time":0.5792590427},
+{"learn":[3.966113368],"iteration":483,"passed_time":0.5419509764,"remaining_time":0.5777824459},
+{"learn":[3.962246044],"iteration":484,"passed_time":0.5428031839,"remaining_time":0.5763786386},
+{"learn":[3.961319703],"iteration":485,"passed_time":0.5436019193,"remaining_time":0.5749205484},
+{"learn":[3.96078191],"iteration":486,"passed_time":0.5443720214,"remaining_time":0.5734350041},
+{"learn":[3.958913633],"iteration":487,"passed_time":0.5453671604,"remaining_time":0.5721884962},
+{"learn":[3.957428286],"iteration":488,"passed_time":0.5461350569,"remaining_time":0.5707055502},
+{"learn":[3.952641965],"iteration":489,"passed_time":0.5471099298,"remaining_time":0.5694409473},
+{"learn":[3.951486786],"iteration":490,"passed_time":0.5479176523,"remaining_time":0.5680042465},
+{"learn":[3.94938344],"iteration":491,"passed_time":0.5487861452,"remaining_time":0.5666328491},
+{"learn":[3.947297924],"iteration":492,"passed_time":0.5494984254,"remaining_time":0.5651028432},
+{"learn":[3.946284886],"iteration":493,"passed_time":0.5502954146,"remaining_time":0.5636629145},
+{"learn":[3.943288204],"iteration":494,"passed_time":0.5511527318,"remaining_time":0.5622871305},
+{"learn":[3.943076488],"iteration":495,"passed_time":0.5519292949,"remaining_time":0.5608313803},
+{"learn":[3.942347078],"iteration":496,"passed_time":0.5529900406,"remaining_time":0.5596659767},
+{"learn":[3.940251541],"iteration":497,"passed_time":0.5541508875,"remaining_time":0.5586018986},
+{"learn":[3.939011019],"iteration":498,"passed_time":0.5550433831,"remaining_time":0.5572680058},
+{"learn":[3.938760512],"iteration":499,"passed_time":0.555771734,"remaining_time":0.555771734},
+{"learn":[3.934522727],"iteration":500,"passed_time":0.5565923912,"remaining_time":0.5543704655},
+{"learn":[3.930091193],"iteration":501,"passed_time":0.5574521016,"remaining_time":0.5530102522},
+{"learn":[3.927671752],"iteration":502,"passed_time":0.5584344677,"remaining_time":0.5517732215},
+{"learn":[3.927280041],"iteration":503,"passed_time":0.559136298,"remaining_time":0.5502611186},
+{"learn":[3.925987561],"iteration":504,"passed_time":0.5598530267,"remaining_time":0.5487668282},
+{"learn":[3.921645957],"iteration":505,"passed_time":0.5606503294,"remaining_time":0.5473542741},
+{"learn":[3.920333743],"iteration":506,"passed_time":0.5614038784,"remaining_time":0.5459016017},
+{"learn":[3.918659461],"iteration":507,"passed_time":0.5621615454,"remaining_time":0.5444556699},
+{"learn":[3.916124385],"iteration":508,"passed_time":0.5630733467,"remaining_time":0.5431611262},
+{"learn":[3.913849268],"iteration":509,"passed_time":0.5640333552,"remaining_time":0.5419144001},
+{"learn":[3.912826119],"iteration":510,"passed_time":0.5648802926,"remaining_time":0.5405605931},
+{"learn":[3.910034145],"iteration":511,"passed_time":0.5657266088,"remaining_time":0.539208174},
+{"learn":[3.90792379],"iteration":512,"passed_time":0.5666031428,"remaining_time":0.5378864143},
+{"learn":[3.907823851],"iteration":513,"passed_time":0.5673349703,"remaining_time":0.5364295634},
+{"learn":[3.904527401],"iteration":514,"passed_time":0.5682959604,"remaining_time":0.5351913414},
+{"learn":[3.903378283],"iteration":515,"passed_time":0.5691284405,"remaining_time":0.5338336535},
+{"learn":[3.902170135],"iteration":516,"passed_time":0.5699390786,"remaining_time":0.5324575918},
+{"learn":[3.899435429],"iteration":517,"passed_time":0.5707435049,"remaining_time":0.5310779331},
+{"learn":[3.897497505],"iteration":518,"passed_time":0.5714724169,"remaining_time":0.5296305058},
+{"learn":[3.896426119],"iteration":519,"passed_time":0.5721934739,"remaining_time":0.5281785913},
+{"learn":[3.896044669],"iteration":520,"passed_time":0.5729409113,"remaining_time":0.5267537361},
+{"learn":[3.892795942],"iteration":521,"passed_time":0.5736867156,"remaining_time":0.5253299809},
+{"learn":[3.892413888],"iteration":522,"passed_time":0.5744649919,"remaining_time":0.5239384343},
+{"learn":[3.891738985],"iteration":523,"passed_time":0.5751551399,"remaining_time":0.5224691729},
+{"learn":[3.88822057],"iteration":524,"passed_time":0.5761243892,"remaining_time":0.5212553997},
+{"learn":[3.883837053],"iteration":525,"passed_time":0.576999614,"remaining_time":0.5199578271},
+{"learn":[3.881769742],"iteration":526,"passed_time":0.5777924765,"remaining_time":0.5185879343},
+{"learn":[3.880356898],"iteration":527,"passed_time":0.578568657,"remaining_time":0.5172053146},
+{"learn":[3.879250273],"iteration":528,"passed_time":0.5793156336,"remaining_time":0.5157989856},
+{"learn":[3.877174493],"iteration":529,"passed_time":0.5800517293,"remaining_time":0.5143854958},
+{"learn":[3.875854201],"iteration":530,"passed_time":0.580856947,"remaining_time":0.5130356086},
+{"learn":[3.873189396],"iteration":531,"passed_time":0.5817327195,"remaining_time":0.511749836},
+{"learn":[3.871583368],"iteration":532,"passed_time":0.5825437083,"remaining_time":0.5104088401},
+{"learn":[3.869622679],"iteration":533,"passed_time":0.5836113171,"remaining_time":0.5092937711},
+{"learn":[3.866860164],"iteration":534,"passed_time":0.5844573829,"remaining_time":0.5079863235},
+{"learn":[3.864498444],"iteration":535,"passed_time":0.5853971633,"remaining_time":0.5067617235},
+{"learn":[3.861416322],"iteration":536,"passed_time":0.5863383167,"remaining_time":0.505539368},
+{"learn":[3.860265769],"iteration":537,"passed_time":0.587121845,"remaining_time":0.5041826996},
+{"learn":[3.859328725],"iteration":538,"passed_time":0.5879396368,"remaining_time":0.502857463},
+{"learn":[3.858521278],"iteration":539,"passed_time":0.5888915527,"remaining_time":0.5016483597},
+{"learn":[3.85599111],"iteration":540,"passed_time":0.5897805747,"remaining_time":0.5003868462},
+{"learn":[3.852379816],"iteration":541,"passed_time":0.5905988068,"remaining_time":0.4990668884},
+{"learn":[3.851327537],"iteration":542,"passed_time":0.5914695997,"remaining_time":0.4977930149},
+{"learn":[3.847854898],"iteration":543,"passed_time":0.5923110667,"remaining_time":0.4964960412},
+{"learn":[3.847083414],"iteration":544,"passed_time":0.593084563,"remaining_time":0.495143993},
+{"learn":[3.845397429],"iteration":545,"passed_time":0.5939060318,"remaining_time":0.4938339532},
+{"learn":[3.841933528],"iteration":546,"passed_time":0.5946819837,"remaining_time":0.4924880047},
+{"learn":[3.840996474],"iteration":547,"passed_time":0.5955510533,"remaining_time":0.4912209418},
+{"learn":[3.838355966],"iteration":548,"passed_time":0.596327728,"remaining_time":0.4898794268},
+{"learn":[3.83342799],"iteration":549,"passed_time":0.5970748147,"remaining_time":0.4885157575},
+{"learn":[3.828161535],"iteration":550,"passed_time":0.5978760844,"remaining_time":0.4871984789},
+{"learn":[3.823502399],"iteration":551,"passed_time":0.5986189722,"remaining_time":0.4858356876},
+{"learn":[3.820068862],"iteration":552,"passed_time":0.5993778515,"remaining_time":0.4844880644},
+{"learn":[3.817951642],"iteration":553,"passed_time":0.6001929996,"remaining_time":0.4831878661},
+{"learn":[3.815785958],"iteration":554,"passed_time":0.6009850508,"remaining_time":0.4818708966},
+{"learn":[3.81503012],"iteration":555,"passed_time":0.6017103659,"remaining_time":0.4805025224},
+{"learn":[3.813529315],"iteration":556,"passed_time":0.6025745663,"remaining_time":0.4792469172},
+{"learn":[3.808881326],"iteration":557,"passed_time":0.6032705455,"remaining_time":0.4778594643},
+{"learn":[3.808740434],"iteration":558,"passed_time":0.6040013826,"remaining_time":0.4765019852},
+{"learn":[3.80714352],"iteration":559,"passed_time":0.6047347631,"remaining_time":0.4751487425},
+{"learn":[3.80573346],"iteration":560,"passed_time":0.6054418735,"remaining_time":0.4737771524},
+{"learn":[3.803370052],"iteration":561,"passed_time":0.6061582616,"remaining_time":0.4724151576},
+{"learn":[3.803215211],"iteration":562,"passed_time":0.6068959805,"remaining_time":0.4710720133},
+{"learn":[3.801309667],"iteration":563,"passed_time":0.6076535773,"remaining_time":0.4697463824},
+{"learn":[3.800003847],"iteration":564,"passed_time":0.6083997122,"remaining_time":0.4684139377},
+{"learn":[3.798026138],"iteration":565,"passed_time":0.6091539426,"remaining_time":0.4670897722},
+{"learn":[3.794745847],"iteration":566,"passed_time":0.6099744696,"remaining_time":0.4658182457},
+{"learn":[3.794312041],"iteration":567,"passed_time":0.6107201937,"remaining_time":0.4644914149},
+{"learn":[3.792205926],"iteration":568,"passed_time":0.6115328256,"remaining_time":0.4632173073},
+{"learn":[3.788991061],"iteration":569,"passed_time":0.6122893804,"remaining_time":0.461902515},
+{"learn":[3.787391572],"iteration":570,"passed_time":0.6130619859,"remaining_time":0.4606017372},
+{"learn":[3.7826445],"iteration":571,"passed_time":0.6138766514,"remaining_time":0.4593342776},
+{"learn":[3.781700331],"iteration":572,"passed_time":0.6147522378,"remaining_time":0.4581137967},
+{"learn":[3.780045374],"iteration":573,"passed_time":0.6156245937,"remaining_time":0.4568921201},
+{"learn":[3.775462644],"iteration":574,"passed_time":0.6163684543,"remaining_time":0.4555766836},
+{"learn":[3.773711943],"iteration":575,"passed_time":0.617134367,"remaining_time":0.4542794646},
+{"learn":[3.772415806],"iteration":576,"passed_time":0.6178801512,"remaining_time":0.452969331},
+{"learn":[3.770170875],"iteration":577,"passed_time":0.618594265,"remaining_time":0.4516380274},
+{"learn":[3.765166479],"iteration":578,"passed_time":0.619517438,"remaining_time":0.450460866},
+{"learn":[3.763976102],"iteration":579,"passed_time":0.6203378347,"remaining_time":0.4492101562},
+{"learn":[3.760761708],"iteration":580,"passed_time":0.6212039889,"remaining_time":0.4479939266},
+{"learn":[3.758155662],"iteration":581,"passed_time":0.6219573576,"remaining_time":0.446697896},
+{"learn":[3.756844548],"iteration":582,"passed_time":0.6227165575,"remaining_time":0.4454078979},
+{"learn":[3.753098923],"iteration":583,"passed_time":0.6234607988,"remaining_time":0.4441090621},
+{"learn":[3.751618946],"iteration":584,"passed_time":0.624129626,"remaining_time":0.4427586236},
+{"learn":[3.751398464],"iteration":585,"passed_time":0.6249748519,"remaining_time":0.4415351343},
+{"learn":[3.749920103],"iteration":586,"passed_time":0.6259270638,"remaining_time":0.4403882067},
+{"learn":[3.748237465],"iteration":587,"passed_time":0.6267704782,"remaining_time":0.4391657092},
+{"learn":[3.746021536],"iteration":588,"passed_time":0.6279502713,"remaining_time":0.4381792216},
+{"learn":[3.74417648],"iteration":589,"passed_time":0.6288550291,"remaining_time":0.4370009524},
+{"learn":[3.738788389],"iteration":590,"passed_time":0.6295891711,"remaining_time":0.4357055347},
+{"learn":[3.736021611],"iteration":591,"passed_time":0.6304301872,"remaining_time":0.4344856696},
+{"learn":[3.734546151],"iteration":592,"passed_time":0.6311520859,"remaining_time":0.4331853271},
+{"learn":[3.733527479],"iteration":593,"passed_time":0.6320249528,"remaining_time":0.4319901193},
+{"learn":[3.733026392],"iteration":594,"passed_time":0.632735129,"remaining_time":0.4306852559},
+{"learn":[3.730314752],"iteration":595,"passed_time":0.633764044,"remaining_time":0.4295984459},
+{"learn":[3.727342596],"iteration":596,"passed_time":0.6346073344,"remaining_time":0.4283865256},
+{"learn":[3.725459604],"iteration":597,"passed_time":0.6353717643,"remaining_time":0.4271228248},
+{"learn":[3.723158842],"iteration":598,"passed_time":0.6361182198,"remaining_time":0.4258487582},
+{"learn":[3.722362756],"iteration":599,"passed_time":0.6369169652,"remaining_time":0.4246113101},
+{"learn":[3.721443615],"iteration":600,"passed_time":0.6380953957,"remaining_time":0.4236273925},
+{"learn":[3.720743486],"iteration":601,"passed_time":0.6390701071,"remaining_time":0.4225081439},
+{"learn":[3.720215334],"iteration":602,"passed_time":0.6399520614,"remaining_time":0.4213283058},
+{"learn":[3.719436563],"iteration":603,"passed_time":0.6407482118,"remaining_time":0.4200931985},
+{"learn":[3.715046574],"iteration":604,"passed_time":0.6415166293,"remaining_time":0.4188414357},
+{"learn":[3.71443396],"iteration":605,"passed_time":0.6422516029,"remaining_time":0.417569524},
+{"learn":[3.712938941],"iteration":606,"passed_time":0.6429995312,"remaining_time":0.416307769},
+{"learn":[3.712814764],"iteration":607,"passed_time":0.6436720756,"remaining_time":0.4149991014},
+{"learn":[3.71235348],"iteration":608,"passed_time":0.6444206953,"remaining_time":0.4137413659},
+{"learn":[3.711223749],"iteration":609,"passed_time":0.6451847544,"remaining_time":0.4124951709},
+{"learn":[3.710755648],"iteration":610,"passed_time":0.6459050901,"remaining_time":0.4112227169},
+{"learn":[3.708668039],"iteration":611,"passed_time":0.6471383252,"remaining_time":0.4102772389},
+{"learn":[3.705623591],"iteration":612,"passed_time":0.6479166115,"remaining_time":0.409043603},
+{"learn":[3.704045802],"iteration":613,"passed_time":0.6487810524,"remaining_time":0.4078656127},
+{"learn":[3.699915209],"iteration":614,"passed_time":0.6495876427,"remaining_time":0.4066524268},
+{"learn":[3.696182221],"iteration":615,"passed_time":0.650547095,"remaining_time":0.4055358514},
+{"learn":[3.694263278],"iteration":616,"passed_time":0.6512064943,"remaining_time":0.4042335289},
+{"learn":[3.693810229],"iteration":617,"passed_time":0.6519248361,"remaining_time":0.4029697207},
+{"learn":[3.690900932],"iteration":618,"passed_time":0.6528028229,"remaining_time":0.4018059378},
+{"learn":[3.688020895],"iteration":619,"passed_time":0.653730765,"remaining_time":0.4006736947},
+{"learn":[3.685491894],"iteration":620,"passed_time":0.6545035508,"remaining_time":0.3994474167},
+{"learn":[3.684328128],"iteration":621,"passed_time":0.6552589534,"remaining_time":0.3982120328},
+{"learn":[3.680640153],"iteration":622,"passed_time":0.6560038459,"remaining_time":0.3969718297},
+{"learn":[3.678932783],"iteration":623,"passed_time":0.6568217379,"remaining_time":0.395777201},
+{"learn":[3.674167041],"iteration":624,"passed_time":0.6576084302,"remaining_time":0.3945650581},
+{"learn":[3.672200976],"iteration":625,"passed_time":0.6583555771,"remaining_time":0.3933306483},
+{"learn":[3.670606604],"iteration":626,"passed_time":0.6590483,"remaining_time":0.3920654161},
+{"learn":[3.665506042],"iteration":627,"passed_time":0.6600611944,"remaining_time":0.3909916629},
+{"learn":[3.664214007],"iteration":628,"passed_time":0.6608179596,"remaining_time":0.3897670318},
+{"learn":[3.66261643],"iteration":629,"passed_time":0.6615388162,"remaining_time":0.3885227968},
+{"learn":[3.662118449],"iteration":630,"passed_time":0.6623177237,"remaining_time":0.3873141681},
+{"learn":[3.660871366],"iteration":631,"passed_time":0.6631088846,"remaining_time":0.3861140341},
+{"learn":[3.656695243],"iteration":632,"passed_time":0.6638549694,"remaining_time":0.3848890581},
+{"learn":[3.654497801],"iteration":633,"passed_time":0.6646021463,"remaining_time":0.3836662233},
+{"learn":[3.654189134],"iteration":634,"passed_time":0.6653400555,"remaining_time":0.3824395595},
+{"learn":[3.653957699],"iteration":635,"passed_time":0.6660675148,"remaining_time":0.3812084519},
+{"learn":[3.651920725],"iteration":636,"passed_time":0.6671214175,"remaining_time":0.3801649522},
+{"learn":[3.65106705],"iteration":637,"passed_time":0.6679085907,"remaining_time":0.3789700781},
+{"learn":[3.650612844],"iteration":638,"passed_time":0.668634988,"remaining_time":0.377742145},
+{"learn":[3.649884732],"iteration":639,"passed_time":0.6694899521,"remaining_time":0.3765880981},
+{"learn":[3.646276182],"iteration":640,"passed_time":0.6705078847,"remaining_time":0.3755262568},
+{"learn":[3.645808194],"iteration":641,"passed_time":0.6712482477,"remaining_time":0.3743097705},
+{"learn":[3.645042989],"iteration":642,"passed_time":0.6719782819,"remaining_time":0.3730890305},
+{"learn":[3.639864499],"iteration":643,"passed_time":0.6731079492,"remaining_time":0.3720907297},
+{"learn":[3.637318478],"iteration":644,"passed_time":0.6738497659,"remaining_time":0.3708785533},
+{"learn":[3.636344905],"iteration":645,"passed_time":0.6746758349,"remaining_time":0.3697140024},
+{"learn":[3.634754643],"iteration":646,"passed_time":0.675450869,"remaining_time":0.3685226534},
+{"learn":[3.630724975],"iteration":647,"passed_time":0.676378897,"remaining_time":0.3674156971},
+{"learn":[3.629408252],"iteration":648,"passed_time":0.6774522869,"remaining_time":0.3663879086},
+{"learn":[3.62790646],"iteration":649,"passed_time":0.6782144724,"remaining_time":0.3651924082},
+{"learn":[3.627388973],"iteration":650,"passed_time":0.6790115346,"remaining_time":0.3640169364},
+{"learn":[3.625163557],"iteration":651,"passed_time":0.6799396459,"remaining_time":0.3629125717},
+{"learn":[3.623701985],"iteration":652,"passed_time":0.680674359,"remaining_time":0.3617059764},
+{"learn":[3.622342639],"iteration":653,"passed_time":0.6814123383,"remaining_time":0.3605025521},
+{"learn":[3.621130639],"iteration":654,"passed_time":0.6821082774,"remaining_time":0.3592784057},
+{"learn":[3.619125665],"iteration":655,"passed_time":0.6828407863,"remaining_time":0.3580750465},
+{"learn":[3.618878783],"iteration":656,"passed_time":0.6835610418,"remaining_time":0.3568667235},
+{"learn":[3.616207429],"iteration":657,"passed_time":0.6843744151,"remaining_time":0.3557082826},
+{"learn":[3.61206486],"iteration":658,"passed_time":0.6853570817,"remaining_time":0.3546384899},
+{"learn":[3.611955873],"iteration":659,"passed_time":0.6860982471,"remaining_time":0.3534445516},
+{"learn":[3.610713743],"iteration":660,"passed_time":0.687118335,"remaining_time":0.3523950311},
+{"learn":[3.610044025],"iteration":661,"passed_time":0.6878827247,"remaining_time":0.3512150468},
+{"learn":[3.607342669],"iteration":662,"passed_time":0.68874951,"remaining_time":0.3500883633},
+{"learn":[3.602510618],"iteration":663,"passed_time":0.6895927504,"remaining_time":0.3489505484},
+{"learn":[3.600492392],"iteration":664,"passed_time":0.6908452137,"remaining_time":0.3480197693},
+{"learn":[3.597171065],"iteration":665,"passed_time":0.6916962489,"remaining_time":0.3468867074},
+{"learn":[3.594358798],"iteration":666,"passed_time":0.6925432064,"remaining_time":0.3457524554},
+{"learn":[3.593945251],"iteration":667,"passed_time":0.6934710984,"remaining_time":0.3446592884},
+{"learn":[3.593607748],"iteration":668,"passed_time":0.6943000916,"remaining_time":0.3435176836},
+{"learn":[3.592238714],"iteration":669,"passed_time":0.6950965626,"remaining_time":0.3423609935},
+{"learn":[3.590144654],"iteration":670,"passed_time":0.6958866958,"remaining_time":0.3412022696},
+{"learn":[3.587151536],"iteration":671,"passed_time":0.6967006402,"remaining_time":0.3400562649},
+{"learn":[3.586070865],"iteration":672,"passed_time":0.697465541,"remaining_time":0.3388874174},
+{"learn":[3.585102746],"iteration":673,"passed_time":0.698269867,"remaining_time":0.3377388378},
+{"learn":[3.584362847],"iteration":674,"passed_time":0.6991157725,"remaining_time":0.3366112979},
+{"learn":[3.581407561],"iteration":675,"passed_time":0.6998934977,"remaining_time":0.3354519131},
+{"learn":[3.57919422],"iteration":676,"passed_time":0.7006373884,"remaining_time":0.3342775132},
+{"learn":[3.577632204],"iteration":677,"passed_time":0.7014051446,"remaining_time":0.3331157176},
+{"learn":[3.573911195],"iteration":678,"passed_time":0.7021446969,"remaining_time":0.3319417492},
+{"learn":[3.573408216],"iteration":679,"passed_time":0.7028708537,"remaining_time":0.3307627547},
+{"learn":[3.571076482],"iteration":680,"passed_time":0.703613542,"remaining_time":0.3295928339},
+{"learn":[3.568177107],"iteration":681,"passed_time":0.7043541764,"remaining_time":0.3284232084},
+{"learn":[3.564824621],"iteration":682,"passed_time":0.7050964039,"remaining_time":0.3272555784},
+{"learn":[3.562475026],"iteration":683,"passed_time":0.7059256317,"remaining_time":0.3261293854},
+{"learn":[3.561226889],"iteration":684,"passed_time":0.7068863238,"remaining_time":0.3250645139},
+{"learn":[3.559383467],"iteration":685,"passed_time":0.7077082134,"remaining_time":0.3239364126},
+{"learn":[3.555209766],"iteration":686,"passed_time":0.7086093543,"remaining_time":0.3228453099},
+{"learn":[3.55345383],"iteration":687,"passed_time":0.7095112636,"remaining_time":0.3217551079},
+{"learn":[3.552300968],"iteration":688,"passed_time":0.7102866444,"remaining_time":0.3206083402},
+{"learn":[3.551253986],"iteration":689,"passed_time":0.7111310269,"remaining_time":0.3194936498},
+{"learn":[3.549807725],"iteration":690,"passed_time":0.7119718527,"remaining_time":0.3183781512},
+{"learn":[3.547992926],"iteration":691,"passed_time":0.7128766417,"remaining_time":0.3172919157},
+{"learn":[3.545438607],"iteration":692,"passed_time":0.7138605913,"remaining_time":0.3162412721},
+{"learn":[3.543313763],"iteration":693,"passed_time":0.7147235995,"remaining_time":0.3151374949},
+{"learn":[3.542962896],"iteration":694,"passed_time":0.7154733613,"remaining_time":0.3139847125},
+{"learn":[3.539800465],"iteration":695,"passed_time":0.716178037,"remaining_time":0.3128133955},
+{"learn":[3.53953187],"iteration":696,"passed_time":0.7168337392,"remaining_time":0.3116221277},
+{"learn":[3.536332425],"iteration":697,"passed_time":0.7177759873,"remaining_time":0.3105563727},
+{"learn":[3.534993327],"iteration":698,"passed_time":0.7186340459,"remaining_time":0.3094547179},
+{"learn":[3.531637011],"iteration":699,"passed_time":0.7193745,"remaining_time":0.3083033571},
+{"learn":[3.531040284],"iteration":700,"passed_time":0.7201147637,"remaining_time":0.3071530875},
+{"learn":[3.529973872],"iteration":701,"passed_time":0.7209180386,"remaining_time":0.3060307343},
+{"learn":[3.527325183],"iteration":702,"passed_time":0.7216615576,"remaining_time":0.3048840436},
+{"learn":[3.527200815],"iteration":703,"passed_time":0.7224591408,"remaining_time":0.3037612297},
+{"learn":[3.523459911],"iteration":704,"passed_time":0.7231781239,"remaining_time":0.302606449},
+{"learn":[3.522729934],"iteration":705,"passed_time":0.7239967987,"remaining_time":0.3014944176},
+{"learn":[3.522260582],"iteration":706,"passed_time":0.7247550468,"remaining_time":0.3003581736},
+{"learn":[3.518641591],"iteration":707,"passed_time":0.7255739807,"remaining_time":0.2992480259},
