forked from PaddlePaddle/awesome-DeepLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
125 lines (100 loc) · 4.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import argparse
from pprint import pprint
from attrdict import AttrDict
import paddle
from paddlenlp.transformers import LinearDecayWithWarmup
from paddlenlp.transformers import TransformerModel, InferTransformerModel, CrossEntropyCriterion, position_encoding_init
from paddlenlp.utils.log import logger
from paddlenlp.datasets import DatasetBuilder
from paddlenlp.transformers import ElectraForTokenClassification, ElectraTokenizer
from paddlenlp.data import Stack, Tuple, Pad, Dict
from dataloader import create_train_dataloader, load_dataset
from utils import compute_metrics, evaluate
import paddle.distributed as dist
import yaml
import argparse
from pprint import pprint
from attrdict import AttrDict
import paddle
from paddle.io import DataLoader
import os
import pandas as pd
from sklearn.metrics import classification_report
from functools import partial
def do_train(args):
last_step = args.num_train_epochs * len(train_data_loader)
tic_train = time.time()
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_data_loader):
args.global_step += 1
# print('~~~~~~~~~~~~~~~~~~~~~args.global_step',args.global_step)
input_ids, token_type_ids, _, labels = batch
logits = model(input_ids, token_type_ids)
loss = loss_fct(logits, labels)
avg_loss = paddle.mean(loss)
if args.global_step % args.logging_steps == 0:
print("global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
% (args.global_step, epoch, step, avg_loss,
args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
avg_loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if args.global_step % args.save_steps == 0 or args.global_step == last_step:
if paddle.distributed.get_rank() == 0:
evaluate(model, loss_fct, valid_data_loader, label_num)
paddle.save(model.state_dict(),os.path.join(args.output_dir, "model_%d.pdparams" % args.global_step))
# 模型训练
if __name__ == '__main__':
# 读入参数
yaml_file = './electra.base.yaml'
with open(yaml_file, 'rt') as f:
args = AttrDict(yaml.safe_load(f))
paddle.set_device(args.device) # 使用gpu,相应地,安装paddlepaddle-gpu
train_data_loader, valid_data_loader = create_train_dataloader(args)
# 加载dataset
# Create dataset, tokenizer and dataloader.
train_ds, test_ds = load_dataset('TEDTalk', splits=('train', 'test'), lazy=False)
label_list = train_ds.label_list
label_num = len(label_list)
# 加载预训练模型
# Define the model netword and its loss
model = ElectraForTokenClassification.from_pretrained(args.model_name_or_path, num_classes= label_num)
# 设置AdamW优化器
num_training_steps = args.max_steps if args.max_steps > 0 else len(train_data_loader) * args.num_train_epochs
lr_scheduler = LinearDecayWithWarmup(float(args.learning_rate), num_training_steps, args.warmup_steps)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=float(args.adam_epsilon),
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
# 设置损失函数 - Cross Entropy
loss_fct = paddle.nn.loss.CrossEntropyLoss(ignore_index=args.ignore_label)
# 设置评估方式
metric = paddle.metric.Accuracy()
# 开始训练
do_train(args)