forked from PaddlePaddle/awesome-DeepLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
227 lines (184 loc) · 6.92 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: UTF-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
import argparse
from pprint import pprint
from attrdict import AttrDict
import paddle
from paddle.io import DataLoader
import paddle
from paddlenlp.transformers import LinearDecayWithWarmup
from paddlenlp.transformers import TransformerModel, InferTransformerModel, CrossEntropyCriterion, position_encoding_init
from paddlenlp.utils.log import logger
from paddlenlp.datasets import DatasetBuilder
from paddlenlp.transformers import ElectraForTokenClassification, ElectraTokenizer
from paddlenlp.data import Stack, Tuple, Pad, Dict
import os
import pandas as pd
from sklearn.metrics import classification_report
from functools import partial
class TEDTalk(DatasetBuilder):
'''
构建针对TEDTalk数据集的dataset的类
'''
SPLITS = {
'train': 'train.tsv',
'dev':'dev.tsv',
'test': 'test.tsv'
}
def _get_data(self, mode, **kwargs):
default_root='.'
self.mode=mode
filename = self.SPLITS[mode]
fullname = os.path.join(default_root, filename)
return fullname
def _read(self, filename, *args):
df=pd.read_csv(filename,sep='\t')
for idx,row in df.iterrows():
text=row['text_a']
if(type(text)==float):
print(text)
continue
tokens=row['text_a'].split()
tags=row['label'].split()
# if(self.mode=='train'):
# tags=row['label'].split()
# else:
# tags = []
yield {"tokens": tokens, "labels": tags}
def get_labels(self):
return ["0", "1", "2", "3"]
def load_dataset(path_or_read_func,
name=None,
data_files=None,
splits=None,
lazy=None,
**kwargs):
'''
根据需要的数据集类型,加载相应TEDTalk dataset
'''
reader_cls = TEDTalk
print(reader_cls)
if not name:
reader_instance = reader_cls(lazy=lazy, **kwargs)
else:
reader_instance = reader_cls(lazy=lazy, name=name, **kwargs)
datasets = reader_instance.read_datasets(data_files=data_files, splits=splits)
return datasets
def tokenize_and_align_labels(example, tokenizer, no_entity_id, max_seq_len=512):
labels = example['labels']
example = example['tokens']
# print(labels)
tokenized_input = tokenizer(
example,
return_length=True,
is_split_into_words=True,
max_seq_len=max_seq_len)
# -2 for [CLS] and [SEP]
if len(tokenized_input['input_ids']) - 2 < len(labels):
labels = labels[:len(tokenized_input['input_ids']) - 2]
tokenized_input['labels'] = [no_entity_id] + labels + [no_entity_id]
tokenized_input['labels'] += [no_entity_id] * (
len(tokenized_input['input_ids']) - len(tokenized_input['labels']))
# print(tokenized_input)
return tokenized_input
def create_train_dataloader(args):
'''
构建用于训练的dataloader
Create dataset, tokenizer and dataloader.
input:
args: 配置文件提供的参数借口
return:
train_data_loader:训练数据data loader
valid_data_loader:验证数据data loader
'''
# 加载dataset
train_ds, valid_ds = load_dataset('TEDTalk', splits=('train', 'dev'), lazy=False)
label_list = train_ds.label_list
label_num = len(label_list)
# no_entity_id = label_num - 1
no_entity_id=0
print(label_list)
# 构建dataloader
model_name_or_path=args.model_name_or_path
tokenizer = ElectraTokenizer.from_pretrained(model_name_or_path)
trans_func = partial(
tokenize_and_align_labels,
tokenizer=tokenizer,
no_entity_id=no_entity_id,
max_seq_len=args.max_seq_length)
train_ds = train_ds.map(trans_func)
batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype='int32'), # input
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype='int32'), # segment
'seq_len': Stack(dtype='int64'), # seq_len
'labels': Pad(axis=0, pad_val=args.ignore_label, dtype='int64') # label
}): fn(samples)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True, drop_last=True)
train_data_loader = DataLoader(
dataset=train_ds,
collate_fn=batchify_fn,
num_workers=0,
batch_sampler=train_batch_sampler,
return_list=True)
valid_ds = valid_ds.map(trans_func)
valid_data_loader = DataLoader(
dataset=valid_ds,
collate_fn=batchify_fn,
num_workers=0,
batch_size=args.batch_size,
return_list=True)
# 测试
# for index,data in enumerate(train_data_loader):
# # print(len(data))
# print(index)
# print(data)
# break
return train_data_loader, valid_data_loader
def create_test_dataloader(args):
'''
构建测试用的dataloader
Create dataset, tokenizer and dataloader.
input:
args: 配置文件提供的参数借口
return:
test_data_loader
'''
no_entity_id=0
# 加载dataset
test_ds = load_dataset('TEDTalk', splits=('test'), lazy=False)
# 构建dataloader
model_name_or_path=args.model_name_or_path
tokenizer = ElectraTokenizer.from_pretrained(model_name_or_path)
trans_func = partial(
tokenize_and_align_labels,
tokenizer=tokenizer,
no_entity_id=no_entity_id,
max_seq_len=args.max_seq_length)
batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype='int32'), # input
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype='int32'), # segment
'seq_len': Stack(dtype='int64'), # seq_len
'labels': Pad(axis=0, pad_val=args.ignore_label, dtype='int64') # label
}): fn(samples)
test_ds = test_ds.map(trans_func)
test_data_loader = DataLoader(
dataset=test_ds,
collate_fn=batchify_fn,
num_workers=0,
batch_size=args.batch_size,
return_list=True)
return test_data_loader