+{"learn":[3.516856405],"iteration":708,"passed_time":0.7264942124,"remaining_time":0.2981802762},
+{"learn":[3.515083413],"iteration":709,"passed_time":0.7273343869,"remaining_time":0.2970802425},
+{"learn":[3.514671214],"iteration":710,"passed_time":0.7283324486,"remaining_time":0.2960451163},
+{"learn":[3.512617621],"iteration":711,"passed_time":0.7293271397,"remaining_time":0.2950087306},
+{"learn":[3.510747971],"iteration":712,"passed_time":0.7301781222,"remaining_time":0.2939146158},
+{"learn":[3.508149266],"iteration":713,"passed_time":0.730977609,"remaining_time":0.2928005549},
+{"learn":[3.504557165],"iteration":714,"passed_time":0.7317639015,"remaining_time":0.2916821146},
+{"learn":[3.501367208],"iteration":715,"passed_time":0.7325062784,"remaining_time":0.290547183},
+{"learn":[3.497593362],"iteration":716,"passed_time":0.7334133707,"remaining_time":0.2894783597},
+{"learn":[3.496291169],"iteration":717,"passed_time":0.7341799861,"remaining_time":0.2883548135},
+{"learn":[3.49330374],"iteration":718,"passed_time":0.7349170237,"remaining_time":0.2872207005},
+{"learn":[3.490044385],"iteration":719,"passed_time":0.735736898,"remaining_time":0.2861199048},
+{"learn":[3.488891789],"iteration":720,"passed_time":0.7366175798,"remaining_time":0.2850434185},
+{"learn":[3.486869081],"iteration":721,"passed_time":0.7375299033,"remaining_time":0.283979658},
+{"learn":[3.486303638],"iteration":722,"passed_time":0.73833461,"remaining_time":0.2828750857},
+{"learn":[3.486035862],"iteration":723,"passed_time":0.7390658866,"remaining_time":0.281743349},
+{"learn":[3.482668951],"iteration":724,"passed_time":0.7399658953,"remaining_time":0.2806767189},
+{"learn":[3.47820549],"iteration":725,"passed_time":0.7407238024,"remaining_time":0.2795569172},
+{"learn":[3.474392283],"iteration":726,"passed_time":0.7415626344,"remaining_time":0.2784684996},
+{"learn":[3.472268163],"iteration":727,"passed_time":0.7422910955,"remaining_time":0.2773395302},
+{"learn":[3.471209164],"iteration":728,"passed_time":0.7430781893,"remaining_time":0.2762334558},
+{"learn":[3.470049971],"iteration":729,"passed_time":0.7440135641,"remaining_time":0.2751830991},
+{"learn":[3.469078654],"iteration":730,"passed_time":0.7448249551,"remaining_time":0.2740874322},
+{"learn":[3.468643292],"iteration":731,"passed_time":0.7456334792,"remaining_time":0.2729914924},
+{"learn":[3.468134848],"iteration":732,"passed_time":0.7464206424,"remaining_time":0.271888556},
+{"learn":[3.467820182],"iteration":733,"passed_time":0.7472818872,"remaining_time":0.270813327},
+{"learn":[3.465776156],"iteration":734,"passed_time":0.7480164099,"remaining_time":0.2696929913},
+{"learn":[3.463037608],"iteration":735,"passed_time":0.7488373777,"remaining_time":0.2686047116},
+{"learn":[3.45965637],"iteration":736,"passed_time":0.7495743752,"remaining_time":0.2674871922},
+{"learn":[3.457275091],"iteration":737,"passed_time":0.7504199099,"remaining_time":0.2664092363},
+{"learn":[3.455522955],"iteration":738,"passed_time":0.7512771364,"remaining_time":0.2653360387},
+{"learn":[3.451270508],"iteration":739,"passed_time":0.7522701019,"remaining_time":0.2643111169},
+{"learn":[3.450978947],"iteration":740,"passed_time":0.7530968307,"remaining_time":0.263228177},
+{"learn":[3.450608492],"iteration":741,"passed_time":0.7538201921,"remaining_time":0.2621099859},
+{"learn":[3.448122004],"iteration":742,"passed_time":0.7545178545,"remaining_time":0.2609839685},
+{"learn":[3.445646714],"iteration":743,"passed_time":0.7552600819,"remaining_time":0.2598744368},
+{"learn":[3.44411263],"iteration":744,"passed_time":0.7559669819,"remaining_time":0.2587537992},
+{"learn":[3.443264164],"iteration":745,"passed_time":0.7568800957,"remaining_time":0.257704483},
+{"learn":[3.439521363],"iteration":746,"passed_time":0.7576800634,"remaining_time":0.2566172102},
+{"learn":[3.436809225],"iteration":747,"passed_time":0.7584393234,"remaining_time":0.2555169913},
+{"learn":[3.435509465],"iteration":748,"passed_time":0.759178515,"remaining_time":0.2544109576},
+{"learn":[3.434450277],"iteration":749,"passed_time":0.7598726607,"remaining_time":0.2532908869},
+{"learn":[3.431786753],"iteration":750,"passed_time":0.7605820755,"remaining_time":0.252177013},
+{"learn":[3.430150302],"iteration":751,"passed_time":0.7613013892,"remaining_time":0.2510674794},
+{"learn":[3.42696281],"iteration":752,"passed_time":0.7623598746,"remaining_time":0.2500702377},
+{"learn":[3.426870334],"iteration":753,"passed_time":0.7632442128,"remaining_time":0.2490160164},
+{"learn":[3.425200309],"iteration":754,"passed_time":0.7641688263,"remaining_time":0.2479753145},
+{"learn":[3.423383783],"iteration":755,"passed_time":0.7649705073,"remaining_time":0.2468952431},
+{"learn":[3.422752979],"iteration":756,"passed_time":0.7657120234,"remaining_time":0.245796594},
+{"learn":[3.420845924],"iteration":757,"passed_time":0.7664628415,"remaining_time":0.2447018571},
+{"learn":[3.418917862],"iteration":758,"passed_time":0.767322519,"remaining_time":0.2436425917},
+{"learn":[3.417095735],"iteration":759,"passed_time":0.768335764,"remaining_time":0.2426323465},
+{"learn":[3.414391848],"iteration":760,"passed_time":0.7693093533,"remaining_time":0.2416096392},
+{"learn":[3.41426711],"iteration":761,"passed_time":0.7701281871,"remaining_time":0.2405387251},
+{"learn":[3.411976013],"iteration":762,"passed_time":0.7709259205,"remaining_time":0.2394619176},
+{"learn":[3.408614844],"iteration":763,"passed_time":0.7717102784,"remaining_time":0.238381709},
+{"learn":[3.407906721],"iteration":764,"passed_time":0.7724726544,"remaining_time":0.2372955213},
+{"learn":[3.407494015],"iteration":765,"passed_time":0.7732037706,"remaining_time":0.2362006297},
+{"learn":[3.406287128],"iteration":766,"passed_time":0.7740975274,"remaining_time":0.2351560937},
+{"learn":[3.404600442],"iteration":767,"passed_time":0.7748653137,"remaining_time":0.2340738968},
+{"learn":[3.404012662],"iteration":768,"passed_time":0.7755725443,"remaining_time":0.2329743274},
+{"learn":[3.400398762],"iteration":769,"passed_time":0.7763963976,"remaining_time":0.2319106123},
+{"learn":[3.399737714],"iteration":770,"passed_time":0.7772346585,"remaining_time":0.2308517987},
+{"learn":[3.399185251],"iteration":771,"passed_time":0.7780248063,"remaining_time":0.2297793469},
+{"learn":[3.397245411],"iteration":772,"passed_time":0.7788495814,"remaining_time":0.2287177943},
+{"learn":[3.396229831],"iteration":773,"passed_time":0.7796375376,"remaining_time":0.2276461027},
+{"learn":[3.394002836],"iteration":774,"passed_time":0.7805263041,"remaining_time":0.2266044109},
+{"learn":[3.389617243],"iteration":775,"passed_time":0.7819155729,"remaining_time":0.2257075881},
+{"learn":[3.385426488],"iteration":776,"passed_time":0.7827838536,"remaining_time":0.2246599734},
+{"learn":[3.385072258],"iteration":777,"passed_time":0.7834802235,"remaining_time":0.2235637656},
+{"learn":[3.383842366],"iteration":778,"passed_time":0.7843698224,"remaining_time":0.2225234028},
+{"learn":[3.380110746],"iteration":779,"passed_time":0.7851817129,"remaining_time":0.2214615088},
+{"learn":[3.378595218],"iteration":780,"passed_time":0.7859234995,"remaining_time":0.2203805972},
+{"learn":[3.377371219],"iteration":781,"passed_time":0.7867236876,"remaining_time":0.2193168336},
+{"learn":[3.375814782],"iteration":782,"passed_time":0.7875395858,"remaining_time":0.2182580972},
+{"learn":[3.374195887],"iteration":783,"passed_time":0.7884806822,"remaining_time":0.2172344737},
+{"learn":[3.373704309],"iteration":784,"passed_time":0.7893863918,"remaining_time":0.2162013685},
+{"learn":[3.372971757],"iteration":785,"passed_time":0.7902655207,"remaining_time":0.2151613504},
+{"learn":[3.371565136],"iteration":786,"passed_time":0.7910611101,"remaining_time":0.2140991314},
+{"learn":[3.3700309],"iteration":787,"passed_time":0.7918087879,"remaining_time":0.2130246993},
+{"learn":[3.368186663],"iteration":788,"passed_time":0.7926253073,"remaining_time":0.2119695055},
+{"learn":[3.366710398],"iteration":789,"passed_time":0.7933093035,"remaining_time":0.2108796883},
+{"learn":[3.364598042],"iteration":790,"passed_time":0.7940228662,"remaining_time":0.2097987093},
+{"learn":[3.36348442],"iteration":791,"passed_time":0.7947107198,"remaining_time":0.2087119062},
+{"learn":[3.362001759],"iteration":792,"passed_time":0.7957216404,"remaining_time":0.2077104408},
+{"learn":[3.361580401],"iteration":793,"passed_time":0.7963830535,"remaining_time":0.2066182733},
+{"learn":[3.359543675],"iteration":794,"passed_time":0.7971107933,"remaining_time":0.2055442926},
+{"learn":[3.35766119],"iteration":795,"passed_time":0.7978737804,"remaining_time":0.2044802151},
+{"learn":[3.354592969],"iteration":796,"passed_time":0.7986927945,"remaining_time":0.2034311635},
+{"learn":[3.350985986],"iteration":797,"passed_time":0.7997294342,"remaining_time":0.2024377766},
+{"learn":[3.349589624],"iteration":798,"passed_time":0.8005674245,"remaining_time":0.2013943083},
+{"learn":[3.349110856],"iteration":799,"passed_time":0.8014828427,"remaining_time":0.2003707107},
+{"learn":[3.345315441],"iteration":800,"passed_time":0.8026511739,"remaining_time":0.1994102167},
+{"learn":[3.34397474],"iteration":801,"passed_time":0.8035712711,"remaining_time":0.1983879198},
+{"learn":[3.343800902],"iteration":802,"passed_time":0.8044229075,"remaining_time":0.1973490819},
+{"learn":[3.342329465],"iteration":803,"passed_time":0.8052026465,"remaining_time":0.1962931825},
+{"learn":[3.34220347],"iteration":804,"passed_time":0.8060293854,"remaining_time":0.1952493542},
+{"learn":[3.341279219],"iteration":805,"passed_time":0.8068336112,"remaining_time":0.1942006459},
+{"learn":[3.337329521],"iteration":806,"passed_time":0.8075494583,"remaining_time":0.193131407},
+{"learn":[3.336708453],"iteration":807,"passed_time":0.8085026587,"remaining_time":0.1921194436},
+{"learn":[3.333252703],"iteration":808,"passed_time":0.8094526157,"remaining_time":0.1911068598},
+{"learn":[3.332186769],"iteration":809,"passed_time":0.8103894431,"remaining_time":0.1900913508},
+{"learn":[3.330594851],"iteration":810,"passed_time":0.8112182702,"remaining_time":0.1890508669},
+{"learn":[3.327867442],"iteration":811,"passed_time":0.8120320643,"remaining_time":0.1880074238},
+{"learn":[3.327563111],"iteration":812,"passed_time":0.8129043704,"remaining_time":0.186978004},
+{"learn":[3.326308994],"iteration":813,"passed_time":0.8136721066,"remaining_time":0.185925076},
+{"learn":[3.326249879],"iteration":814,"passed_time":0.8147443243,"remaining_time":0.1849419632},
+{"learn":[3.322336238],"iteration":815,"passed_time":0.8158699382,"remaining_time":0.1839706723},
+{"learn":[3.320491154],"iteration":816,"passed_time":0.8165849336,"remaining_time":0.1829070292},
+{"learn":[3.320434271],"iteration":817,"passed_time":0.8172997587,"remaining_time":0.1818442006},
+{"learn":[3.319609638],"iteration":818,"passed_time":0.8180288411,"remaining_time":0.1807853727},
+{"learn":[3.316182682],"iteration":819,"passed_time":0.8188290092,"remaining_time":0.1797429532},
+{"learn":[3.313126612],"iteration":820,"passed_time":0.8195553763,"remaining_time":0.1786850333},
+{"learn":[3.311222803],"iteration":821,"passed_time":0.8202920732,"remaining_time":0.177630157},
+{"learn":[3.309627335],"iteration":822,"passed_time":0.8210850376,"remaining_time":0.1765881551},
+{"learn":[3.307974895],"iteration":823,"passed_time":0.8219060855,"remaining_time":0.1755527561},
+{"learn":[3.307321505],"iteration":824,"passed_time":0.8227714181,"remaining_time":0.1745272705},
+{"learn":[3.306759087],"iteration":825,"passed_time":0.8237794632,"remaining_time":0.1735322356},
+{"learn":[3.30484037],"iteration":826,"passed_time":0.8245143566,"remaining_time":0.1724800287},
+{"learn":[3.30201994],"iteration":827,"passed_time":0.8253192437,"remaining_time":0.1714431279},
+{"learn":[3.299302297],"iteration":828,"passed_time":0.8260326161,"remaining_time":0.17038791},
+{"learn":[3.298132671],"iteration":829,"passed_time":0.8267820774,"remaining_time":0.1693409074},
+{"learn":[3.296976183],"iteration":830,"passed_time":0.8275650841,"remaining_time":0.1683014431},
+{"learn":[3.293144745],"iteration":831,"passed_time":0.828452058,"remaining_time":0.1672835886},
+{"learn":[3.290284404],"iteration":832,"passed_time":0.8292487294,"remaining_time":0.1662479446},
+{"learn":[3.288285745],"iteration":833,"passed_time":0.8300034607,"remaining_time":0.1652045258},
+{"learn":[3.286662667],"iteration":834,"passed_time":0.8308105415,"remaining_time":0.1641721429},
+{"learn":[3.285692682],"iteration":835,"passed_time":0.8316310384,"remaining_time":0.163142931},
+{"learn":[3.284565611],"iteration":836,"passed_time":0.8325151268,"remaining_time":0.1621266017},
+{"learn":[3.283897383],"iteration":837,"passed_time":0.8333464143,"remaining_time":0.1611003808},
+{"learn":[3.280712855],"iteration":838,"passed_time":0.8341221858,"remaining_time":0.1600639713},
+{"learn":[3.280468341],"iteration":839,"passed_time":0.8347736099,"remaining_time":0.1590044971},
+{"learn":[3.277814895],"iteration":840,"passed_time":0.8356279514,"remaining_time":0.157984357},
+{"learn":[3.276316385],"iteration":841,"passed_time":0.8364930836,"remaining_time":0.1569666356},
+{"learn":[3.27557063],"iteration":842,"passed_time":0.8374712536,"remaining_time":0.1559703284},
+{"learn":[3.27499628],"iteration":843,"passed_time":0.8382331486,"remaining_time":0.1549340891},
+{"learn":[3.273569958],"iteration":844,"passed_time":0.8389757668,"remaining_time":0.1538949631},
+{"learn":[3.269665595],"iteration":845,"passed_time":0.8397397057,"remaining_time":0.1528604192},
+{"learn":[3.267984685],"iteration":846,"passed_time":0.8407271861,"remaining_time":0.1518668943},
+{"learn":[3.267702508],"iteration":847,"passed_time":0.8416463967,"remaining_time":0.1508611466},
+{"learn":[3.266671924],"iteration":848,"passed_time":0.8424520753,"remaining_time":0.1498354103},
+{"learn":[3.265359825],"iteration":849,"passed_time":0.8432366336,"remaining_time":0.1488064648},
+{"learn":[3.2618983],"iteration":850,"passed_time":0.8439750839,"remaining_time":0.1477700206},
+{"learn":[3.260456253],"iteration":851,"passed_time":0.8447398143,"remaining_time":0.146738841},
+{"learn":[3.258389147],"iteration":852,"passed_time":0.845490528,"remaining_time":0.1457058706},
+{"learn":[3.258108469],"iteration":853,"passed_time":0.8461698653,"remaining_time":0.1446613587},
+{"learn":[3.256424936],"iteration":854,"passed_time":0.8472903342,"remaining_time":0.1436925128},
+{"learn":[3.254817983],"iteration":855,"passed_time":0.8480654445,"remaining_time":0.142665215},
+{"learn":[3.253898449],"iteration":856,"passed_time":0.8489732081,"remaining_time":0.1416606403},
+{"learn":[3.253023652],"iteration":857,"passed_time":0.8498437906,"remaining_time":0.1406501378},
+{"learn":[3.252845542],"iteration":858,"passed_time":0.8507452923,"remaining_time":0.1396450363},
+{"learn":[3.252316026],"iteration":859,"passed_time":0.8515471837,"remaining_time":0.1386239601},
+{"learn":[3.24975301],"iteration":860,"passed_time":0.8523896125,"remaining_time":0.1376099374},
+{"learn":[3.249151075],"iteration":861,"passed_time":0.8533866465,"remaining_time":0.1366210641},
+{"learn":[3.246257135],"iteration":862,"passed_time":0.8545165744,"remaining_time":0.1356532685},
+{"learn":[3.243826471],"iteration":863,"passed_time":0.8553334644,"remaining_time":0.1346358231},
+{"learn":[3.243190653],"iteration":864,"passed_time":0.8561447938,"remaining_time":0.1336179736},
+{"learn":[3.24008797],"iteration":865,"passed_time":0.8568944054,"remaining_time":0.1325910512},
+{"learn":[3.240036811],"iteration":866,"passed_time":0.8576533047,"remaining_time":0.1315661932},
+{"learn":[3.238676314],"iteration":867,"passed_time":0.8583910736,"remaining_time":0.1305387347},
+{"learn":[3.237848782],"iteration":868,"passed_time":0.8591411661,"remaining_time":0.1295138006},
+{"learn":[3.236405498],"iteration":869,"passed_time":0.8599505718,"remaining_time":0.1284983613},
+{"learn":[3.233378068],"iteration":870,"passed_time":0.860709912,"remaining_time":0.1274759801},
+{"learn":[3.233169169],"iteration":871,"passed_time":0.8616892923,"remaining_time":0.1264865016},
+{"learn":[3.232434885],"iteration":872,"passed_time":0.8627355604,"remaining_time":0.1255067768},
+{"learn":[3.229978115],"iteration":873,"passed_time":0.8636052427,"remaining_time":0.1245014423},
+{"learn":[3.229648848],"iteration":874,"passed_time":0.8644288656,"remaining_time":0.1234898379},
+{"learn":[3.227208761],"iteration":875,"passed_time":0.8652186524,"remaining_time":0.1224738732},
+{"learn":[3.226258869],"iteration":876,"passed_time":0.8660257437,"remaining_time":0.1214608512},
+{"learn":[3.225331995],"iteration":877,"passed_time":0.8668854255,"remaining_time":0.1204556058},
+{"learn":[3.221968268],"iteration":878,"passed_time":0.86786173,"remaining_time":0.1194667455},
+{"learn":[3.221166317],"iteration":879,"passed_time":0.8686513379,"remaining_time":0.1184524552},
+{"learn":[3.220047503],"iteration":880,"passed_time":0.8694447331,"remaining_time":0.1174391864},
+{"learn":[3.21982781],"iteration":881,"passed_time":0.8701876619,"remaining_time":0.1164196645},
+{"learn":[3.216693405],"iteration":882,"passed_time":0.8709465511,"remaining_time":0.1154028839},
+{"learn":[3.214798761],"iteration":883,"passed_time":0.8716757237,"remaining_time":0.1143827873},
+{"learn":[3.214395085],"iteration":884,"passed_time":0.8724810817,"remaining_time":0.1133732479},
+{"learn":[3.213470696],"iteration":885,"passed_time":0.8732167867,"remaining_time":0.1123552073},
+{"learn":[3.211595017],"iteration":886,"passed_time":0.8740905161,"remaining_time":0.1113553871},
+{"learn":[3.210965255],"iteration":887,"passed_time":0.8749315815,"remaining_time":0.110351731},
+{"learn":[3.209413583],"iteration":888,"passed_time":0.8759117333,"remaining_time":0.109365807},
+{"learn":[3.208331683],"iteration":889,"passed_time":0.8766487708,"remaining_time":0.1083498481},
+{"learn":[3.207110711],"iteration":890,"passed_time":0.8774626606,"remaining_time":0.1073439169},
+{"learn":[3.204519413],"iteration":891,"passed_time":0.8782147325,"remaining_time":0.1063309317},
+{"learn":[3.201421296],"iteration":892,"passed_time":0.8791576212,"remaining_time":0.1053413947},
+{"learn":[3.200691259],"iteration":893,"passed_time":0.879961837,"remaining_time":0.1043355198},
+{"learn":[3.200485067],"iteration":894,"passed_time":0.8806754899,"remaining_time":0.1033194709},
+{"learn":[3.197467568],"iteration":895,"passed_time":0.8814195709,"remaining_time":0.1023076288},
+{"learn":[3.195838544],"iteration":896,"passed_time":0.882142762,"remaining_time":0.1012939849},
+{"learn":[3.195671746],"iteration":897,"passed_time":0.8828145048,"remaining_time":0.1002751442},
+{"learn":[3.194213094],"iteration":898,"passed_time":0.8835961742,"remaining_time":0.09926942557},
+{"learn":[3.192884691],"iteration":899,"passed_time":0.8843885274,"remaining_time":0.09826539193},
+{"learn":[3.188364239],"iteration":900,"passed_time":0.885233767,"remaining_time":0.09726763921},
+{"learn":[3.185219478],"iteration":901,"passed_time":0.8860860846,"remaining_time":0.09627099368},
+{"learn":[3.184120387],"iteration":902,"passed_time":0.886896853,"remaining_time":0.09527020459},
+{"learn":[3.183725321],"iteration":903,"passed_time":0.8877043651,"remaining_time":0.0942694901},
+{"learn":[3.181264554],"iteration":904,"passed_time":0.8888048167,"remaining_time":0.09329995313},
+{"learn":[3.180741589],"iteration":905,"passed_time":0.8895132596,"remaining_time":0.09228945519},
+{"learn":[3.179782639],"iteration":906,"passed_time":0.8902743731,"remaining_time":0.09128502393},
+{"learn":[3.176377564],"iteration":907,"passed_time":0.8909995079,"remaining_time":0.09027748318},
+{"learn":[3.174078182],"iteration":908,"passed_time":0.8917746382,"remaining_time":0.08927556884},
+{"learn":[3.171242379],"iteration":909,"passed_time":0.8926585362,"remaining_time":0.08828491018},
+{"learn":[3.170421012],"iteration":910,"passed_time":0.8936441385,"remaining_time":0.08730442187},
+{"learn":[3.170087224],"iteration":911,"passed_time":0.8945493815,"remaining_time":0.08631616839},
+{"learn":[3.167303059],"iteration":912,"passed_time":0.8952699877,"remaining_time":0.08531050266},
+{"learn":[3.16705966],"iteration":913,"passed_time":0.8959942508,"remaining_time":0.08430580478},
+{"learn":[3.165667683],"iteration":914,"passed_time":0.8967707437,"remaining_time":0.08330657182},
+{"learn":[3.164689733],"iteration":915,"passed_time":0.8974711413,"remaining_time":0.08230084702},
+{"learn":[3.163311455],"iteration":916,"passed_time":0.8982181235,"remaining_time":0.08130000464},
+{"learn":[3.159425016],"iteration":917,"passed_time":0.8991614639,"remaining_time":0.08031725495},
+{"learn":[3.159327058],"iteration":918,"passed_time":0.8999201328,"remaining_time":0.0793183142},
+{"learn":[3.15819426],"iteration":919,"passed_time":0.9007903246,"remaining_time":0.07832959344},
+{"learn":[3.157086603],"iteration":920,"passed_time":0.9015883386,"remaining_time":0.07733493892},
+{"learn":[3.153354154],"iteration":921,"passed_time":0.9022468862,"remaining_time":0.07632891228},
+{"learn":[3.153261317],"iteration":922,"passed_time":0.9028857763,"remaining_time":0.07532199867},
+{"learn":[3.153168454],"iteration":923,"passed_time":0.9035375911,"remaining_time":0.07431694472},
+{"learn":[3.152080399],"iteration":924,"passed_time":0.9043389515,"remaining_time":0.07332477985},
+{"learn":[3.151635144],"iteration":925,"passed_time":0.9050720415,"remaining_time":0.07232757135},
+{"learn":[3.147762655],"iteration":926,"passed_time":0.9058667904,"remaining_time":0.07133578824},
+{"learn":[3.147172317],"iteration":927,"passed_time":0.9067819982,"remaining_time":0.07035377572},
+{"learn":[3.146254125],"iteration":928,"passed_time":0.9076665875,"remaining_time":0.06936956697},
+{"learn":[3.144869828],"iteration":929,"passed_time":0.9084490518,"remaining_time":0.06837788562},
+{"learn":[3.143466218],"iteration":930,"passed_time":0.9091640372,"remaining_time":0.0673816526},
+{"learn":[3.141919643],"iteration":931,"passed_time":0.9099120858,"remaining_time":0.06638843544},
+{"learn":[3.141054135],"iteration":932,"passed_time":0.9106209796,"remaining_time":0.06539293208},
+{"learn":[3.139390417],"iteration":933,"passed_time":0.9113982983,"remaining_time":0.06440287761},
+{"learn":[3.139025283],"iteration":934,"passed_time":0.9121650584,"remaining_time":0.06341254416},
+{"learn":[3.137824183],"iteration":935,"passed_time":0.9129599364,"remaining_time":0.06242461103},
+{"learn":[3.135620453],"iteration":936,"passed_time":0.9138412294,"remaining_time":0.06144290016},
+{"learn":[3.13443178],"iteration":937,"passed_time":0.9146665756,"remaining_time":0.06045770542},
+{"learn":[3.132765713],"iteration":938,"passed_time":0.9153912695,"remaining_time":0.0594663125},
+{"learn":[3.131434124],"iteration":939,"passed_time":0.9161654881,"remaining_time":0.05847864818},
+{"learn":[3.128384262],"iteration":940,"passed_time":0.9169538036,"remaining_time":0.05749232137},
+{"learn":[3.128120455],"iteration":941,"passed_time":0.9177171614,"remaining_time":0.0565048783},
+{"learn":[3.126314615],"iteration":942,"passed_time":0.9186290786,"remaining_time":0.05552689022},
+{"learn":[3.125409666],"iteration":943,"passed_time":0.919507426,"remaining_time":0.05454705069},
+{"learn":[3.123072589],"iteration":944,"passed_time":0.9202685495,"remaining_time":0.05356060341},
+{"learn":[3.122921099],"iteration":945,"passed_time":0.9210585571,"remaining_time":0.05257628127},
+{"learn":[3.122182662],"iteration":946,"passed_time":0.9218115952,"remaining_time":0.05159030047},
+{"learn":[3.120040951],"iteration":947,"passed_time":0.9226150095,"remaining_time":0.05060757436},
+{"learn":[3.118767799],"iteration":948,"passed_time":0.9233493519,"remaining_time":0.04962151417},
+{"learn":[3.118203218],"iteration":949,"passed_time":0.9240890846,"remaining_time":0.04863626761},
+{"learn":[3.116343362],"iteration":950,"passed_time":0.9249471132,"remaining_time":0.04765763254},
+{"learn":[3.11480829],"iteration":951,"passed_time":0.9260795867,"remaining_time":0.04669308841},
+{"learn":[3.112607903],"iteration":952,"passed_time":0.9267959949,"remaining_time":0.04570767236},
+{"learn":[3.111661241],"iteration":953,"passed_time":0.927635448,"remaining_time":0.04472875326},
+{"learn":[3.110249676],"iteration":954,"passed_time":0.9284088249,"remaining_time":0.04374701269},
+{"learn":[3.107333579],"iteration":955,"passed_time":0.9291458625,"remaining_time":0.04276403551},
+{"learn":[3.107149851],"iteration":956,"passed_time":0.9298913762,"remaining_time":0.04178195316},
+{"learn":[3.106867336],"iteration":957,"passed_time":0.9307726083,"remaining_time":0.04080631477},
+{"learn":[3.10364681],"iteration":958,"passed_time":0.9316011815,"remaining_time":0.03982862194},
+{"learn":[3.102703811],"iteration":959,"passed_time":0.9325691291,"remaining_time":0.03885704705},
+{"learn":[3.101469264],"iteration":960,"passed_time":0.9333575849,"remaining_time":0.03787819543},
+{"learn":[3.09863569],"iteration":961,"passed_time":0.934116915,"remaining_time":0.03689858916},
+{"learn":[3.09645939],"iteration":962,"passed_time":0.9348546338,"remaining_time":0.03591861002},
+{"learn":[3.096240186],"iteration":963,"passed_time":0.9355498114,"remaining_time":0.03493754482},
+{"learn":[3.094838828],"iteration":964,"passed_time":0.9362469027,"remaining_time":0.03395714155},
+{"learn":[3.094176802],"iteration":965,"passed_time":0.9369527707,"remaining_time":0.03297763375},
+{"learn":[3.093182279],"iteration":966,"passed_time":0.9376983646,"remaining_time":0.0320000476},
+{"learn":[3.090150687],"iteration":967,"passed_time":0.9384536169,"remaining_time":0.03102326006},
+{"learn":[3.088612829],"iteration":968,"passed_time":0.9393408524,"remaining_time":0.03005115214},
+{"learn":[3.087153684],"iteration":969,"passed_time":0.9401041301,"remaining_time":0.02907538547},
+{"learn":[3.085866843],"iteration":970,"passed_time":0.940956558,"remaining_time":0.02810271903},
+{"learn":[3.082669094],"iteration":971,"passed_time":0.9416987954,"remaining_time":0.02712712579},
+{"learn":[3.081047548],"iteration":972,"passed_time":0.9424532462,"remaining_time":0.02615235113},
+{"learn":[3.079684322],"iteration":973,"passed_time":0.9431753352,"remaining_time":0.02517716501},
+{"learn":[3.07613431],"iteration":974,"passed_time":0.9439061409,"remaining_time":0.02420272156},
+{"learn":[3.074005935],"iteration":975,"passed_time":0.9448484647,"remaining_time":0.02323397864},
+{"learn":[3.072988853],"iteration":976,"passed_time":0.9455877566,"remaining_time":0.02226051013},
+{"learn":[3.072344268],"iteration":977,"passed_time":0.9463700563,"remaining_time":0.02128848797},
+{"learn":[3.070654438],"iteration":978,"passed_time":0.9472095695,"remaining_time":0.02031808065},
+{"learn":[3.069724506],"iteration":979,"passed_time":0.9479371991,"remaining_time":0.01934565712},
+{"learn":[3.067763166],"iteration":980,"passed_time":0.9488508184,"remaining_time":0.01837733491},
+{"learn":[3.066737893],"iteration":981,"passed_time":0.9498562391,"remaining_time":0.01741080683},
+{"learn":[3.065248174],"iteration":982,"passed_time":0.9509666285,"remaining_time":0.01644601494},
+{"learn":[3.063186837],"iteration":983,"passed_time":0.9519131898,"remaining_time":0.01547826325},
+{"learn":[3.062880371],"iteration":984,"passed_time":0.9527262325,"remaining_time":0.01450852131},
+{"learn":[3.061288645],"iteration":985,"passed_time":0.9535030761,"remaining_time":0.01353858323},
+{"learn":[3.059970575],"iteration":986,"passed_time":0.9543421485,"remaining_time":0.01256985606},
+{"learn":[3.059576341],"iteration":987,"passed_time":0.9552484994,"remaining_time":0.01160220849},
+{"learn":[3.058175919],"iteration":988,"passed_time":0.9561627253,"remaining_time":0.01063477248},
+{"learn":[3.056830702],"iteration":989,"passed_time":0.9569452798,"remaining_time":0.009666113937},
+{"learn":[3.056336579],"iteration":990,"passed_time":0.9577918865,"remaining_time":0.008698412693},
+{"learn":[3.055810414],"iteration":991,"passed_time":0.9585501947,"remaining_time":0.007730243506},
+{"learn":[3.055476518],"iteration":992,"passed_time":0.9593350035,"remaining_time":0.006762683811},
+{"learn":[3.053331734],"iteration":993,"passed_time":0.9600861981,"remaining_time":0.005795288922},
+{"learn":[3.050890374],"iteration":994,"passed_time":0.9609256512,"remaining_time":0.004828772116},
+{"learn":[3.04972623],"iteration":995,"passed_time":0.9616608853,"remaining_time":0.003862091909},
+{"learn":[3.047217327],"iteration":996,"passed_time":0.9623554918,"remaining_time":0.002895753737},
+{"learn":[3.047155483],"iteration":997,"passed_time":0.9631011057,"remaining_time":0.001930062336},
+{"learn":[3.04430671],"iteration":998,"passed_time":0.9638549353,"remaining_time":0.0009648197551},
+{"learn":[3.042664195],"iteration":999,"passed_time":0.9646871646,"remaining_time":0}
+]}
\ No newline at end of file
diff --git a/notebook/catboost_info/learn/events.out.tfevents b/notebook/catboost_info/learn/events.out.tfevents
new file mode 100644
index 0000000..e67ee25
Binary files /dev/null and b/notebook/catboost_info/learn/events.out.tfevents differ
diff --git a/notebook/catboost_info/learn_error.tsv b/notebook/catboost_info/learn_error.tsv
new file mode 100644
index 0000000..86227ee
--- /dev/null
+++ b/notebook/catboost_info/learn_error.tsv
@@ -0,0 +1,1001 @@
+iter RMSE
+0 14.59871775
+1 14.22518863
+2 13.8866124
+3 13.52356875
+4 13.18870211
+5 12.9124226
+6 12.60003351
+7 12.32990573
+8 12.0660619
+9 11.77309809
+10 11.49227636
+11 11.26264833
+12 11.04260393
+13 10.79916926
+14 10.5541002
+15 10.31918115
+16 10.10004441
+17 9.894556723
+18 9.690174082
+19 9.506034866
+20 9.338524633
+21 9.170203312
+22 9.010299969
+23 8.843866678
+24 8.690548059
+25 8.555307687
+26 8.413851302
+27 8.29256019
+28 8.162193833
+29 8.040736294
+30 7.921220278
+31 7.809589039
+32 7.699675801
+33 7.60645267
+34 7.498880302
+35 7.401158744
+36 7.306431077
+37 7.223863468
+38 7.143477682
+39 7.062817131
+40 6.990793435
+41 6.931862224
+42 6.858296558
+43 6.786268161
+44 6.717118549
+45 6.652948106
+46 6.589686076
+47 6.531283097
+48 6.471368031
+49 6.416481395
+50 6.369870822
+51 6.325678067
+52 6.275766122
+53 6.224773967
+54 6.182249254
+55 6.139904173
+56 6.100525536
+57 6.062568564
+58 6.030559288
+59 5.997931376
+60 5.964103835
+61 5.933729724
+62 5.901932711
+63 5.873727795
+64 5.846485734
+65 5.820630862
+66 5.793646238
+67 5.765388646
+68 5.747073912
+69 5.722315217
+70 5.699970599
+71 5.682732647
+72 5.663525791
+73 5.642381613
+74 5.621404779
+75 5.602460129
+76 5.587337574
+77 5.572393026
+78 5.558425806
+79 5.541518902
+80 5.526157283
+81 5.511746977
+82 5.504975022
+83 5.493980522
+84 5.480745463
+85 5.464052013
+86 5.449143727
+87 5.438255432
+88 5.425927931
+89 5.412331217
+90 5.400691499
+91 5.391618744
+92 5.380766572
+93 5.372207183
+94 5.362918837
+95 5.348292324
+96 5.339772295
+97 5.331515983
+98 5.323861644
+99 5.313277281
+100 5.30685627
+101 5.29652059
+102 5.288350766
+103 5.27993346
+104 5.271789139
+105 5.262684686
+106 5.251619772
+107 5.241012171
+108 5.232684032
+109 5.224267141
+110 5.216324968
+111 5.211102527
+112 5.206364257
+113 5.196937641
+114 5.190746047
+115 5.181885213
+116 5.178293568
+117 5.170991438
+118 5.166257212
+119 5.161421246
+120 5.158223542
+121 5.15470988
+122 5.146388143
+123 5.139529364
+124 5.134276023
+125 5.128536065
+126 5.123300353
+127 5.116200518
+128 5.108728704
+129 5.104075866
+130 5.100317606
+131 5.095814182
+132 5.092146915
+133 5.085258329
+134 5.079219421
+135 5.076476829
+136 5.072133867
+137 5.067031564
+138 5.061358312
+139 5.056759124
+140 5.050254
+141 5.048376474
+142 5.042603751
+143 5.037477349
+144 5.03230489
+145 5.025976187
+146 5.01952451
+147 5.017569424
+148 5.008962367
+149 5.003880266
+150 4.996387564
+151 4.993361683
+152 4.99005752
+153 4.986908764
+154 4.985207175
+155 4.979003494
+156 4.973142217
+157 4.967056696
+158 4.961460696
+159 4.954240363
+160 4.952320707
+161 4.948337777
+162 4.943228639
+163 4.938545759
+164 4.935330572
+165 4.932051543
+166 4.928964153
+167 4.922860227
+168 4.917668772
+169 4.910365386
+170 4.906457206
+171 4.901996508
+172 4.896816173
+173 4.891123132
+174 4.887630202
+175 4.885259712
+176 4.880659728
+177 4.877299723
+178 4.874038772
+179 4.86943698
+180 4.861268711
+181 4.858673056
+182 4.854036207
+183 4.85130244
+184 4.847510084
+185 4.845691673
+186 4.842058646
+187 4.838623675
+188 4.834602161
+189 4.830858976
+190 4.827590511
+191 4.822246226
+192 4.816686395
+193 4.814797121
+194 4.811639392
+195 4.804813432
+196 4.80251613
+197 4.800087884
+198 4.794773135
+199 4.791664833
+200 4.785989873
+201 4.782387142
+202 4.778623704
+203 4.775772178
+204 4.77023101
+205 4.764496689
+206 4.763138716
+207 4.758053283
+208 4.755063788
+209 4.752465267
+210 4.748067377
+211 4.744163298
+212 4.736670896
+213 4.73349255
+214 4.731864595
+215 4.728398311
+216 4.723865975
+217 4.723483365
+218 4.72095416
+219 4.716173382
+220 4.710563974
+221 4.707160263
+222 4.70408351
+223 4.702501831
+224 4.700269738
+225 4.695346302
+226 4.689769299
+227 4.687919514
+228 4.682982074
+229 4.679578702
+230 4.675751423
+231 4.672710726
+232 4.6690533
+233 4.667595702
+234 4.664241291
+235 4.662246999
+236 4.658668443
+237 4.658017572
+238 4.657656705
+239 4.653242871
+240 4.6507302
+241 4.647671336
+242 4.645506007
+243 4.641297906
+244 4.63798107
+245 4.635062318
+246 4.631606017
+247 4.630215494
+248 4.62729814
+249 4.624691756
+250 4.621840053
+251 4.619602091
+252 4.613584029
+253 4.6119388
+254 4.60870702
+255 4.604771557
+256 4.604231277
+257 4.600750354
+258 4.596488253
+259 4.59470784
+260 4.588818005
+261 4.585054174
+262 4.581471435
+263 4.577555199
+264 4.57457145
+265 4.573029224
+266 4.571326203
+267 4.571019224
+268 4.565766631
+269 4.563383471
+270 4.558165805
+271 4.55629209
+272 4.549383848
+273 4.546227503
+274 4.540620977
+275 4.532898237
+276 4.529757367
+277 4.52579294
+278 4.521572155
+279 4.518818099
+280 4.514012334
+281 4.508331416
+282 4.506038537
+283 4.505805643
+284 4.501550352
+285 4.494692643
+286 4.489330245
+287 4.484826955
+288 4.478285428
+289 4.475311671
+290 4.471581298
+291 4.469164956
+292 4.462068024
+293 4.458540976
+294 4.455757458
+295 4.453027414
+296 4.450659338
+297 4.444696901
+298 4.442052813
+299 4.440036756
+300 4.435017051
+301 4.429962125
+302 4.427666256
+303 4.425030004
+304 4.422588771
+305 4.418936667
+306 4.416887976
+307 4.413773354
+308 4.411129391
+309 4.40850819
+310 4.404880292
+311 4.404593827
+312 4.402139942
+313 4.400284725
+314 4.395805521
+315 4.392838833
+316 4.389213061
+317 4.3861981
+318 4.385054234
+319 4.379364607
+320 4.378387619
+321 4.375816727
+322 4.374600202
+323 4.37098897
+324 4.367418484
+325 4.363584638
+326 4.360770706
+327 4.358675808
+328 4.354228195
+329 4.353773425
+330 4.351648009
+331 4.348209927
+332 4.345852733
+333 4.34237339
+334 4.340814362
+335 4.339707068
+336 4.335430786
+337 4.33521887
+338 4.328507238
+339 4.326140732
+340 4.323785636
+341 4.320632534
+342 4.31973724
+343 4.318000924
+344 4.312713628
+345 4.308220789
+346 4.305890947
+347 4.305137856
+348 4.304787172
+349 4.30350134
+350 4.30293809
+351 4.299548459
+352 4.294768408
+353 4.294581479
+354 4.292551604
+355 4.288628894
+356 4.287802767
+357 4.284566905
+358 4.27890232
+359 4.276938023
+360 4.273425094
+361 4.269726505
+362 4.265565857
+363 4.262117173
+364 4.259185148
+365 4.257668507
+366 4.253432436
+367 4.250216667
+368 4.24514828
+369 4.244015772
+370 4.240329192
+371 4.236718014
+372 4.233495944
+373 4.230357491
+374 4.227381215
+375 4.226169067
+376 4.225963861
+377 4.224346548
+378 4.222595381
+379 4.219700938
+380 4.216356207
+381 4.214326494
+382 4.212901398
+383 4.211331091
+384 4.208624791
+385 4.204659106
+386 4.202968852
+387 4.197261935
+388 4.196934403
+389 4.192479929
+390 4.190243116
+391 4.185852431
+392 4.180967944
+393 4.178283162
+394 4.176341157
+395 4.176041504
+396 4.175564513
+397 4.170830274
+398 4.167804808
+399 4.165860548
+400 4.160950571
+401 4.158544115
+402 4.154448767
+403 4.15197457
+404 4.149562679
+405 4.149327961
+406 4.147444889
+407 4.147254809
+408 4.144589165
+409 4.141691034
+410 4.138893468
+411 4.136964597
+412 4.133773523
+413 4.131363444
+414 4.130228592
+415 4.12884186
+416 4.12413494
+417 4.119422508
+418 4.117038244
+419 4.116067631
+420 4.110343455
+421 4.105604544
+422 4.103390131
+423 4.096724402
+424 4.093431279
+425 4.091412744
+426 4.091192901
+427 4.088994581
+428 4.087845355
+429 4.083650279
+430 4.079840652
+431 4.075707828
+432 4.071345409
+433 4.067460475
+434 4.064914749
+435 4.063823175
+436 4.058898471
+437 4.054120355
+438 4.052715901
+439 4.052114167
+440 4.051377267
+441 4.049275336
+442 4.047099198
+443 4.044348685
+444 4.042822379
+445 4.041258611
+446 4.040044254
+447 4.036860137
+448 4.036372284
+449 4.03368231
+450 4.032439519
+451 4.032008634
+452 4.030034932
+453 4.028173412
+454 4.023806097
+455 4.020239186
+456 4.017384838
+457 4.016468229
+458 4.014530169
+459 4.012884822
+460 4.008924707
+461 4.008286778
+462 4.006444202
+463 4.003284363
+464 3.999811484
+465 3.997483319
+466 3.99708333
+467 3.995860263
+468 3.994131111
+469 3.993125499
+470 3.992954084
+471 3.990635743
+472 3.986678254
+473 3.986393291
+474 3.986152671
+475 3.985596662
+476 3.983853457
+477 3.983263928
+478 3.980067202
+479 3.978115407
+480 3.972661644
+481 3.969938254
+482 3.968211434
+483 3.966113368
+484 3.962246044
+485 3.961319703
+486 3.96078191
+487 3.958913633
+488 3.957428286
+489 3.952641965
+490 3.951486786
+491 3.94938344
+492 3.947297924
+493 3.946284886
+494 3.943288204
+495 3.943076488
+496 3.942347078
+497 3.940251541
+498 3.939011019
+499 3.938760512
+500 3.934522727
+501 3.930091193
+502 3.927671752
+503 3.927280041
+504 3.925987561
+505 3.921645957
+506 3.920333743
+507 3.918659461
+508 3.916124385
+509 3.913849268
+510 3.912826119
+511 3.910034145
+512 3.90792379
+513 3.907823851
+514 3.904527401
+515 3.903378283
+516 3.902170135
+517 3.899435429
+518 3.897497505
+519 3.896426119
+520 3.896044669
+521 3.892795942
+522 3.892413888
+523 3.891738985
+524 3.88822057
+525 3.883837053
+526 3.881769742
+527 3.880356898
+528 3.879250273
+529 3.877174493
+530 3.875854201
+531 3.873189396
+532 3.871583368
+533 3.869622679
+534 3.866860164
+535 3.864498444
+536 3.861416322
+537 3.860265769
+538 3.859328725
+539 3.858521278
+540 3.85599111
+541 3.852379816
+542 3.851327537
+543 3.847854898
+544 3.847083414
+545 3.845397429
+546 3.841933528
+547 3.840996474
+548 3.838355966
+549 3.83342799
+550 3.828161535
+551 3.823502399
+552 3.820068862
+553 3.817951642
+554 3.815785958
+555 3.81503012
+556 3.813529315
+557 3.808881326
+558 3.808740434
+559 3.80714352
+560 3.80573346
+561 3.803370052
+562 3.803215211
+563 3.801309667
+564 3.800003847
+565 3.798026138
+566 3.794745847
+567 3.794312041
+568 3.792205926
+569 3.788991061
+570 3.787391572
+571 3.7826445
+572 3.781700331
+573 3.780045374
+574 3.775462644
+575 3.773711943
+576 3.772415806
+577 3.770170875
+578 3.765166479
+579 3.763976102
+580 3.760761708
+581 3.758155662
+582 3.756844548
+583 3.753098923
+584 3.751618946
+585 3.751398464
+586 3.749920103
+587 3.748237465
+588 3.746021536
+589 3.74417648
+590 3.738788389
+591 3.736021611
+592 3.734546151
+593 3.733527479
+594 3.733026392
+595 3.730314752
+596 3.727342596
+597 3.725459604
+598 3.723158842
+599 3.722362756
+600 3.721443615
+601 3.720743486
+602 3.720215334
+603 3.719436563
+604 3.715046574
+605 3.71443396
+606 3.712938941
+607 3.712814764
+608 3.71235348
+609 3.711223749
+610 3.710755648
+611 3.708668039
+612 3.705623591
+613 3.704045802
+614 3.699915209
+615 3.696182221
+616 3.694263278
+617 3.693810229
+618 3.690900932
+619 3.688020895
+620 3.685491894
+621 3.684328128
+622 3.680640153
+623 3.678932783
+624 3.674167041
+625 3.672200976
+626 3.670606604
+627 3.665506042
+628 3.664214007
+629 3.66261643
+630 3.662118449
+631 3.660871366
+632 3.656695243
+633 3.654497801
+634 3.654189134
+635 3.653957699
+636 3.651920725
+637 3.65106705
+638 3.650612844
+639 3.649884732
+640 3.646276182
+641 3.645808194
+642 3.645042989
+643 3.639864499
+644 3.637318478
+645 3.636344905
+646 3.634754643
+647 3.630724975
+648 3.629408252
+649 3.62790646
+650 3.627388973
+651 3.625163557
+652 3.623701985
+653 3.622342639
+654 3.621130639
+655 3.619125665
+656 3.618878783
+657 3.616207429
+658 3.61206486
+659 3.611955873
+660 3.610713743
+661 3.610044025
+662 3.607342669
+663 3.602510618
+664 3.600492392
+665 3.597171065
+666 3.594358798
+667 3.593945251
+668 3.593607748
+669 3.592238714
+670 3.590144654
+671 3.587151536
+672 3.586070865
+673 3.585102746
+674 3.584362847
+675 3.581407561
+676 3.57919422
+677 3.577632204
+678 3.573911195
+679 3.573408216
+680 3.571076482
+681 3.568177107
+682 3.564824621
+683 3.562475026
+684 3.561226889
+685 3.559383467
+686 3.555209766
+687 3.55345383
+688 3.552300968
+689 3.551253986
+690 3.549807725
+691 3.547992926
+692 3.545438607
+693 3.543313763
+694 3.542962896
+695 3.539800465
+696 3.53953187
+697 3.536332425
+698 3.534993327
+699 3.531637011
+700 3.531040284
+701 3.529973872
+702 3.527325183
+703 3.527200815
+704 3.523459911
+705 3.522729934
+706 3.522260582
+707 3.518641591
+708 3.516856405
+709 3.515083413
+710 3.514671214
+711 3.512617621
+712 3.510747971
+713 3.508149266
+714 3.504557165
+715 3.501367208
+716 3.497593362
+717 3.496291169
+718 3.49330374
+719 3.490044385
+720 3.488891789
+721 3.486869081
+722 3.486303638
+723 3.486035862
+724 3.482668951
+725 3.47820549
+726 3.474392283
+727 3.472268163
+728 3.471209164
+729 3.470049971
+730 3.469078654
+731 3.468643292
+732 3.468134848
+733 3.467820182
+734 3.465776156
+735 3.463037608
+736 3.45965637
+737 3.457275091
+738 3.455522955
+739 3.451270508
+740 3.450978947
+741 3.450608492
+742 3.448122004
+743 3.445646714
+744 3.44411263
+745 3.443264164
+746 3.439521363
+747 3.436809225
+748 3.435509465
+749 3.434450277
+750 3.431786753
+751 3.430150302
+752 3.42696281
+753 3.426870334
+754 3.425200309
+755 3.423383783
+756 3.422752979
+757 3.420845924
+758 3.418917862
+759 3.417095735
+760 3.414391848
+761 3.41426711
+762 3.411976013
+763 3.408614844
+764 3.407906721
+765 3.407494015
+766 3.406287128
+767 3.404600442
+768 3.404012662
+769 3.400398762
+770 3.399737714
+771 3.399185251
+772 3.397245411
+773 3.396229831
+774 3.394002836
+775 3.389617243
+776 3.385426488
+777 3.385072258
+778 3.383842366
+779 3.380110746
+780 3.378595218
+781 3.377371219
+782 3.375814782
+783 3.374195887
+784 3.373704309
+785 3.372971757
+786 3.371565136
+787 3.3700309
+788 3.368186663
+789 3.366710398
+790 3.364598042
+791 3.36348442
+792 3.362001759
+793 3.361580401
+794 3.359543675
+795 3.35766119
+796 3.354592969
+797 3.350985986
+798 3.349589624
+799 3.349110856
+800 3.345315441
+801 3.34397474
+802 3.343800902
+803 3.342329465
+804 3.34220347
+805 3.341279219
+806 3.337329521
+807 3.336708453
+808 3.333252703
+809 3.332186769
+810 3.330594851
+811 3.327867442
+812 3.327563111
+813 3.326308994
+814 3.326249879
+815 3.322336238
+816 3.320491154
+817 3.320434271
+818 3.319609638
+819 3.316182682
+820 3.313126612
+821 3.311222803
+822 3.309627335
+823 3.307974895
+824 3.307321505
+825 3.306759087
+826 3.30484037
+827 3.30201994
+828 3.299302297
+829 3.298132671
+830 3.296976183
+831 3.293144745
+832 3.290284404
+833 3.288285745
+834 3.286662667
+835 3.285692682
+836 3.284565611
+837 3.283897383
+838 3.280712855
+839 3.280468341
+840 3.277814895
+841 3.276316385
+842 3.27557063
+843 3.27499628
+844 3.273569958
+845 3.269665595
+846 3.267984685
+847 3.267702508
+848 3.266671924
+849 3.265359825
+850 3.2618983
+851 3.260456253
+852 3.258389147
+853 3.258108469
+854 3.256424936
+855 3.254817983
+856 3.253898449
+857 3.253023652
+858 3.252845542
+859 3.252316026
+860 3.24975301
+861 3.249151075
+862 3.246257135
+863 3.243826471
+864 3.243190653
+865 3.24008797
+866 3.240036811
+867 3.238676314
+868 3.237848782
+869 3.236405498
+870 3.233378068
+871 3.233169169
+872 3.232434885
+873 3.229978115
+874 3.229648848
+875 3.227208761
+876 3.226258869
+877 3.225331995
+878 3.221968268
+879 3.221166317
+880 3.220047503
+881 3.21982781
+882 3.216693405
+883 3.214798761
+884 3.214395085
+885 3.213470696
+886 3.211595017
+887 3.210965255
+888 3.209413583
+889 3.208331683
+890 3.207110711
+891 3.204519413
+892 3.201421296
+893 3.200691259
+894 3.200485067
+895 3.197467568
+896 3.195838544
+897 3.195671746
+898 3.194213094
+899 3.192884691
+900 3.188364239
+901 3.185219478
+902 3.184120387
+903 3.183725321
+904 3.181264554
+905 3.180741589
+906 3.179782639
+907 3.176377564
+908 3.174078182
+909 3.171242379
+910 3.170421012
+911 3.170087224
+912 3.167303059
+913 3.16705966
+914 3.165667683
+915 3.164689733
+916 3.163311455
+917 3.159425016
+918 3.159327058
+919 3.15819426
+920 3.157086603
+921 3.153354154
+922 3.153261317
+923 3.153168454
+924 3.152080399
+925 3.151635144
+926 3.147762655
+927 3.147172317
+928 3.146254125
+929 3.144869828
+930 3.143466218
+931 3.141919643
+932 3.141054135
+933 3.139390417
+934 3.139025283
+935 3.137824183
+936 3.135620453
+937 3.13443178
+938 3.132765713
+939 3.131434124
+940 3.128384262
+941 3.128120455
+942 3.126314615
+943 3.125409666
+944 3.123072589
+945 3.122921099
+946 3.122182662
+947 3.120040951
+948 3.118767799
+949 3.118203218
+950 3.116343362
+951 3.11480829
+952 3.112607903
+953 3.111661241
+954 3.110249676
+955 3.107333579
+956 3.107149851
+957 3.106867336
+958 3.10364681
+959 3.102703811
+960 3.101469264
+961 3.09863569
+962 3.09645939
+963 3.096240186
+964 3.094838828
+965 3.094176802
+966 3.093182279
+967 3.090150687
+968 3.088612829
+969 3.087153684
+970 3.085866843
+971 3.082669094
+972 3.081047548
+973 3.079684322
+974 3.07613431
+975 3.074005935
+976 3.072988853
+977 3.072344268
+978 3.070654438
+979 3.069724506
+980 3.067763166
+981 3.066737893
+982 3.065248174
+983 3.063186837
+984 3.062880371
+985 3.061288645
+986 3.059970575
+987 3.059576341
+988 3.058175919
+989 3.056830702
+990 3.056336579
+991 3.055810414
+992 3.055476518
+993 3.053331734
+994 3.050890374
+995 3.04972623
+996 3.047217327
+997 3.047155483
+998 3.04430671
+999 3.042664195
diff --git a/notebook/catboost_info/time_left.tsv b/notebook/catboost_info/time_left.tsv
new file mode 100644
index 0000000..7971d2a
--- /dev/null
+++ b/notebook/catboost_info/time_left.tsv
@@ -0,0 +1,1001 @@
+iter Passed Remaining
+0 147 147640
+1 148 74209
+2 149 49696
+3 150 37425
+4 151 30082
+5 152 25201
+6 153 21716
+7 154 19099
+8 154 17048
+9 155 15408
+10 156 14059
+11 157 12935
+12 157 11993
+13 158 11186
+14 159 10486
+15 160 9875
+16 161 9332
+17 162 8844
+18 162 8412
+19 163 8035
+20 165 7711
+21 166 7395
+22 167 7110
+23 168 6842
+24 169 6592
+25 169 6361
+26 170 6155
+27 171 5962
+28 172 5775
+29 173 5600
+30 174 5439
+31 174 5289
+32 175 5147
+33 176 5012
+34 177 4884
+35 177 4766
+36 178 4651
+37 179 4542
+38 180 4440
+39 180 4342
+40 181 4253
+41 182 4170
+42 184 4096
+43 184 4017
+44 185 3941
+45 186 3871
+46 187 3801
+47 188 3733
+48 189 3669
+49 189 3607
+50 190 3546
+51 191 3488
+52 192 3431
+53 192 3376
+54 193 3324
+55 194 3273
+56 194 3223
+57 195 3177
+58 196 3134
+59 197 3093
+60 198 3050
+61 198 3009
+62 199 2969
+63 200 2931
+64 201 2894
+65 202 2865
+66 203 2830
+67 204 2797
+68 204 2764
+69 205 2731
+70 206 2700
+71 207 2671
+72 208 2642
+73 209 2616
+74 209 2587
+75 210 2560
+76 211 2533
+77 212 2507
+78 212 2481
+79 213 2457
+80 214 2434
+81 215 2410
+82 215 2383
+83 216 2361
+84 217 2339
+85 218 2317
+86 218 2297
+87 219 2277
+88 220 2257
+89 221 2238
+90 222 2220
+91 222 2200
+92 223 2181
+93 224 2163
+94 225 2148
+95 226 2131
+96 227 2117
+97 228 2101
+98 229 2085
+99 229 2069
+100 230 2053
+101 231 2037
+102 232 2021
+103 232 2006
+104 233 1991
+105 234 1977
+106 235 1962
+107 235 1948
+108 236 1935
+109 237 1921
+110 238 1910
+111 239 1897
+112 240 1884
+113 241 1873
+114 241 1861
+115 243 1853
+116 244 1841
+117 245 1831
+118 245 1819
+119 246 1808
+120 247 1797
+121 247 1784
+122 248 1773
+123 249 1764
+124 250 1753
+125 251 1743
+126 251 1732
+127 252 1722
+128 253 1712
+129 254 1704
+130 255 1694
+131 256 1684
+132 257 1675
+133 257 1666
+134 258 1658
+135 259 1648
+136 260 1640
+137 261 1631
+138 261 1622
+139 262 1614
+140 263 1607
+141 264 1597
+142 265 1589
+143 266 1582
+144 267 1574
+145 267 1566
+146 268 1558
+147 269 1550
+148 270 1542
+149 270 1535
+150 271 1527
+151 272 1520
+152 273 1513
+153 274 1506
+154 275 1499
+155 275 1492
+156 276 1485
+157 277 1478
+158 278 1471
+159 279 1464
+160 279 1457
+161 280 1451
+162 281 1445
+163 282 1439
+164 283 1433
+165 283 1426
+166 284 1419
+167 285 1413
+168 286 1407
+169 287 1401
+170 287 1394
+171 288 1388
+172 289 1382
+173 289 1376
+174 290 1370
+175 291 1364
+176 292 1361
+177 293 1356
+178 294 1350
+179 295 1344
+180 295 1339
+181 296 1333
+182 297 1328
+183 298 1322
+184 299 1317
+185 299 1312
+186 300 1307
+187 301 1302
+188 302 1297
+189 303 1292
+190 304 1287
+191 304 1282
+192 305 1277
+193 306 1273
+194 307 1268
+195 308 1264
+196 309 1260
+197 309 1255
+198 310 1250
+199 311 1245
+200 312 1241
+201 313 1237
+202 313 1232
+203 314 1228
+204 315 1224
+205 316 1219
+206 317 1215
+207 318 1211
+208 318 1206
+209 319 1202
+210 320 1198
+211 321 1193
+212 321 1189
+213 322 1185
+214 323 1181
+215 324 1177
+216 325 1173
+217 325 1169
+218 326 1165
+219 327 1161
+220 328 1157
+221 329 1153
+222 329 1149
+223 330 1145
+224 331 1141
+225 332 1137
+226 332 1133
+227 333 1130
+228 334 1126
+229 335 1122
+230 336 1119
+231 337 1116
+232 338 1112
+233 338 1109
+234 339 1105
+235 340 1102
+236 341 1098
+237 341 1094
+238 342 1091
+239 343 1087
+240 344 1084
+241 345 1081
+242 346 1077
+243 346 1074
+244 347 1071
+245 348 1067
+246 349 1064
+247 350 1061
+248 350 1058
+249 351 1054
+250 352 1051
+251 353 1048
+252 354 1045
+253 354 1042
+254 355 1039
+255 356 1035
+256 357 1032
+257 357 1029
+258 358 1026
+259 359 1022
+260 360 1019
+261 360 1016
+262 361 1013
+263 362 1009
+264 363 1007
+265 363 1003
+266 364 1000
+267 365 997
+268 366 995
+269 367 992
+270 368 990
+271 368 987
+272 369 984
+273 370 981
+274 371 979
+275 372 976
+276 372 973
+277 373 970
+278 374 967
+279 375 964
+280 376 963
+281 377 960
+282 377 957
+283 378 954
+284 379 952
+285 380 949
+286 381 946
+287 381 944
+288 382 941
+289 383 938
+290 384 935
+291 384 933
+292 385 930
+293 386 928
+294 387 925
+295 388 923
+296 388 920
+297 389 918
+298 390 915
+299 391 913
+300 392 911
+301 393 908
+302 394 906
+303 394 903
+304 395 901
+305 396 898
+306 397 896
+307 398 894
+308 399 892
+309 400 891
+310 401 888
+311 402 886
+312 403 884
+313 403 882
+314 404 879
+315 405 877
+316 406 874
+317 406 872
+318 407 869
+319 408 867
+320 408 865
+321 409 862
+322 410 860
+323 411 858
+324 412 856
+325 413 853
+326 413 851
+327 414 849
+328 415 846
+329 416 844
+330 416 842
+331 417 840
+332 418 838
+333 419 836
+334 420 834
+335 420 831
+336 421 829
+337 422 827
+338 423 825
+339 424 823
+340 424 820
+341 425 818
+342 426 816
+343 426 814
+344 427 811
+345 428 809
+346 429 808
+347 430 807
+348 431 805
+349 432 803
+350 433 801
+351 434 799
+352 434 797
+353 435 795
+354 436 793
+355 437 791
+356 438 788
+357 438 786
+358 439 784
+359 440 782
+360 441 781
+361 442 778
+362 442 776
+363 443 774
+364 444 772
+365 445 770
+366 445 769
+367 446 767
+368 447 765
+369 448 764
+370 449 762
+371 450 760
+372 451 758
+373 452 756
+374 453 755
+375 453 753
+376 454 751
+377 455 749
+378 456 747
+379 457 746
+380 457 744
+381 458 742
+382 459 740
+383 460 738
+384 461 737
+385 462 735
+386 462 733
+387 463 731
+388 464 729
+389 465 727
+390 465 725
+391 466 723
+392 467 721
+393 468 720
+394 469 718
+395 469 716
+396 470 714
+397 471 713
+398 472 711
+399 473 709
+400 473 707
+401 474 706
+402 475 704
+403 476 702
+404 477 700
+405 477 698
+406 478 697
+407 479 696
+408 480 694
+409 481 692
+410 481 690
+411 482 688
+412 483 687
+413 484 685
+414 485 683
+415 485 682
+416 486 680
+417 487 679
+418 488 677
+419 489 675
+420 489 673
+421 490 672
+422 491 670
+423 492 668
+424 493 667
+425 493 665
+426 494 663
+427 495 662
+428 496 660
+429 497 658
+430 497 657
+431 498 655
+432 499 653
+433 499 652
+434 500 650
+435 501 648
+436 502 646
+437 503 645
+438 503 643
+439 504 642
+440 505 640
+441 506 639
+442 507 637
+443 507 636
+444 508 634
+445 509 632
+446 510 631
+447 510 629
+448 511 628
+449 512 626
+450 513 624
+451 514 623
+452 515 621
+453 515 620
+454 516 618
+455 517 617
+456 518 616
+457 519 614
+458 519 612
+459 520 611
+460 521 609
+461 522 608
+462 523 607
+463 525 606
+464 526 605
+465 526 603
+466 527 602
+467 528 600
+468 529 599
+469 529 597
+470 530 596
+471 531 594
+472 532 593
+473 533 592
+474 534 591
+475 535 589
+476 536 588
+477 537 586
+478 537 585
+479 538 583
+480 539 582
+481 540 580
+482 541 579
+483 541 577
+484 542 576
+485 543 574
+486 544 573
+487 545 572
+488 546 570
+489 547 569
+490 547 568
+491 548 566
+492 549 565
+493 550 563
+494 551 562
+495 551 560
+496 552 559
+497 554 558
+498 555 557
+499 555 555
+500 556 554
+501 557 553
+502 558 551
+503 559 550
+504 559 548
+505 560 547
+506 561 545
+507 562 544
+508 563 543
+509 564 541
+510 564 540
+511 565 539
+512 566 537
+513 567 536
+514 568 535
+515 569 533
+516 569 532
+517 570 531
+518 571 529
+519 572 528
+520 572 526
+521 573 525
+522 574 523
+523 575 522
+524 576 521
+525 576 519
+526 577 518
+527 578 517
+528 579 515
+529 580 514
+530 580 513
+531 581 511
+532 582 510
+533 583 509
+534 584 507
+535 585 506
+536 586 505
+537 587 504
+538 587 502
+539 588 501
+540 589 500
+541 590 499
+542 591 497
+543 592 496
+544 593 495
+545 593 493
+546 594 492
+547 595 491
+548 596 489
+549 597 488
+550 597 487
+551 598 485
+552 599 484
+553 600 483
+554 600 481
+555 601 480
+556 602 479
+557 603 477
+558 604 476
+559 604 475
+560 605 473
+561 606 472
+562 606 471
+563 607 469
+564 608 468
+565 609 467
+566 609 465
+567 610 464
+568 611 463
+569 612 461
+570 613 460
+571 613 459
+572 614 458
+573 615 456
+574 616 455
+575 617 454
+576 617 452
+577 618 451
+578 619 450
+579 620 449
+580 621 447
+581 621 446
+582 622 445
+583 623 444
+584 624 442
+585 624 441
+586 625 440
+587 626 439
+588 627 438
+589 628 437
+590 629 435
+591 630 434
+592 631 433
+593 632 431
+594 632 430
+595 633 429
+596 634 428
+597 635 427
+598 636 425
+599 636 424
+600 638 423
+601 639 422
+602 639 421
+603 640 420
+604 641 418
+605 642 417
+606 642 416
+607 643 414
+608 644 413
+609 645 412
+610 645 411
+611 647 410
+612 647 409
+613 648 407
+614 649 406
+615 650 405
+616 651 404
+617 651 402
+618 652 401
+619 653 400
+620 654 399
+621 655 398
+622 656 396
+623 656 395
+624 657 394
+625 658 393
+626 659 392
+627 660 390
+628 660 389
+629 661 388
+630 662 387
+631 663 386
+632 663 384
+633 664 383
+634 665 382
+635 666 381
+636 667 380
+637 667 378
+638 668 377
+639 669 376
+640 670 375
+641 671 374
+642 671 373
+643 673 372
+644 673 370
+645 674 369
+646 675 368
+647 676 367
+648 677 366
+649 678 365
+650 679 364
+651 679 362
+652 680 361
+653 681 360
+654 682 359
+655 682 358
+656 683 356
+657 684 355
+658 685 354
+659 686 353
+660 687 352
+661 687 351
+662 688 350
+663 689 348
+664 690 348
+665 691 346
+666 692 345
+667 693 344
+668 694 343
+669 695 342
+670 695 341
+671 696 340
+672 697 338
+673 698 337
+674 699 336
+675 699 335
+676 700 334
+677 701 333
+678 702 331
+679 702 330
+680 703 329
+681 704 328
+682 705 327
+683 705 326
+684 706 325
+685 707 323
+686 708 322
+687 709 321
+688 710 320
+689 711 319
+690 711 318
+691 712 317
+692 713 316
+693 714 315
+694 715 313
+695 716 312
+696 716 311
+697 717 310
+698 718 309
+699 719 308
+700 720 307
+701 720 306
+702 721 304
+703 722 303
+704 723 302
+705 723 301
+706 724 300
+707 725 299
+708 726 298
+709 727 297
+710 728 296
+711 729 295
+712 730 293
+713 730 292
+714 731 291
+715 732 290
+716 733 289
+717 734 288
+718 734 287
+719 735 286
+720 736 285
+721 737 283
+722 738 282
+723 739 281
+724 739 280
+725 740 279
+726 741 278
+727 742 277
+728 743 276
+729 744 275
+730 744 274
+731 745 272
+732 746 271
+733 747 270
+734 748 269
+735 748 268
+736 749 267
+737 750 266
+738 751 265
+739 752 264
+740 753 263
+741 753 262
+742 754 260
+743 755 259
+744 755 258
+745 756 257
+746 757 256
+747 758 255
+748 759 254
+749 759 253
+750 760 252
+751 761 251
+752 762 250
+753 763 249
+754 764 247
+755 764 246
+756 765 245
+757 766 244
+758 767 243
+759 768 242
+760 769 241
+761 770 240
+762 770 239
+763 771 238
+764 772 237
+765 773 236
+766 774 235
+767 774 234
+768 775 232
+769 776 231
+770 777 230
+771 778 229
+772 778 228
+773 779 227
+774 780 226
+775 781 225
+776 782 224
+777 783 223
+778 784 222
+779 785 221
+780 785 220
+781 786 219
+782 787 218
+783 788 217
+784 789 216
+785 790 215
+786 791 214
+787 791 213
+788 792 211
+789 793 210
+790 794 209
+791 794 208
+792 795 207
+793 796 206
+794 797 205
+795 797 204
+796 798 203
+797 799 202
+798 800 201
+799 801 200
+800 802 199
+801 803 198
+802 804 197
+803 805 196
+804 806 195
+805 806 194
+806 807 193
+807 808 192
+808 809 191
+809 810 190
+810 811 189
+811 812 188
+812 812 186
+813 813 185
+814 814 184
+815 815 183
+816 816 182
+817 817 181
+818 818 180
+819 818 179
+820 819 178
+821 820 177
+822 821 176
+823 821 175
+824 822 174
+825 823 173
+826 824 172
+827 825 171
+828 826 170
+829 826 169
+830 827 168
+831 828 167
+832 829 166
+833 830 165
+834 830 164
+835 831 163
+836 832 162
+837 833 161
+838 834 160
+839 834 159
+840 835 157
+841 836 156
+842 837 155
+843 838 154
+844 838 153
+845 839 152
+846 840 151
+847 841 150
+848 842 149
+849 843 148
+850 843 147
+851 844 146
+852 845 145
+853 846 144
+854 847 143
+855 848 142
+856 848 141
+857 849 140
+858 850 139
+859 851 138
+860 852 137
+861 853 136
+862 854 135
+863 855 134
+864 856 133
+865 856 132
+866 857 131
+867 858 130
+868 859 129
+869 859 128
+870 860 127
+871 861 126
+872 862 125
+873 863 124
+874 864 123
+875 865 122
+876 866 121
+877 866 120
+878 867 119
+879 868 118
+880 869 117
+881 870 116
+882 870 115
+883 871 114
+884 872 113
+885 873 112
+886 874 111
+887 874 110
+888 875 109
+889 876 108
+890 877 107
+891 878 106
+892 879 105
+893 879 104
+894 880 103
+895 881 102
+896 882 101
+897 882 100
+898 883 99
+899 884 98
+900 885 97
+901 886 96
+902 886 95
+903 887 94
+904 888 93
+905 889 92
+906 890 91
+907 890 90
+908 891 89
+909 892 88
+910 893 87
+911 894 86
+912 895 85
+913 895 84
+914 896 83
+915 897 82
+916 898 81
+917 899 80
+918 899 79
+919 900 78
+920 901 77
+921 902 76
+922 902 75
+923 903 74
+924 904 73
+925 905 72
+926 905 71
+927 906 70
+928 907 69
+929 908 68
+930 909 67
+931 909 66
+932 910 65
+933 911 64
+934 912 63
+935 912 62
+936 913 61
+937 914 60
+938 915 59
+939 916 58
+940 916 57
+941 917 56
+942 918 55
+943 919 54
+944 920 53
+945 921 52
+946 921 51
+947 922 50
+948 923 49
+949 924 48
+950 924 47
+951 926 46
+952 926 45
+953 927 44
+954 928 43
+955 929 42
+956 929 41
+957 930 40
+958 931 39
+959 932 38
+960 933 37
+961 934 36
+962 934 35
+963 935 34
+964 936 33
+965 936 32
+966 937 32
+967 938 31
+968 939 30
+969 940 29
+970 940 28
+971 941 27
+972 942 26
+973 943 25
+974 943 24
+975 944 23
+976 945 22
+977 946 21
+978 947 20
+979 947 19
+980 948 18
+981 949 17
+982 950 16
+983 951 15
+984 952 14
+985 953 13
+986 954 12
+987 955 11
+988 956 10
+989 956 9
+990 957 8
+991 958 7
+992 959 6
+993 960 5
+994 960 4
+995 961 3
+996 962 2
+997 963 1
+998 963 0
+999 964 0
diff --git a/notebook/data/stud.csv b/notebook/data/stud.csv
new file mode 100644
index 0000000..28c71b4
--- /dev/null
+++ b/notebook/data/stud.csv
@@ -0,0 +1,1001 @@
+"gender","race_ethnicity","parental_level_of_education","lunch","test_preparation_course","math_score","reading_score","writing_score"
+"female","group B","bachelor's degree","standard","none","72","72","74"
+"female","group C","some college","standard","completed","69","90","88"
+"female","group B","master's degree","standard","none","90","95","93"
+"male","group A","associate's degree","free/reduced","none","47","57","44"
+"male","group C","some college","standard","none","76","78","75"
+"female","group B","associate's degree","standard","none","71","83","78"
+"female","group B","some college","standard","completed","88","95","92"
+"male","group B","some college","free/reduced","none","40","43","39"
+"male","group D","high school","free/reduced","completed","64","64","67"
+"female","group B","high school","free/reduced","none","38","60","50"
+"male","group C","associate's degree","standard","none","58","54","52"
+"male","group D","associate's degree","standard","none","40","52","43"
+"female","group B","high school","standard","none","65","81","73"
+"male","group A","some college","standard","completed","78","72","70"
+"female","group A","master's degree","standard","none","50","53","58"
+"female","group C","some high school","standard","none","69","75","78"
+"male","group C","high school","standard","none","88","89","86"
+"female","group B","some high school","free/reduced","none","18","32","28"
+"male","group C","master's degree","free/reduced","completed","46","42","46"
+"female","group C","associate's degree","free/reduced","none","54","58","61"
+"male","group D","high school","standard","none","66","69","63"
+"female","group B","some college","free/reduced","completed","65","75","70"
+"male","group D","some college","standard","none","44","54","53"
+"female","group C","some high school","standard","none","69","73","73"
+"male","group D","bachelor's degree","free/reduced","completed","74","71","80"
+"male","group A","master's degree","free/reduced","none","73","74","72"
+"male","group B","some college","standard","none","69","54","55"
+"female","group C","bachelor's degree","standard","none","67","69","75"
+"male","group C","high school","standard","none","70","70","65"
+"female","group D","master's degree","standard","none","62","70","75"
+"female","group D","some college","standard","none","69","74","74"
+"female","group B","some college","standard","none","63","65","61"
+"female","group E","master's degree","free/reduced","none","56","72","65"
+"male","group D","some college","standard","none","40","42","38"
+"male","group E","some college","standard","none","97","87","82"
+"male","group E","associate's degree","standard","completed","81","81","79"
+"female","group D","associate's degree","standard","none","74","81","83"
+"female","group D","some high school","free/reduced","none","50","64","59"
+"female","group D","associate's degree","free/reduced","completed","75","90","88"
+"male","group B","associate's degree","free/reduced","none","57","56","57"
+"male","group C","associate's degree","free/reduced","none","55","61","54"
+"female","group C","associate's degree","standard","none","58","73","68"
+"female","group B","associate's degree","standard","none","53","58","65"
+"male","group B","some college","free/reduced","completed","59","65","66"
+"female","group E","associate's degree","free/reduced","none","50","56","54"
+"male","group B","associate's degree","standard","none","65","54","57"
+"female","group A","associate's degree","standard","completed","55","65","62"
+"female","group C","high school","standard","none","66","71","76"
+"female","group D","associate's degree","free/reduced","completed","57","74","76"
+"male","group C","high school","standard","completed","82","84","82"
+"male","group E","some college","standard","none","53","55","48"
+"male","group E","associate's degree","free/reduced","completed","77","69","68"
+"male","group C","some college","standard","none","53","44","42"
+"male","group D","high school","standard","none","88","78","75"
+"female","group C","some high school","free/reduced","completed","71","84","87"
+"female","group C","high school","free/reduced","none","33","41","43"
+"female","group E","associate's degree","standard","completed","82","85","86"
+"male","group D","associate's degree","standard","none","52","55","49"
+"male","group D","some college","standard","completed","58","59","58"
+"female","group C","some high school","free/reduced","none","0","17","10"
+"male","group E","bachelor's degree","free/reduced","completed","79","74","72"
+"male","group A","some high school","free/reduced","none","39","39","34"
+"male","group A","associate's degree","free/reduced","none","62","61","55"
+"female","group C","associate's degree","standard","none","69","80","71"
+"female","group D","some high school","standard","none","59","58","59"
+"male","group B","some high school","standard","none","67","64","61"
+"male","group D","some high school","free/reduced","none","45","37","37"
+"female","group C","some college","standard","none","60","72","74"
+"male","group B","associate's degree","free/reduced","none","61","58","56"
+"female","group C","associate's degree","standard","none","39","64","57"
+"female","group D","some college","free/reduced","completed","58","63","73"
+"male","group D","some college","standard","completed","63","55","63"
+"female","group A","associate's degree","free/reduced","none","41","51","48"
+"male","group C","some high school","free/reduced","none","61","57","56"
+"male","group C","some high school","standard","none","49","49","41"
+"male","group B","associate's degree","free/reduced","none","44","41","38"
+"male","group E","some high school","standard","none","30","26","22"
+"male","group A","bachelor's degree","standard","completed","80","78","81"
+"female","group D","some high school","standard","completed","61","74","72"
+"female","group E","master's degree","standard","none","62","68","68"
+"female","group B","associate's degree","standard","none","47","49","50"
+"male","group B","high school","free/reduced","none","49","45","45"
+"male","group A","some college","free/reduced","completed","50","47","54"
+"male","group E","associate's degree","standard","none","72","64","63"
+"male","group D","high school","free/reduced","none","42","39","34"
+"female","group C","some college","standard","none","73","80","82"
+"female","group C","some college","free/reduced","none","76","83","88"
+"female","group D","associate's degree","standard","none","71","71","74"
+"female","group A","some college","standard","none","58","70","67"
+"female","group D","some high school","standard","none","73","86","82"
+"female","group C","bachelor's degree","standard","none","65","72","74"
+"male","group C","high school","free/reduced","none","27","34","36"
+"male","group C","high school","standard","none","71","79","71"
+"male","group C","associate's degree","free/reduced","completed","43","45","50"
+"female","group B","some college","standard","none","79","86","92"
+"male","group C","associate's degree","free/reduced","completed","78","81","82"
+"male","group B","some high school","standard","completed","65","66","62"
+"female","group E","some college","standard","completed","63","72","70"
+"female","group D","some college","free/reduced","none","58","67","62"
+"female","group D","bachelor's degree","standard","none","65","67","62"
+"male","group B","some college","standard","none","79","67","67"
+"male","group D","bachelor's degree","standard","completed","68","74","74"
+"female","group D","associate's degree","standard","none","85","91","89"
+"male","group B","high school","standard","completed","60","44","47"
+"male","group C","some college","standard","completed","98","86","90"
+"female","group C","some college","standard","none","58","67","72"
+"female","group D","master's degree","standard","none","87","100","100"
+"male","group E","associate's degree","standard","completed","66","63","64"
+"female","group B","associate's degree","free/reduced","none","52","76","70"
+"female","group B","some high school","standard","none","70","64","72"
+"female","group D","associate's degree","free/reduced","completed","77","89","98"
+"male","group C","high school","standard","none","62","55","49"
+"male","group A","associate's degree","standard","none","54","53","47"
+"female","group D","some college","standard","none","51","58","54"
+"female","group E","bachelor's degree","standard","completed","99","100","100"
+"male","group C","high school","standard","none","84","77","74"
+"female","group B","bachelor's degree","free/reduced","none","75","85","82"
+"female","group D","bachelor's degree","standard","none","78","82","79"
+"female","group D","some high school","standard","none","51","63","61"
+"female","group C","some college","standard","none","55","69","65"
+"female","group C","bachelor's degree","standard","completed","79","92","89"
+"male","group B","associate's degree","standard","completed","91","89","92"
+"female","group C","some college","standard","completed","88","93","93"
+"male","group D","high school","free/reduced","none","63","57","56"
+"male","group E","some college","standard","none","83","80","73"
+"female","group B","high school","standard","none","87","95","86"
+"male","group B","some high school","standard","none","72","68","67"
+"male","group D","some college","standard","completed","65","77","74"
+"male","group D","master's degree","standard","none","82","82","74"
+"female","group A","bachelor's degree","standard","none","51","49","51"
+"male","group D","master's degree","standard","none","89","84","82"
+"male","group C","some high school","free/reduced","completed","53","37","40"
+"male","group E","some college","free/reduced","completed","87","74","70"
+"female","group C","some college","standard","completed","75","81","84"
+"male","group D","bachelor's degree","free/reduced","completed","74","79","75"
+"male","group C","bachelor's degree","standard","none","58","55","48"
+"male","group B","some high school","standard","completed","51","54","41"
+"male","group E","high school","standard","none","70","55","56"
+"female","group C","associate's degree","standard","none","59","66","67"
+"male","group D","some college","standard","completed","71","61","69"
+"female","group D","some high school","standard","none","76","72","71"
+"female","group C","some college","free/reduced","none","59","62","64"
+"female","group E","some college","free/reduced","completed","42","55","54"
+"male","group A","high school","standard","none","57","43","47"
+"male","group D","some college","standard","none","88","73","78"
+"female","group C","some college","free/reduced","none","22","39","33"
+"male","group B","some high school","standard","none","88","84","75"
+"male","group C","associate's degree","free/reduced","none","73","68","66"
+"female","group D","bachelor's degree","standard","completed","68","75","81"
+"male","group E","associate's degree","free/reduced","completed","100","100","93"
+"male","group A","some high school","standard","completed","62","67","69"
+"male","group A","bachelor's degree","standard","none","77","67","68"
+"female","group B","associate's degree","standard","completed","59","70","66"
+"male","group D","bachelor's degree","standard","none","54","49","47"
+"male","group D","some high school","standard","none","62","67","61"
+"female","group C","some college","standard","completed","70","89","88"
+"female","group E","high school","free/reduced","completed","66","74","78"
+"male","group B","some college","free/reduced","none","60","60","60"
+"female","group B","associate's degree","standard","completed","61","86","87"
+"male","group D","associate's degree","free/reduced","none","66","62","64"
+"male","group B","associate's degree","free/reduced","completed","82","78","74"
+"female","group E","some college","free/reduced","completed","75","88","85"
+"male","group B","master's degree","free/reduced","none","49","53","52"
+"male","group C","high school","standard","none","52","53","49"
+"female","group E","master's degree","standard","none","81","92","91"
+"female","group C","bachelor's degree","standard","completed","96","100","100"
+"male","group C","high school","free/reduced","completed","53","51","51"
+"female","group B","master's degree","free/reduced","completed","58","76","78"
+"female","group B","high school","standard","completed","68","83","78"
+"female","group C","some college","free/reduced","completed","67","75","70"
+"male","group A","high school","standard","completed","72","73","74"
+"male","group E","some high school","standard","none","94","88","78"
+"female","group D","some college","standard","none","79","86","81"
+"female","group C","associate's degree","standard","none","63","67","70"
+"female","group C","bachelor's degree","free/reduced","completed","43","51","54"
+"female","group C","master's degree","standard","completed","81","91","87"
+"female","group B","high school","free/reduced","completed","46","54","58"
+"female","group C","associate's degree","standard","completed","71","77","77"
+"female","group B","master's degree","free/reduced","completed","52","70","62"
+"female","group D","some high school","standard","completed","97","100","100"
+"male","group C","master's degree","free/reduced","completed","62","68","75"
+"female","group C","some college","free/reduced","none","46","64","66"
+"female","group E","high school","standard","none","50","50","47"
+"female","group D","associate's degree","standard","none","65","69","70"
+"male","group C","some high school","free/reduced","completed","45","52","49"
+"male","group C","associate's degree","free/reduced","completed","65","67","65"
+"male","group E","high school","standard","none","80","76","65"
+"male","group D","some high school","standard","completed","62","66","68"
+"male","group B","some high school","free/reduced","none","48","52","45"
+"female","group C","bachelor's degree","standard","none","77","88","87"
+"female","group E","associate's degree","standard","none","66","65","69"
+"male","group D","some college","standard","completed","76","83","79"
+"female","group B","some high school","standard","none","62","64","66"
+"male","group D","some college","standard","completed","77","62","62"
+"female","group C","master's degree","standard","completed","69","84","85"
+"male","group D","associate's degree","standard","none","61","55","52"
+"male","group C","some high school","free/reduced","completed","59","69","65"
+"male","group E","high school","free/reduced","none","55","56","51"
+"female","group B","some college","free/reduced","none","45","53","55"
+"female","group B","bachelor's degree","free/reduced","none","78","79","76"
+"female","group C","associate's degree","standard","completed","67","84","86"
+"female","group D","some college","free/reduced","none","65","81","77"
+"male","group C","associate's degree","standard","none","69","77","69"
+"female","group B","associate's degree","standard","none","57","69","68"
+"male","group C","some college","standard","none","59","41","42"
+"male","group D","some high school","standard","completed","74","71","78"
+"male","group E","bachelor's degree","standard","none","82","62","62"
+"male","group E","high school","standard","completed","81","80","76"
+"female","group B","some college","free/reduced","none","74","81","76"
+"female","group B","some college","free/reduced","none","58","61","66"
+"male","group D","some high school","free/reduced","completed","80","79","79"
+"male","group C","some college","free/reduced","none","35","28","27"
+"female","group C","high school","free/reduced","none","42","62","60"
+"male","group C","associate's degree","free/reduced","completed","60","51","56"
+"male","group E","high school","standard","completed","87","91","81"
+"male","group B","some high school","standard","completed","84","83","75"
+"female","group E","associate's degree","free/reduced","completed","83","86","88"
+"female","group C","high school","free/reduced","none","34","42","39"
+"male","group B","high school","free/reduced","none","66","77","70"
+"male","group B","some high school","standard","completed","61","56","56"
+"female","group D","high school","standard","completed","56","68","74"
+"male","group B","associate's degree","standard","none","87","85","73"
+"female","group C","some high school","free/reduced","none","55","65","62"
+"male","group D","some high school","standard","none","86","80","75"
+"female","group B","associate's degree","standard","completed","52","66","73"
+"female","group E","master's degree","free/reduced","none","45","56","54"
+"female","group C","some college","standard","none","72","72","71"
+"male","group D","high school","standard","none","57","50","54"
+"male","group A","some high school","free/reduced","none","68","72","64"
+"female","group C","some college","standard","completed","88","95","94"
+"male","group D","some college","standard","none","76","64","66"
+"male","group C","associate's degree","standard","none","46","43","42"
+"female","group B","bachelor's degree","standard","none","67","86","83"
+"male","group E","some high school","standard","none","92","87","78"
+"male","group C","bachelor's degree","standard","completed","83","82","84"
+"male","group D","associate's degree","standard","none","80","75","77"
+"male","group D","bachelor's degree","free/reduced","none","63","66","67"
+"female","group D","some high school","standard","completed","64","60","74"
+"male","group B","some college","standard","none","54","52","51"
+"male","group C","associate's degree","standard","none","84","80","80"
+"male","group D","high school","free/reduced","completed","73","68","66"
+"female","group E","bachelor's degree","standard","none","80","83","83"
+"female","group D","high school","standard","none","56","52","55"
+"male","group E","some college","standard","none","59","51","43"
+"male","group D","some high school","standard","none","75","74","69"
+"male","group C","associate's degree","standard","none","85","76","71"
+"male","group E","associate's degree","standard","none","89","76","74"
+"female","group B","high school","standard","completed","58","70","68"
+"female","group B","high school","standard","none","65","64","62"
+"male","group C","high school","standard","none","68","60","53"
+"male","group A","some high school","standard","completed","47","49","49"
+"female","group D","some college","free/reduced","none","71","83","83"
+"female","group B","some high school","standard","completed","60","70","70"
+"male","group D","master's degree","standard","none","80","80","72"
+"male","group D","high school","standard","none","54","52","52"
+"female","group E","some college","standard","none","62","73","70"
+"female","group C","associate's degree","free/reduced","none","64","73","68"
+"male","group C","associate's degree","standard","completed","78","77","77"
+"female","group B","some college","standard","none","70","75","78"
+"female","group C","master's degree","free/reduced","completed","65","81","81"
+"female","group C","some high school","free/reduced","completed","64","79","77"
+"male","group C","some college","standard","completed","79","79","78"
+"female","group C","some high school","free/reduced","none","44","50","51"
+"female","group E","high school","standard","none","99","93","90"
+"male","group D","high school","standard","none","76","73","68"
+"male","group D","some high school","free/reduced","none","59","42","41"
+"female","group C","bachelor's degree","standard","none","63","75","81"
+"female","group D","high school","standard","none","69","72","77"
+"female","group D","associate's degree","standard","completed","88","92","95"
+"female","group E","some college","free/reduced","none","71","76","70"
+"male","group C","bachelor's degree","standard","none","69","63","61"
+"male","group C","some college","standard","none","58","49","42"
+"female","group D","associate's degree","free/reduced","none","47","53","58"
+"female","group D","some college","standard","none","65","70","71"
+"male","group B","some college","standard","completed","88","85","76"
+"male","group C","bachelor's degree","standard","none","83","78","73"
+"female","group C","some high school","standard","completed","85","92","93"
+"female","group E","high school","standard","completed","59","63","75"
+"female","group C","some high school","free/reduced","none","65","86","80"
+"male","group B","bachelor's degree","free/reduced","none","73","56","57"
+"male","group D","high school","standard","none","53","52","42"
+"male","group D","high school","standard","none","45","48","46"
+"female","group D","bachelor's degree","free/reduced","none","73","79","84"
+"female","group D","some college","free/reduced","completed","70","78","78"
+"female","group B","some high school","standard","none","37","46","46"
+"male","group B","associate's degree","standard","completed","81","82","82"
+"male","group E","associate's degree","standard","completed","97","82","88"
+"female","group B","some high school","standard","none","67","89","82"
+"male","group B","bachelor's degree","free/reduced","none","88","75","76"
+"male","group E","some high school","standard","completed","77","76","77"
+"male","group C","associate's degree","standard","none","76","70","68"
+"male","group D","some high school","standard","none","86","73","70"
+"male","group C","some high school","standard","completed","63","60","57"
+"female","group E","bachelor's degree","standard","none","65","73","75"
+"male","group D","high school","free/reduced","completed","78","77","80"
+"male","group B","associate's degree","free/reduced","none","67","62","60"
+"male","group A","some high school","standard","completed","46","41","43"
+"male","group E","associate's degree","standard","completed","71","74","68"
+"male","group C","high school","free/reduced","completed","40","46","50"
+"male","group D","associate's degree","free/reduced","none","90","87","75"
+"male","group A","some college","free/reduced","completed","81","78","81"
+"male","group D","some high school","free/reduced","none","56","54","52"
+"female","group C","associate's degree","standard","completed","67","84","81"
+"male","group B","associate's degree","standard","none","80","76","64"
+"female","group C","associate's degree","standard","completed","74","75","83"
+"male","group A","some college","standard","none","69","67","69"
+"male","group E","some college","standard","completed","99","87","81"
+"male","group C","some high school","standard","none","51","52","44"
+"female","group B","associate's degree","free/reduced","none","53","71","67"
+"female","group D","high school","free/reduced","none","49","57","52"
+"female","group B","associate's degree","standard","none","73","76","80"
+"male","group B","bachelor's degree","standard","none","66","60","57"
+"male","group D","bachelor's degree","standard","completed","67","61","68"
+"female","group C","associate's degree","free/reduced","completed","68","67","69"
+"female","group C","bachelor's degree","standard","completed","59","64","75"
+"male","group C","high school","standard","none","71","66","65"
+"female","group D","master's degree","standard","completed","77","82","91"
+"male","group C","associate's degree","standard","none","83","72","78"
+"male","group B","bachelor's degree","standard","none","63","71","69"
+"female","group D","associate's degree","free/reduced","none","56","65","63"
+"female","group C","high school","free/reduced","completed","67","79","84"
+"female","group E","high school","standard","none","75","86","79"
+"female","group C","some college","standard","none","71","81","80"
+"female","group C","some high school","free/reduced","none","43","53","53"
+"female","group C","high school","free/reduced","none","41","46","43"
+"female","group C","some college","standard","none","82","90","94"
+"male","group C","some college","standard","none","61","61","62"
+"male","group A","some college","free/reduced","none","28","23","19"
+"male","group C","associate's degree","standard","completed","82","75","77"
+"female","group B","some high school","standard","none","41","55","51"
+"male","group C","high school","standard","none","71","60","61"
+"male","group C","associate's degree","standard","none","47","37","35"
+"male","group E","associate's degree","standard","completed","62","56","53"
+"male","group B","associate's degree","standard","none","90","78","81"
+"female","group C","bachelor's degree","standard","none","83","93","95"
+"female","group B","some college","free/reduced","none","61","68","66"
+"male","group D","some high school","standard","completed","76","70","69"
+"male","group C","associate's degree","standard","none","49","51","43"
+"female","group B","some high school","free/reduced","none","24","38","27"
+"female","group D","some high school","free/reduced","completed","35","55","60"
+"male","group C","high school","free/reduced","none","58","61","52"
+"female","group C","high school","standard","none","61","73","63"
+"female","group B","high school","standard","completed","69","76","74"
+"male","group D","associate's degree","standard","completed","67","72","67"
+"male","group D","some college","standard","none","79","73","67"
+"female","group C","high school","standard","none","72","80","75"
+"male","group B","some college","standard","none","62","61","57"
+"female","group C","bachelor's degree","standard","completed","77","94","95"
+"male","group D","high school","free/reduced","none","75","74","66"
+"male","group E","associate's degree","standard","none","87","74","76"
+"female","group B","bachelor's degree","standard","none","52","65","69"
+"male","group E","some college","standard","none","66","57","52"
+"female","group C","some college","standard","completed","63","78","80"
+"female","group C","associate's degree","standard","none","46","58","57"
+"female","group C","some college","standard","none","59","71","70"
+"female","group B","bachelor's degree","standard","none","61","72","70"
+"male","group A","associate's degree","standard","none","63","61","61"
+"female","group C","some college","free/reduced","completed","42","66","69"
+"male","group D","some college","free/reduced","none","59","62","61"
+"female","group D","some college","standard","none","80","90","89"
+"female","group B","high school","standard","none","58","62","59"
+"male","group B","some high school","standard","completed","85","84","78"
+"female","group C","some college","standard","none","52","58","58"
+"female","group D","some high school","free/reduced","none","27","34","32"
+"male","group C","some college","standard","none","59","60","58"
+"male","group A","bachelor's degree","free/reduced","completed","49","58","60"
+"male","group C","high school","standard","completed","69","58","53"
+"male","group C","bachelor's degree","free/reduced","none","61","66","61"
+"female","group A","some high school","free/reduced","none","44","64","58"
+"female","group D","some high school","standard","none","73","84","85"
+"male","group E","some college","standard","none","84","77","71"
+"female","group C","some college","free/reduced","completed","45","73","70"
+"male","group D","some high school","standard","none","74","74","72"
+"female","group D","some college","standard","completed","82","97","96"
+"female","group D","bachelor's degree","standard","none","59","70","73"
+"male","group E","associate's degree","free/reduced","none","46","43","41"
+"female","group D","some high school","standard","none","80","90","82"
+"female","group D","master's degree","free/reduced","completed","85","95","100"
+"female","group A","some high school","standard","none","71","83","77"
+"male","group A","bachelor's degree","standard","none","66","64","62"
+"female","group B","associate's degree","standard","none","80","86","83"
+"male","group C","associate's degree","standard","completed","87","100","95"
+"male","group C","master's degree","free/reduced","none","79","81","71"
+"female","group E","some high school","free/reduced","none","38","49","45"
+"female","group A","some high school","free/reduced","none","38","43","43"
+"female","group E","some college","standard","none","67","76","75"
+"female","group E","bachelor's degree","standard","none","64","73","70"
+"female","group C","associate's degree","free/reduced","none","57","78","67"
+"female","group D","high school","standard","none","62","64","64"
+"male","group D","master's degree","standard","none","73","70","75"
+"male","group E","some high school","free/reduced","completed","73","67","59"
+"female","group D","some college","standard","none","77","68","77"
+"male","group E","some college","standard","none","76","67","67"
+"male","group C","associate's degree","standard","completed","57","54","56"
+"female","group C","some high school","standard","completed","65","74","77"
+"male","group A","high school","free/reduced","none","48","45","41"
+"female","group B","high school","free/reduced","none","50","67","63"
+"female","group C","associate's degree","standard","none","85","89","95"
+"male","group B","some high school","standard","none","74","63","57"
+"male","group D","some high school","standard","none","60","59","54"
+"female","group C","some high school","standard","completed","59","54","67"
+"male","group A","some college","standard","none","53","43","43"
+"female","group A","some college","free/reduced","none","49","65","55"
+"female","group D","high school","standard","completed","88","99","100"
+"female","group C","high school","standard","none","54","59","62"
+"female","group C","some high school","standard","none","63","73","68"
+"male","group B","associate's degree","standard","completed","65","65","63"
+"female","group B","associate's degree","standard","none","82","80","77"
+"female","group D","high school","free/reduced","completed","52","57","56"
+"male","group D","associate's degree","standard","completed","87","84","85"
+"female","group D","master's degree","standard","completed","70","71","74"
+"male","group E","some college","standard","completed","84","83","78"
+"male","group D","associate's degree","standard","none","71","66","60"
+"male","group B","some high school","standard","completed","63","67","67"
+"female","group C","bachelor's degree","free/reduced","completed","51","72","79"
+"male","group E","high school","standard","none","84","73","69"
+"male","group C","bachelor's degree","standard","completed","71","74","68"
+"male","group C","associate's degree","standard","none","74","73","67"
+"male","group D","some college","standard","none","68","59","62"
+"male","group E","high school","free/reduced","completed","57","56","54"
+"female","group C","associate's degree","free/reduced","completed","82","93","93"
+"female","group D","high school","standard","completed","57","58","64"
+"female","group D","master's degree","free/reduced","completed","47","58","67"
+"female","group A","some high school","standard","completed","59","85","80"
+"male","group B","some college","free/reduced","none","41","39","34"
+"female","group C","some college","free/reduced","none","62","67","62"
+"male","group C","bachelor's degree","standard","none","86","83","86"
+"male","group C","some high school","free/reduced","none","69","71","65"
+"male","group A","some high school","free/reduced","none","65","59","53"
+"male","group C","some high school","free/reduced","none","68","63","54"
+"male","group C","associate's degree","free/reduced","none","64","66","59"
+"female","group C","high school","standard","none","61","72","70"
+"male","group C","high school","standard","none","61","56","55"
+"female","group A","some high school","free/reduced","none","47","59","50"
+"male","group C","some high school","standard","none","73","66","66"
+"male","group C","some college","free/reduced","completed","50","48","53"
+"male","group D","associate's degree","standard","none","75","68","64"
+"male","group D","associate's degree","free/reduced","none","75","66","73"
+"male","group C","high school","standard","none","70","56","51"
+"male","group D","some high school","standard","completed","89","88","82"
+"female","group C","some college","standard","completed","67","81","79"
+"female","group D","high school","standard","none","78","81","80"
+"female","group A","some high school","free/reduced","none","59","73","69"
+"female","group B","associate's degree","standard","none","73","83","76"
+"male","group A","some high school","free/reduced","none","79","82","73"
+"female","group C","some high school","standard","completed","67","74","77"
+"male","group D","some college","free/reduced","none","69","66","60"
+"male","group C","high school","standard","completed","86","81","80"
+"male","group B","high school","standard","none","47","46","42"
+"male","group B","associate's degree","standard","none","81","73","72"
+"female","group C","some college","free/reduced","completed","64","85","85"
+"female","group E","some college","standard","none","100","92","97"
+"female","group C","associate's degree","free/reduced","none","65","77","74"
+"male","group C","some college","free/reduced","none","65","58","49"
+"female","group C","associate's degree","free/reduced","none","53","61","62"
+"male","group C","bachelor's degree","free/reduced","none","37","56","47"
+"female","group D","bachelor's degree","standard","none","79","89","89"
+"male","group D","associate's degree","free/reduced","none","53","54","48"
+"female","group E","bachelor's degree","standard","none","100","100","100"
+"male","group B","high school","standard","completed","72","65","68"
+"male","group C","bachelor's degree","free/reduced","none","53","58","55"
+"male","group B","some college","free/reduced","none","54","54","45"
+"female","group E","some college","standard","none","71","70","76"
+"female","group C","some college","free/reduced","none","77","90","91"
+"male","group A","bachelor's degree","standard","completed","75","58","62"
+"female","group C","some college","standard","none","84","87","91"
+"female","group D","associate's degree","free/reduced","none","26","31","38"
+"male","group A","high school","free/reduced","completed","72","67","65"
+"female","group A","high school","free/reduced","completed","77","88","85"
+"male","group C","some college","standard","none","91","74","76"
+"female","group C","associate's degree","standard","completed","83","85","90"
+"female","group C","high school","standard","none","63","69","74"
+"female","group C","associate's degree","standard","completed","68","86","84"
+"female","group D","some high school","standard","none","59","67","61"
+"female","group B","associate's degree","standard","completed","90","90","91"
+"female","group D","bachelor's degree","standard","completed","71","76","83"
+"male","group E","bachelor's degree","standard","completed","76","62","66"
+"male","group D","associate's degree","standard","none","80","68","72"
+"female","group D","master's degree","standard","none","55","64","70"
+"male","group E","associate's degree","standard","none","76","71","67"
+"male","group B","high school","standard","completed","73","71","68"
+"female","group D","associate's degree","free/reduced","none","52","59","56"
+"male","group C","some college","free/reduced","none","68","68","61"
+"male","group A","high school","standard","none","59","52","46"
+"female","group B","associate's degree","standard","none","49","52","54"
+"male","group C","high school","standard","none","70","74","71"
+"male","group D","some college","free/reduced","none","61","47","56"
+"female","group C","associate's degree","free/reduced","none","60","75","74"
+"male","group B","some high school","standard","completed","64","53","57"
+"male","group A","associate's degree","free/reduced","completed","79","82","82"
+"female","group A","associate's degree","free/reduced","none","65","85","76"
+"female","group C","associate's degree","standard","none","64","64","70"
+"female","group C","some college","standard","none","83","83","90"
+"female","group C","bachelor's degree","standard","none","81","88","90"
+"female","group B","high school","standard","none","54","64","68"
+"male","group D","high school","standard","completed","68","64","66"
+"female","group C","some college","standard","none","54","48","52"
+"female","group D","some college","free/reduced","completed","59","78","76"
+"female","group B","some high school","standard","none","66","69","68"
+"male","group E","some college","standard","none","76","71","72"
+"female","group D","master's degree","standard","none","74","79","82"
+"female","group B","associate's degree","standard","completed","94","87","92"
+"male","group C","some college","free/reduced","none","63","61","54"
+"female","group E","associate's degree","standard","completed","95","89","92"
+"female","group D","master's degree","free/reduced","none","40","59","54"
+"female","group B","some high school","standard","none","82","82","80"
+"male","group A","high school","standard","none","68","70","66"
+"male","group B","bachelor's degree","free/reduced","none","55","59","54"
+"male","group C","master's degree","standard","none","79","78","77"
+"female","group C","bachelor's degree","standard","none","86","92","87"
+"male","group D","some college","standard","none","76","71","73"
+"male","group A","some high school","standard","none","64","50","43"
+"male","group D","some high school","free/reduced","none","62","49","52"
+"female","group B","some high school","standard","completed","54","61","62"
+"female","group B","master's degree","free/reduced","completed","77","97","94"
+"female","group C","some high school","standard","completed","76","87","85"
+"female","group D","some college","standard","none","74","89","84"
+"female","group E","some college","standard","completed","66","74","73"
+"female","group D","some high school","standard","completed","66","78","78"
+"female","group B","high school","free/reduced","completed","67","78","79"
+"male","group D","some college","standard","none","71","49","52"
+"female","group C","associate's degree","standard","none","91","86","84"
+"male","group D","bachelor's degree","standard","none","69","58","57"
+"male","group C","master's degree","free/reduced","none","54","59","50"
+"male","group C","high school","standard","completed","53","52","49"
+"male","group E","some college","standard","none","68","60","59"
+"male","group C","some high school","free/reduced","completed","56","61","60"
+"female","group C","high school","free/reduced","none","36","53","43"
+"female","group D","bachelor's degree","free/reduced","none","29","41","47"
+"female","group C","associate's degree","standard","none","62","74","70"
+"female","group C","associate's degree","standard","completed","68","67","73"
+"female","group C","some high school","standard","none","47","54","53"
+"male","group E","associate's degree","standard","completed","62","61","58"
+"female","group E","associate's degree","standard","completed","79","88","94"
+"male","group B","high school","standard","completed","73","69","68"
+"female","group C","bachelor's degree","free/reduced","completed","66","83","83"
+"male","group C","associate's degree","standard","completed","51","60","58"
+"female","group D","high school","standard","none","51","66","62"
+"male","group E","bachelor's degree","standard","completed","85","66","71"
+"male","group A","associate's degree","standard","completed","97","92","86"
+"male","group C","high school","standard","completed","75","69","68"
+"male","group D","associate's degree","free/reduced","completed","79","82","80"
+"female","group C","associate's degree","standard","none","81","77","79"
+"female","group D","associate's degree","standard","none","82","95","89"
+"female","group D","master's degree","standard","none","64","63","66"
+"male","group E","some high school","free/reduced","completed","78","83","80"
+"female","group A","some high school","standard","completed","92","100","97"
+"male","group C","high school","standard","completed","72","67","64"
+"female","group C","high school","free/reduced","none","62","67","64"
+"male","group C","master's degree","standard","none","79","72","69"
+"male","group C","some high school","free/reduced","none","79","76","65"
+"male","group B","bachelor's degree","free/reduced","completed","87","90","88"
+"female","group B","associate's degree","standard","none","40","48","50"
+"male","group D","some college","free/reduced","none","77","62","64"
+"male","group E","associate's degree","standard","none","53","45","40"
+"female","group C","some college","free/reduced","none","32","39","33"
+"female","group C","associate's degree","standard","completed","55","72","79"
+"male","group C","master's degree","free/reduced","none","61","67","66"
+"female","group B","associate's degree","free/reduced","none","53","70","70"
+"male","group D","some high school","standard","none","73","66","62"
+"female","group D","some college","standard","completed","74","75","79"
+"female","group C","some college","standard","none","63","74","74"
+"male","group C","bachelor's degree","standard","completed","96","90","92"
+"female","group D","some college","free/reduced","completed","63","80","80"
+"male","group B","bachelor's degree","free/reduced","none","48","51","46"
+"male","group B","associate's degree","standard","none","48","43","45"
+"female","group E","bachelor's degree","free/reduced","completed","92","100","100"
+"female","group D","master's degree","free/reduced","completed","61","71","78"
+"male","group B","high school","free/reduced","none","63","48","47"
+"male","group D","bachelor's degree","free/reduced","none","68","68","67"
+"male","group B","some college","standard","completed","71","75","70"
+"male","group A","bachelor's degree","standard","none","91","96","92"
+"female","group C","some college","standard","none","53","62","56"
+"female","group C","high school","free/reduced","completed","50","66","64"
+"female","group E","high school","standard","none","74","81","71"
+"male","group A","associate's degree","free/reduced","completed","40","55","53"
+"male","group A","some college","standard","completed","61","51","52"
+"female","group B","high school","standard","none","81","91","89"
+"female","group B","some college","free/reduced","completed","48","56","58"
+"female","group D","master's degree","standard","none","53","61","68"
+"female","group D","some high school","standard","none","81","97","96"
+"female","group E","some high school","standard","none","77","79","80"
+"female","group D","bachelor's degree","free/reduced","none","63","73","78"
+"female","group D","associate's degree","standard","completed","73","75","80"
+"female","group D","some college","standard","none","69","77","77"
+"female","group C","associate's degree","standard","none","65","76","76"
+"female","group A","high school","standard","none","55","73","73"
+"female","group C","bachelor's degree","free/reduced","none","44","63","62"
+"female","group C","some college","standard","none","54","64","65"
+"female","group A","some high school","standard","none","48","66","65"
+"male","group C","some college","free/reduced","none","58","57","54"
+"male","group A","some high school","standard","none","71","62","50"
+"male","group E","bachelor's degree","standard","none","68","68","64"
+"female","group E","high school","standard","none","74","76","73"
+"female","group C","bachelor's degree","standard","completed","92","100","99"
+"female","group C","bachelor's degree","standard","completed","56","79","72"
+"male","group B","high school","free/reduced","none","30","24","15"
+"male","group A","some high school","standard","none","53","54","48"
+"female","group D","high school","standard","none","69","77","73"
+"female","group D","some high school","standard","none","65","82","81"
+"female","group D","master's degree","standard","none","54","60","63"
+"female","group C","high school","standard","none","29","29","30"
+"female","group E","some college","standard","none","76","78","80"
+"male","group D","high school","free/reduced","none","60","57","51"
+"male","group D","master's degree","free/reduced","completed","84","89","90"
+"male","group C","some high school","standard","none","75","72","62"
+"female","group C","associate's degree","standard","none","85","84","82"
+"female","group C","master's degree","free/reduced","none","40","58","54"
+"female","group E","some college","standard","none","61","64","62"
+"female","group B","associate's degree","standard","none","58","63","65"
+"male","group D","some college","free/reduced","completed","69","60","63"
+"female","group C","some college","standard","none","58","59","66"
+"male","group C","bachelor's degree","standard","completed","94","90","91"
+"female","group C","associate's degree","standard","none","65","77","74"
+"female","group A","associate's degree","standard","none","82","93","93"
+"female","group C","high school","standard","none","60","68","72"
+"female","group E","bachelor's degree","standard","none","37","45","38"
+"male","group D","bachelor's degree","standard","none","88","78","83"
+"male","group D","master's degree","standard","none","95","81","84"
+"male","group C","associate's degree","free/reduced","completed","65","73","68"
+"female","group C","high school","free/reduced","none","35","61","54"
+"male","group B","bachelor's degree","free/reduced","none","62","63","56"
+"male","group C","high school","free/reduced","completed","58","51","52"
+"male","group A","some college","standard","completed","100","96","86"
+"female","group E","bachelor's degree","free/reduced","none","61","58","62"
+"male","group D","some college","standard","completed","100","97","99"
+"male","group B","associate's degree","free/reduced","completed","69","70","63"
+"male","group D","associate's degree","standard","none","61","48","46"
+"male","group D","some college","free/reduced","none","49","57","46"
+"female","group C","some high school","standard","completed","44","51","55"
+"male","group D","some college","standard","none","67","64","70"
+"male","group B","high school","standard","none","79","60","65"
+"female","group B","bachelor's degree","standard","completed","66","74","81"
+"female","group C","high school","standard","none","75","88","85"
+"male","group D","some high school","standard","none","84","84","80"
+"male","group A","high school","standard","none","71","74","64"
+"female","group B","high school","free/reduced","completed","67","80","81"
+"female","group D","some high school","standard","completed","80","92","88"
+"male","group E","some college","standard","none","86","76","74"
+"female","group D","associate's degree","standard","none","76","74","73"
+"male","group D","high school","standard","none","41","52","51"
+"female","group D","associate's degree","free/reduced","completed","74","88","90"
+"female","group B","some high school","free/reduced","none","72","81","79"
+"female","group E","high school","standard","completed","74","79","80"
+"male","group B","high school","standard","none","70","65","60"
+"female","group B","bachelor's degree","standard","completed","65","81","81"
+"female","group D","associate's degree","standard","none","59","70","65"
+"female","group E","high school","free/reduced","none","64","62","68"
+"female","group B","high school","standard","none","50","53","55"
+"female","group D","some college","standard","completed","69","79","81"
+"male","group C","some high school","free/reduced","completed","51","56","53"
+"female","group A","high school","standard","completed","68","80","76"
+"female","group D","some college","standard","completed","85","86","98"
+"female","group A","associate's degree","standard","completed","65","70","74"
+"female","group B","some high school","standard","none","73","79","79"
+"female","group B","some college","standard","none","62","67","67"
+"male","group C","associate's degree","free/reduced","none","77","67","64"
+"male","group D","some high school","standard","none","69","66","61"
+"female","group D","associate's degree","free/reduced","none","43","60","58"
+"male","group D","associate's degree","standard","none","90","87","85"
+"male","group C","some college","free/reduced","none","74","77","73"
+"male","group C","some high school","standard","none","73","66","63"
+"female","group D","some college","free/reduced","none","55","71","69"
+"female","group C","high school","standard","none","65","69","67"
+"male","group D","associate's degree","standard","none","80","63","63"
+"female","group C","some high school","free/reduced","completed","50","60","60"
+"female","group C","some college","free/reduced","completed","63","73","71"
+"female","group B","bachelor's degree","free/reduced","none","77","85","87"
+"male","group C","some college","standard","none","73","74","61"
+"male","group D","associate's degree","standard","completed","81","72","77"
+"female","group C","high school","free/reduced","none","66","76","68"
+"male","group D","associate's degree","free/reduced","none","52","57","50"
+"female","group C","some college","standard","none","69","78","76"
+"female","group C","associate's degree","standard","completed","65","84","84"
+"female","group D","high school","standard","completed","69","77","78"
+"female","group B","some college","standard","completed","50","64","66"
+"female","group E","some college","standard","completed","73","78","76"
+"female","group C","some high school","standard","completed","70","82","76"
+"male","group D","associate's degree","free/reduced","none","81","75","78"
+"male","group D","some college","free/reduced","none","63","61","60"
+"female","group D","high school","standard","none","67","72","74"
+"male","group B","high school","standard","none","60","68","60"
+"male","group B","high school","standard","none","62","55","54"
+"female","group C","some high school","free/reduced","completed","29","40","44"
+"male","group B","some college","standard","completed","62","66","68"
+"female","group E","master's degree","standard","completed","94","99","100"
+"male","group E","some college","standard","completed","85","75","68"
+"male","group D","associate's degree","free/reduced","none","77","78","73"
+"male","group A","high school","free/reduced","none","53","58","44"
+"male","group E","some college","free/reduced","none","93","90","83"
+"female","group C","associate's degree","standard","none","49","53","53"
+"female","group E","associate's degree","free/reduced","none","73","76","78"
+"female","group C","bachelor's degree","free/reduced","completed","66","74","81"
+"female","group D","associate's degree","standard","none","77","77","73"
+"female","group C","some high school","standard","none","49","63","56"
+"female","group D","some college","free/reduced","none","79","89","86"
+"female","group C","associate's degree","standard","completed","75","82","90"
+"female","group A","bachelor's degree","standard","none","59","72","70"
+"female","group D","associate's degree","standard","completed","57","78","79"
+"male","group C","high school","free/reduced","none","66","66","59"
+"female","group E","bachelor's degree","standard","completed","79","81","82"
+"female","group B","some high school","standard","none","57","67","72"
+"male","group A","bachelor's degree","standard","completed","87","84","87"
+"female","group D","some college","standard","none","63","64","67"
+"female","group B","some high school","free/reduced","completed","59","63","64"
+"male","group A","bachelor's degree","free/reduced","none","62","72","65"
+"male","group D","high school","standard","none","46","34","36"
+"male","group C","some college","standard","none","66","59","52"
+"male","group D","high school","standard","none","89","87","79"
+"female","group D","associate's degree","free/reduced","completed","42","61","58"
+"male","group C","some college","standard","completed","93","84","90"
+"female","group E","some high school","standard","completed","80","85","85"
+"female","group D","some college","standard","none","98","100","99"
+"male","group D","master's degree","standard","none","81","81","84"
+"female","group B","some high school","standard","completed","60","70","74"
+"female","group B","associate's degree","free/reduced","completed","76","94","87"
+"male","group C","associate's degree","standard","completed","73","78","72"
+"female","group C","associate's degree","standard","completed","96","96","99"
+"female","group C","high school","standard","none","76","76","74"
+"male","group E","associate's degree","free/reduced","completed","91","73","80"
+"female","group C","some college","free/reduced","none","62","72","70"
+"male","group D","some high school","free/reduced","completed","55","59","59"
+"female","group B","some high school","free/reduced","completed","74","90","88"
+"male","group C","high school","standard","none","50","48","42"
+"male","group B","some college","standard","none","47","43","41"
+"male","group E","some college","standard","completed","81","74","71"
+"female","group E","associate's degree","standard","completed","65","75","77"
+"male","group E","some high school","standard","completed","68","51","57"
+"female","group D","high school","free/reduced","none","73","92","84"
+"male","group C","some college","standard","none","53","39","37"
+"female","group B","associate's degree","free/reduced","completed","68","77","80"
+"male","group A","some high school","free/reduced","none","55","46","43"
+"female","group C","some college","standard","completed","87","89","94"
+"male","group D","some high school","standard","none","55","47","44"
+"female","group E","some college","free/reduced","none","53","58","57"
+"male","group C","master's degree","standard","none","67","57","59"
+"male","group C","associate's degree","standard","none","92","79","84"
+"female","group B","some college","free/reduced","completed","53","66","73"
+"male","group D","associate's degree","standard","none","81","71","73"
+"male","group C","high school","free/reduced","none","61","60","55"
+"male","group D","bachelor's degree","standard","none","80","73","72"
+"female","group A","associate's degree","free/reduced","none","37","57","56"
+"female","group C","high school","standard","none","81","84","82"
+"female","group C","associate's degree","standard","completed","59","73","72"
+"male","group B","some college","free/reduced","none","55","55","47"
+"male","group D","associate's degree","standard","none","72","79","74"
+"male","group D","high school","standard","none","69","75","71"
+"male","group C","some college","standard","none","69","64","68"
+"female","group C","bachelor's degree","free/reduced","none","50","60","59"
+"male","group B","some college","standard","completed","87","84","86"
+"male","group D","some high school","standard","completed","71","69","68"
+"male","group E","some college","standard","none","68","72","65"
+"male","group C","master's degree","free/reduced","completed","79","77","75"
+"female","group C","some high school","standard","completed","77","90","85"
+"male","group C","associate's degree","free/reduced","none","58","55","53"
+"female","group E","associate's degree","standard","none","84","95","92"
+"male","group D","some college","standard","none","55","58","52"
+"male","group E","bachelor's degree","free/reduced","completed","70","68","72"
+"female","group D","some college","free/reduced","completed","52","59","65"
+"male","group B","some college","standard","completed","69","77","77"
+"female","group C","high school","free/reduced","none","53","72","64"
+"female","group D","some high school","standard","none","48","58","54"
+"male","group D","some high school","standard","completed","78","81","86"
+"female","group B","high school","standard","none","62","62","63"
+"male","group D","some college","standard","none","60","63","59"
+"female","group B","high school","standard","none","74","72","72"
+"female","group C","high school","standard","completed","58","75","77"
+"male","group B","high school","standard","completed","76","62","60"
+"female","group D","some high school","standard","none","68","71","75"
+"male","group A","some college","free/reduced","none","58","60","57"
+"male","group B","high school","standard","none","52","48","49"
+"male","group D","bachelor's degree","standard","none","75","73","74"
+"female","group B","some high school","free/reduced","completed","52","67","72"
+"female","group C","bachelor's degree","free/reduced","none","62","78","79"
+"male","group B","some college","standard","none","66","65","60"
+"female","group B","some high school","free/reduced","none","49","58","55"
+"female","group B","high school","standard","none","66","72","70"
+"female","group C","some college","free/reduced","none","35","44","43"
+"female","group A","some college","standard","completed","72","79","82"
+"male","group E","associate's degree","standard","completed","94","85","82"
+"female","group D","associate's degree","free/reduced","none","46","56","57"
+"female","group B","master's degree","standard","none","77","90","84"
+"female","group B","high school","free/reduced","completed","76","85","82"
+"female","group C","associate's degree","standard","completed","52","59","62"
+"male","group C","bachelor's degree","standard","completed","91","81","79"
+"female","group B","some high school","standard","completed","32","51","44"
+"female","group E","some high school","free/reduced","none","72","79","77"
+"female","group B","some college","standard","none","19","38","32"
+"male","group C","associate's degree","free/reduced","none","68","65","61"
+"female","group C","master's degree","free/reduced","none","52","65","61"
+"female","group B","high school","standard","none","48","62","60"
+"female","group D","some college","free/reduced","none","60","66","70"
+"male","group D","high school","free/reduced","none","66","74","69"
+"male","group E","some high school","standard","completed","89","84","77"
+"female","group B","high school","standard","none","42","52","51"
+"female","group E","associate's degree","free/reduced","completed","57","68","73"
+"male","group D","high school","standard","none","70","70","70"
+"female","group E","associate's degree","free/reduced","none","70","84","81"
+"male","group E","some college","standard","none","69","60","54"
+"female","group C","associate's degree","standard","none","52","55","57"
+"male","group C","some high school","standard","completed","67","73","68"
+"male","group C","some high school","standard","completed","76","80","73"
+"female","group E","associate's degree","standard","none","87","94","95"
+"female","group B","some college","standard","none","82","85","87"
+"female","group C","some college","standard","none","73","76","78"
+"male","group A","some college","free/reduced","none","75","81","74"
+"female","group D","some college","free/reduced","none","64","74","75"
+"female","group E","high school","free/reduced","none","41","45","40"
+"male","group C","high school","standard","none","90","75","69"
+"male","group B","bachelor's degree","standard","none","59","54","51"
+"male","group A","some high school","standard","none","51","31","36"
+"male","group A","high school","free/reduced","none","45","47","49"
+"female","group C","master's degree","standard","completed","54","64","67"
+"male","group E","some high school","standard","completed","87","84","76"
+"female","group C","high school","standard","none","72","80","83"
+"male","group B","some high school","standard","completed","94","86","87"
+"female","group A","bachelor's degree","standard","none","45","59","64"
+"male","group D","bachelor's degree","free/reduced","completed","61","70","76"
+"female","group B","high school","free/reduced","none","60","72","68"
+"female","group C","some high school","standard","none","77","91","88"
+"female","group A","some high school","standard","completed","85","90","92"
+"female","group D","bachelor's degree","free/reduced","none","78","90","93"
+"male","group E","some college","free/reduced","completed","49","52","51"
+"female","group B","high school","free/reduced","none","71","87","82"
+"female","group C","some high school","free/reduced","none","48","58","52"
+"male","group C","high school","standard","none","62","67","58"
+"female","group C","associate's degree","free/reduced","completed","56","68","70"
+"female","group C","some high school","standard","none","65","69","76"
+"female","group D","some high school","free/reduced","completed","69","86","81"
+"male","group B","some high school","standard","none","68","54","53"
+"female","group A","some college","free/reduced","none","61","60","57"
+"female","group C","bachelor's degree","free/reduced","completed","74","86","89"
+"male","group A","bachelor's degree","standard","none","64","60","58"
+"female","group B","high school","standard","completed","77","82","89"
+"male","group B","some college","standard","none","58","50","45"
+"female","group C","high school","standard","completed","60","64","74"
+"male","group E","high school","standard","none","73","64","57"
+"female","group A","high school","standard","completed","75","82","79"
+"male","group B","associate's degree","free/reduced","completed","58","57","53"
+"female","group C","associate's degree","standard","none","66","77","73"
+"female","group D","high school","free/reduced","none","39","52","46"
+"male","group C","some high school","standard","none","64","58","51"
+"female","group B","high school","free/reduced","completed","23","44","36"
+"male","group B","some college","free/reduced","completed","74","77","76"
+"female","group D","some high school","free/reduced","completed","40","65","64"
+"male","group E","master's degree","standard","none","90","85","84"
+"male","group C","master's degree","standard","completed","91","85","85"
+"male","group D","high school","standard","none","64","54","50"
+"female","group C","high school","standard","none","59","72","68"
+"male","group D","associate's degree","standard","none","80","75","69"
+"male","group C","master's degree","standard","none","71","67","67"
+"female","group A","high school","standard","none","61","68","63"
+"female","group E","some college","standard","none","87","85","93"
+"male","group E","some high school","standard","none","82","67","61"
+"male","group C","some high school","standard","none","62","64","55"
+"female","group B","bachelor's degree","standard","none","97","97","96"
+"male","group B","some college","free/reduced","none","75","68","65"
+"female","group C","bachelor's degree","standard","none","65","79","81"
+"male","group B","high school","standard","completed","52","49","46"
+"male","group C","associate's degree","free/reduced","none","87","73","72"
+"female","group C","associate's degree","standard","none","53","62","53"
+"female","group E","master's degree","free/reduced","none","81","86","87"
+"male","group D","bachelor's degree","free/reduced","completed","39","42","38"
+"female","group C","some college","standard","completed","71","71","80"
+"male","group C","associate's degree","standard","none","97","93","91"
+"male","group D","some college","standard","completed","82","82","88"
+"male","group C","high school","free/reduced","none","59","53","52"
+"male","group B","associate's degree","standard","none","61","42","41"
+"male","group E","associate's degree","free/reduced","completed","78","74","72"
+"male","group C","associate's degree","free/reduced","none","49","51","51"
+"male","group B","high school","standard","none","59","58","47"
+"female","group C","some college","standard","completed","70","72","76"
+"male","group B","associate's degree","standard","completed","82","84","78"
+"male","group E","associate's degree","free/reduced","none","90","90","82"
+"female","group C","bachelor's degree","free/reduced","none","43","62","61"
+"male","group C","some college","free/reduced","none","80","64","66"
+"male","group D","some college","standard","none","81","82","84"
+"male","group C","some high school","standard","none","57","61","54"
+"female","group D","some high school","standard","none","59","72","80"
+"female","group D","associate's degree","standard","none","64","76","74"
+"male","group C","bachelor's degree","standard","completed","63","64","66"
+"female","group E","bachelor's degree","standard","completed","71","70","70"
+"female","group B","high school","free/reduced","none","64","73","71"
+"male","group D","bachelor's degree","free/reduced","none","55","46","44"
+"female","group E","associate's degree","standard","none","51","51","54"
+"female","group C","associate's degree","standard","completed","62","76","80"
+"female","group E","associate's degree","standard","completed","93","100","95"
+"male","group C","high school","free/reduced","none","54","72","59"
+"female","group D","some college","free/reduced","none","69","65","74"
+"male","group D","high school","free/reduced","none","44","51","48"
+"female","group E","some college","standard","completed","86","85","91"
+"female","group E","associate's degree","standard","none","85","92","85"
+"female","group A","master's degree","free/reduced","none","50","67","73"
+"male","group D","some high school","standard","completed","88","74","75"
+"female","group E","associate's degree","standard","none","59","62","69"
+"female","group E","some high school","free/reduced","none","32","34","38"
+"male","group B","high school","free/reduced","none","36","29","27"
+"female","group B","some high school","free/reduced","completed","63","78","79"
+"male","group D","associate's degree","standard","completed","67","54","63"
+"female","group D","some high school","standard","completed","65","78","82"
+"male","group D","master's degree","standard","none","85","84","89"
+"female","group C","master's degree","standard","none","73","78","74"
+"female","group A","high school","free/reduced","completed","34","48","41"
+"female","group D","bachelor's degree","free/reduced","completed","93","100","100"
+"female","group D","some high school","free/reduced","none","67","84","84"
+"male","group D","some college","standard","none","88","77","77"
+"male","group B","high school","standard","none","57","48","51"
+"female","group D","some college","standard","completed","79","84","91"
+"female","group C","bachelor's degree","free/reduced","none","67","75","72"
+"male","group E","bachelor's degree","standard","completed","70","64","70"
+"male","group D","bachelor's degree","free/reduced","none","50","42","48"
+"female","group A","some college","standard","none","69","84","82"
+"female","group C","bachelor's degree","standard","completed","52","61","66"
+"female","group C","bachelor's degree","free/reduced","completed","47","62","66"
+"female","group B","associate's degree","free/reduced","none","46","61","55"
+"female","group E","some college","standard","none","68","70","66"
+"male","group E","bachelor's degree","standard","completed","100","100","100"
+"female","group C","high school","standard","none","44","61","52"
+"female","group C","associate's degree","standard","completed","57","77","80"
+"male","group B","some college","standard","completed","91","96","91"
+"male","group D","high school","free/reduced","none","69","70","67"
+"female","group C","high school","free/reduced","none","35","53","46"
+"male","group D","high school","standard","none","72","66","66"
+"female","group B","associate's degree","free/reduced","none","54","65","65"
+"male","group D","high school","free/reduced","none","74","70","69"
+"male","group E","some high school","standard","completed","74","64","60"
+"male","group E","associate's degree","free/reduced","none","64","56","52"
+"female","group D","high school","free/reduced","completed","65","61","71"
+"male","group E","associate's degree","free/reduced","completed","46","43","44"
+"female","group C","some high school","free/reduced","none","48","56","51"
+"male","group C","some college","free/reduced","completed","67","74","70"
+"male","group D","some college","free/reduced","none","62","57","62"
+"male","group D","associate's degree","free/reduced","completed","61","71","73"
+"male","group C","bachelor's degree","free/reduced","completed","70","75","74"
+"male","group C","associate's degree","standard","completed","98","87","90"
+"male","group D","some college","free/reduced","none","70","63","58"
+"male","group A","associate's degree","standard","none","67","57","53"
+"female","group E","high school","free/reduced","none","57","58","57"
+"male","group D","some college","standard","completed","85","81","85"
+"male","group D","some high school","standard","completed","77","68","69"
+"male","group C","master's degree","free/reduced","completed","72","66","72"
+"female","group D","master's degree","standard","none","78","91","96"
+"male","group C","high school","standard","none","81","66","64"
+"male","group A","some high school","free/reduced","completed","61","62","61"
+"female","group B","high school","standard","none","58","68","61"
+"female","group C","associate's degree","standard","none","54","61","58"
+"male","group B","high school","standard","none","82","82","80"
+"female","group D","some college","free/reduced","none","49","58","60"
+"male","group B","some high school","free/reduced","completed","49","50","52"
+"female","group E","high school","free/reduced","completed","57","75","73"
+"male","group E","high school","standard","none","94","73","71"
+"female","group D","some college","standard","completed","75","77","83"
+"female","group E","some high school","free/reduced","none","74","74","72"
+"male","group C","high school","standard","completed","58","52","54"
+"female","group C","some college","standard","none","62","69","69"
+"male","group E","associate's degree","standard","none","72","57","62"
+"male","group C","some college","standard","none","84","87","81"
+"female","group D","master's degree","standard","none","92","100","100"
+"female","group D","high school","standard","none","45","63","59"
+"male","group C","high school","standard","none","75","81","71"
+"female","group A","some college","standard","none","56","58","64"
+"female","group D","some high school","free/reduced","none","48","54","53"
+"female","group E","associate's degree","standard","none","100","100","100"
+"female","group C","some high school","free/reduced","completed","65","76","75"
+"male","group D","some college","standard","none","72","57","58"
+"female","group D","some college","standard","none","62","70","72"
+"male","group A","some high school","standard","completed","66","68","64"
+"male","group C","some college","standard","none","63","63","60"
+"female","group E","associate's degree","standard","none","68","76","67"
+"female","group B","bachelor's degree","standard","none","75","84","80"
+"female","group D","bachelor's degree","standard","none","89","100","100"
+"male","group C","some high school","standard","completed","78","72","69"
+"female","group A","high school","free/reduced","completed","53","50","60"
+"female","group D","some college","free/reduced","none","49","65","61"
+"female","group A","some college","standard","none","54","63","67"
+"female","group C","some college","standard","completed","64","82","77"
+"male","group B","some college","free/reduced","completed","60","62","60"
+"male","group C","associate's degree","standard","none","62","65","58"
+"male","group D","high school","standard","completed","55","41","48"
+"female","group C","associate's degree","standard","none","91","95","94"
+"female","group B","high school","free/reduced","none","8","24","23"
+"male","group D","some high school","standard","none","81","78","78"
+"male","group B","some high school","standard","completed","79","85","86"
+"female","group A","some college","standard","completed","78","87","91"
+"female","group C","some high school","standard","none","74","75","82"
+"male","group A","high school","standard","none","57","51","54"
+"female","group C","associate's degree","standard","none","40","59","51"
+"male","group E","some high school","standard","completed","81","75","76"
+"female","group A","some high school","free/reduced","none","44","45","45"
+"female","group D","some college","free/reduced","completed","67","86","83"
+"male","group E","high school","free/reduced","completed","86","81","75"
+"female","group B","some high school","standard","completed","65","82","78"
+"female","group D","associate's degree","free/reduced","none","55","76","76"
+"female","group D","bachelor's degree","free/reduced","none","62","72","74"
+"male","group A","high school","standard","none","63","63","62"
+"female","group E","master's degree","standard","completed","88","99","95"
+"male","group C","high school","free/reduced","none","62","55","55"
+"female","group C","high school","free/reduced","completed","59","71","65"
+"female","group D","some college","standard","completed","68","78","77"
+"female","group D","some college","free/reduced","none","77","86","86"
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..aefcc57
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,10 @@
+pandas
+numpy
+seaborn
+matplotlib
+scikit-learn
+catboost
+xgboost
+dill
+Flask
+
diff --git a/setup.py b/setup.py
new file mode 100644
index 0000000..5801cc0
--- /dev/null
+++ b/setup.py
@@ -0,0 +1,27 @@
+from setuptools import find_packages,setup
+from typing import List
+
+HYPEN_E_DOT='-e .'
+def get_requirements(file_path:str)->List[str]:
+ '''
+ this function will return the list of requirements
+ '''
+ requirements=[]
+ with open(file_path) as file_obj:
+ requirements=file_obj.readlines()
+ requirements=[req.replace("\n","") for req in requirements]
+
+ if HYPEN_E_DOT in requirements:
+ requirements.remove(HYPEN_E_DOT)
+
+ return requirements
+
+setup(
+name='mlproject',
+version='0.0.1',
+author='Krish',
+author_email='krishnaik06@gmail.com',
+packages=find_packages(),
+install_requires=get_requirements('requirements.txt')
+
+)
\ No newline at end of file
diff --git a/src/__init__.py b/src/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/components/__init__.py b/src/components/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/components/data_ingestion.py b/src/components/data_ingestion.py
new file mode 100644
index 0000000..d2628a6
--- /dev/null
+++ b/src/components/data_ingestion.py
@@ -0,0 +1,63 @@
+import os
+import sys
+from src.exception import CustomException
+from src.logger import logging
+import pandas as pd
+
+from sklearn.model_selection import train_test_split
+from dataclasses import dataclass
+
+from src.components.data_transformation import DataTransformation
+from src.components.data_transformation import DataTransformationConfig
+
+from src.components.model_trainer import ModelTrainerConfig
+from src.components.model_trainer import ModelTrainer
+@dataclass
+class DataIngestionConfig:
+ train_data_path: str=os.path.join('artifacts',"train.csv")
+ test_data_path: str=os.path.join('artifacts',"test.csv")
+ raw_data_path: str=os.path.join('artifacts',"data.csv")
+
+class DataIngestion:
+ def __init__(self):
+ self.ingestion_config=DataIngestionConfig()
+
+ def initiate_data_ingestion(self):
+ logging.info("Entered the data ingestion method or component")
+ try:
+ df=pd.read_csv('notebook\data\stud.csv')
+ logging.info('Read the dataset as dataframe')
+
+ os.makedirs(os.path.dirname(self.ingestion_config.train_data_path),exist_ok=True)
+
+ df.to_csv(self.ingestion_config.raw_data_path,index=False,header=True)
+
+ logging.info("Train test split initiated")
+ train_set,test_set=train_test_split(df,test_size=0.2,random_state=42)
+
+ train_set.to_csv(self.ingestion_config.train_data_path,index=False,header=True)
+
+ test_set.to_csv(self.ingestion_config.test_data_path,index=False,header=True)
+
+ logging.info("Inmgestion of the data iss completed")
+
+ return(
+ self.ingestion_config.train_data_path,
+ self.ingestion_config.test_data_path
+
+ )
+ except Exception as e:
+ raise CustomException(e,sys)
+
+if __name__=="__main__":
+ obj=DataIngestion()
+ train_data,test_data=obj.initiate_data_ingestion()
+
+ data_transformation=DataTransformation()
+ train_arr,test_arr,_=data_transformation.initiate_data_transformation(train_data,test_data)
+
+ modeltrainer=ModelTrainer()
+ print(modeltrainer.initiate_model_trainer(train_arr,test_arr))
+
+
+
diff --git a/src/components/data_transformation.py b/src/components/data_transformation.py
new file mode 100644
index 0000000..e3a098f
--- /dev/null
+++ b/src/components/data_transformation.py
@@ -0,0 +1,124 @@
+import sys
+from dataclasses import dataclass
+
+import numpy as np
+import pandas as pd
+from sklearn.compose import ColumnTransformer
+from sklearn.impute import SimpleImputer
+from sklearn.pipeline import Pipeline
+from sklearn.preprocessing import OneHotEncoder,StandardScaler
+
+from src.exception import CustomException
+from src.logger import logging
+import os
+
+from src.utils import save_object
+
+@dataclass
+class DataTransformationConfig:
+ preprocessor_obj_file_path=os.path.join('artifacts',"proprocessor.pkl")
+
+class DataTransformation:
+ def __init__(self):
+ self.data_transformation_config=DataTransformationConfig()
+
+ def get_data_transformer_object(self):
+ '''
+ This function si responsible for data trnasformation
+
+ '''
+ try:
+ numerical_columns = ["writing_score", "reading_score"]
+ categorical_columns = [
+ "gender",
+ "race_ethnicity",
+ "parental_level_of_education",
+ "lunch",
+ "test_preparation_course",
+ ]
+
+ num_pipeline= Pipeline(
+ steps=[
+ ("imputer",SimpleImputer(strategy="median")),
+ ("scaler",StandardScaler())
+
+ ]
+ )
+
+ cat_pipeline=Pipeline(
+
+ steps=[
+ ("imputer",SimpleImputer(strategy="most_frequent")),
+ ("one_hot_encoder",OneHotEncoder()),
+ ("scaler",StandardScaler(with_mean=False))
+ ]
+
+ )
+
+ logging.info(f"Categorical columns: {categorical_columns}")
+ logging.info(f"Numerical columns: {numerical_columns}")
+
+ preprocessor=ColumnTransformer(
+ [
+ ("num_pipeline",num_pipeline,numerical_columns),
+ ("cat_pipelines",cat_pipeline,categorical_columns)
+
+ ]
+
+
+ )
+
+ return preprocessor
+
+ except Exception as e:
+ raise CustomException(e,sys)
+
+ def initiate_data_transformation(self,train_path,test_path):
+
+ try:
+ train_df=pd.read_csv(train_path)
+ test_df=pd.read_csv(test_path)
+
+ logging.info("Read train and test data completed")
+
+ logging.info("Obtaining preprocessing object")
+
+ preprocessing_obj=self.get_data_transformer_object()
+
+ target_column_name="math_score"
+ numerical_columns = ["writing_score", "reading_score"]
+
+ input_feature_train_df=train_df.drop(columns=[target_column_name],axis=1)
+ target_feature_train_df=train_df[target_column_name]
+
+ input_feature_test_df=test_df.drop(columns=[target_column_name],axis=1)
+ target_feature_test_df=test_df[target_column_name]
+
+ logging.info(
+ f"Applying preprocessing object on training dataframe and testing dataframe."
+ )
+
+ input_feature_train_arr=preprocessing_obj.fit_transform(input_feature_train_df)
+ input_feature_test_arr=preprocessing_obj.transform(input_feature_test_df)
+
+ train_arr = np.c_[
+ input_feature_train_arr, np.array(target_feature_train_df)
+ ]
+ test_arr = np.c_[input_feature_test_arr, np.array(target_feature_test_df)]
+
+ logging.info(f"Saved preprocessing object.")
+
+ save_object(
+
+ file_path=self.data_transformation_config.preprocessor_obj_file_path,
+ obj=preprocessing_obj
+
+ )
+
+ return (
+ train_arr,
+ test_arr,
+ self.data_transformation_config.preprocessor_obj_file_path,
+ )
+ except Exception as e:
+ raise CustomException(e,sys)
diff --git a/src/components/model_trainer.py b/src/components/model_trainer.py
new file mode 100644
index 0000000..72f8c5f
--- /dev/null
+++ b/src/components/model_trainer.py
@@ -0,0 +1,119 @@
+import os
+import sys
+from dataclasses import dataclass
+
+from catboost import CatBoostRegressor
+from sklearn.ensemble import (
+ AdaBoostRegressor,
+ GradientBoostingRegressor,
+ RandomForestRegressor,
+)
+from sklearn.linear_model import LinearRegression
+from sklearn.metrics import r2_score
+from sklearn.neighbors import KNeighborsRegressor
+from sklearn.tree import DecisionTreeRegressor
+from xgboost import XGBRegressor
+
+from src.exception import CustomException
+from src.logger import logging
+
+from src.utils import save_object,evaluate_models
+
+@dataclass
+class ModelTrainerConfig:
+ trained_model_file_path=os.path.join("artifacts","model.pkl")
+
+class ModelTrainer:
+ def __init__(self):
+ self.model_trainer_config=ModelTrainerConfig()
+
+
+ def initiate_model_trainer(self,train_array,test_array):
+ try:
+ logging.info("Split training and test input data")
+ X_train,y_train,X_test,y_test=(
+ train_array[:,:-1],
+ train_array[:,-1],
+ test_array[:,:-1],
+ test_array[:,-1]
+ )
+ models = {
+ "Random Forest": RandomForestRegressor(),
+ "Decision Tree": DecisionTreeRegressor(),
+ "Gradient Boosting": GradientBoostingRegressor(),
+ "Linear Regression": LinearRegression(),
+ "XGBRegressor": XGBRegressor(),
+ "CatBoosting Regressor": CatBoostRegressor(verbose=False),
+ "AdaBoost Regressor": AdaBoostRegressor(),
+ }
+ params={
+ "Decision Tree": {
+ 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
+ # 'splitter':['best','random'],
+ # 'max_features':['sqrt','log2'],
+ },
+ "Random Forest":{
+ # 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
+
+ # 'max_features':['sqrt','log2',None],
+ 'n_estimators': [8,16,32,64,128,256]
+ },
+ "Gradient Boosting":{
+ # 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'],
+ 'learning_rate':[.1,.01,.05,.001],
+ 'subsample':[0.6,0.7,0.75,0.8,0.85,0.9],
+ # 'criterion':['squared_error', 'friedman_mse'],
+ # 'max_features':['auto','sqrt','log2'],
+ 'n_estimators': [8,16,32,64,128,256]
+ },
+ "Linear Regression":{},
+ "XGBRegressor":{
+ 'learning_rate':[.1,.01,.05,.001],
+ 'n_estimators': [8,16,32,64,128,256]
+ },
+ "CatBoosting Regressor":{
+ 'depth': [6,8,10],
+ 'learning_rate': [0.01, 0.05, 0.1],
+ 'iterations': [30, 50, 100]
+ },
+ "AdaBoost Regressor":{
+ 'learning_rate':[.1,.01,0.5,.001],
+ # 'loss':['linear','square','exponential'],
+ 'n_estimators': [8,16,32,64,128,256]
+ }
+
+ }
+
+ model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test,
+ models=models,param=params)
+
+ ## To get best model score from dict
+ best_model_score = max(sorted(model_report.values()))
+
+ ## To get best model name from dict
+
+ best_model_name = list(model_report.keys())[
+ list(model_report.values()).index(best_model_score)
+ ]
+ best_model = models[best_model_name]
+
+ if best_model_score<0.6:
+ raise CustomException("No best model found")
+ logging.info(f"Best found model on both training and testing dataset")
+
+ save_object(
+ file_path=self.model_trainer_config.trained_model_file_path,
+ obj=best_model
+ )
+
+ predicted=best_model.predict(X_test)
+
+ r2_square = r2_score(y_test, predicted)
+ return r2_square
+
+
+
+
+
+ except Exception as e:
+ raise CustomException(e,sys)
\ No newline at end of file
diff --git a/src/exception.py b/src/exception.py
new file mode 100644
index 0000000..da2f04a
--- /dev/null
+++ b/src/exception.py
@@ -0,0 +1,24 @@
+import sys
+from src.logger import logging
+
+def error_message_detail(error,error_detail:sys):
+ _,_,exc_tb=error_detail.exc_info()
+ file_name=exc_tb.tb_frame.f_code.co_filename
+ error_message="Error occured in python script name [{0}] line number [{1}] error message[{2}]".format(
+ file_name,exc_tb.tb_lineno,str(error))
+
+ return error_message
+
+
+
+class CustomException(Exception):
+ def __init__(self,error_message,error_detail:sys):
+ super().__init__(error_message)
+ self.error_message=error_message_detail(error_message,error_detail=error_detail)
+
+ def __str__(self):
+ return self.error_message
+
+
+
+
\ No newline at end of file
diff --git a/src/logger.py b/src/logger.py
new file mode 100644
index 0000000..26aafc1
--- /dev/null
+++ b/src/logger.py
@@ -0,0 +1,17 @@
+import logging
+import os
+from datetime import datetime
+
+LOG_FILE=f"{datetime.now().strftime('%m_%d_%Y_%H_%M_%S')}.log"
+logs_path=os.path.join(os.getcwd(),"logs",LOG_FILE)
+os.makedirs(logs_path,exist_ok=True)
+
+LOG_FILE_PATH=os.path.join(logs_path,LOG_FILE)
+
+logging.basicConfig(
+ filename=LOG_FILE_PATH,
+ format="[ %(asctime)s ] %(lineno)d %(name)s - %(levelname)s - %(message)s",
+ level=logging.INFO,
+
+
+)
diff --git a/src/pipeline/__init__.py b/src/pipeline/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/pipeline/predict_pipeline.py b/src/pipeline/predict_pipeline.py
new file mode 100644
index 0000000..be2a0ee
--- /dev/null
+++ b/src/pipeline/predict_pipeline.py
@@ -0,0 +1,67 @@
+import sys
+import pandas as pd
+from src.exception import CustomException
+from src.utils import load_object
+import os
+
+
+class PredictPipeline:
+ def __init__(self):
+ pass
+
+ def predict(self,features):
+ try:
+ model_path=os.path.join("artifacts","model.pkl")
+ preprocessor_path=os.path.join('artifacts','preprocessor.pkl')
+ model=load_object(file_path=model_path)
+ preprocessor=load_object(file_path=preprocessor_path)
+ data_scaled=preprocessor.transform(features)
+ preds=model.predict(data_scaled)
+ return preds
+
+ except Exception as e:
+ raise CustomException(e,sys)
+
+
+
+class CustomData:
+ def __init__( self,
+ gender: str,
+ race_ethnicity: str,
+ parental_level_of_education,
+ lunch: str,
+ test_preparation_course: str,
+ reading_score: int,
+ writing_score: int):
+
+ self.gender = gender
+
+ self.race_ethnicity = race_ethnicity
+
+ self.parental_level_of_education = parental_level_of_education
+
+ self.lunch = lunch
+
+ self.test_preparation_course = test_preparation_course
+
+ self.reading_score = reading_score
+
+ self.writing_score = writing_score
+
+ def get_data_as_data_frame(self):
+ try:
+ custom_data_input_dict = {
+ "gender": [self.gender],
+ "race_ethnicity": [self.race_ethnicity],
+ "parental_level_of_education": [self.parental_level_of_education],
+ "lunch": [self.lunch],
+ "test_preparation_course": [self.test_preparation_course],
+ "reading_score": [self.reading_score],
+ "writing_score": [self.writing_score],
+ }
+
+ return pd.DataFrame(custom_data_input_dict)
+
+ except Exception as e:
+ raise CustomException(e, sys)
+
diff --git a/src/utils.py b/src/utils.py
new file mode 100644
index 0000000..84bc0be
--- /dev/null
+++ b/src/utils.py
@@ -0,0 +1,61 @@
+import os
+import sys
+
+import numpy as np
+import pandas as pd
+import dill
+from sklearn.metrics import r2_score
+from sklearn.model_selection import GridSearchCV
+
+from src.exception import CustomException
+
+def save_object(file_path, obj):
+ try:
+ dir_path = os.path.dirname(file_path)
+
+ os.makedirs(dir_path, exist_ok=True)
+
+ with open(file_path, "wb") as file_obj:
+ dill.dump(obj, file_obj)
+
+ except Exception as e:
+ raise CustomException(e, sys)
+
+def evaluate_models(X_train, y_train,X_test,y_test,models,param):
+ try:
+ report = {}
+
+ for i in range(len(list(models))):
+ model = list(models.values())[i]
+ para=param[list(models.keys())[i]]
+
+ gs = GridSearchCV(model,para,cv=3)
+ gs.fit(X_train,y_train)
+
+ model.set_params(**gs.best_params_)
+ model.fit(X_train,y_train)
+
+ #model.fit(X_train, y_train) # Train model
+
+ y_train_pred = model.predict(X_train)
+
+ y_test_pred = model.predict(X_test)
+
+ train_model_score = r2_score(y_train, y_train_pred)
+
+ test_model_score = r2_score(y_test, y_test_pred)
+
+ report[list(models.keys())[i]] = test_model_score
+
+ return report
+
+ except Exception as e:
+ raise CustomException(e, sys)
+
+def load_object(file_path):
+ try:
+ with open(file_path, "rb") as file_obj:
+ return dill.load(file_obj)
+
+ except Exception as e:
+ raise CustomException(e, sys)
\ No newline at end of file
diff --git a/templates/home.html b/templates/home.html
new file mode 100644
index 0000000..ef031c2
--- /dev/null
+++ b/templates/home.html
@@ -0,0 +1,111 @@
+
+
+
+
Student Exam Performance Indicator
+
+
+
+ THE prediction is {{results}}
+
+
+
\ No newline at end of file
diff --git a/templates/index.html b/templates/index.html
new file mode 100644
index 0000000..6afd819
--- /dev/null
+++ b/templates/index.html
@@ -0,0 +1 @@
+
Welcome to the home page
\ No newline at end of file