forked from PaddlePaddle/awesome-DeepLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
212 lines (181 loc) · 7.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import logging
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict
import paddle
from paddlenlp.transformers import TransformerModel, InferTransformerModel, CrossEntropyCriterion, position_encoding_init
from paddlenlp.utils.log import logger
from dataloader import create_data_loader
import paddle.distributed as dist
def do_train(args,train_loader,eval_loader):
if args.use_gpu:
rank = dist.get_rank()
trainer_count = dist.get_world_size()
else:
rank = 0
trainer_count = 1
paddle.set_device("cpu")
if trainer_count > 1:
dist.init_parallel_env()
# Set seed for CE
random_seed = eval(str(args.random_seed))
if random_seed is not None:
paddle.seed(random_seed)
# Define model
transformer = TransformerModel(
src_vocab_size=args.src_vocab_size,
trg_vocab_size=args.trg_vocab_size,
max_length=args.max_length + 1,
n_layer=args.n_layer,
n_head=args.n_head,
d_model=args.d_model,
d_inner_hid=args.d_inner_hid,
dropout=args.dropout,
weight_sharing=args.weight_sharing,
bos_id=args.bos_idx,
eos_id=args.eos_idx)
# Define loss
criterion = CrossEntropyCriterion(args.label_smooth_eps, args.bos_idx)
scheduler = paddle.optimizer.lr.NoamDecay(
args.d_model, args.warmup_steps, args.learning_rate, last_epoch=0)
# Define optimizer
optimizer = paddle.optimizer.Adam(
learning_rate=scheduler,
beta1=args.beta1,
beta2=args.beta2,
epsilon=float(args.eps),
parameters=transformer.parameters())
# Init from some checkpoint, to resume the previous training
if args.init_from_checkpoint:
model_dict = paddle.load(
os.path.join(args.init_from_checkpoint, "transformer.pdparams"))
opt_dict = paddle.load(
os.path.join(args.init_from_checkpoint, "transformer.pdopt"))
transformer.set_state_dict(model_dict)
optimizer.set_state_dict(opt_dict)
print("loaded from checkpoint.")
# Init from some pretrain models, to better solve the current task
if args.init_from_pretrain_model:
model_dict = paddle.load(
os.path.join(args.init_from_pretrain_model, "transformer.pdparams"))
transformer.set_state_dict(model_dict)
print("loaded from pre-trained model.")
if trainer_count > 1:
transformer = paddle.DataParallel(transformer)
# The best cross-entropy value with label smoothing
loss_normalizer = -(
(1. - args.label_smooth_eps) * np.log(
(1. - args.label_smooth_eps)) + args.label_smooth_eps *
np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))
ce_time = []
ce_ppl = []
step_idx = 0
# Train loop
for pass_id in range(args.epoch):
epoch_start = time.time()
batch_id = 0
batch_start = time.time()
for input_data in train_loader:
(src_word, trg_word, lbl_word) = input_data
logits = transformer(src_word=src_word, trg_word=trg_word)
sum_cost, avg_cost, token_num = criterion(logits, lbl_word)
avg_cost.backward()
optimizer.step()
optimizer.clear_grad()
if step_idx % args.print_step == 0 and rank == 0:
total_avg_cost = avg_cost.numpy()
if step_idx == 0:
logger.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f " %
(step_idx, pass_id, batch_id, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
else:
train_avg_batch_cost = args.print_step / (
time.time() - batch_start)
logger.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, avg_speed: %.2f step/sec"
% (
step_idx,
pass_id,
batch_id,
total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)]),
train_avg_batch_cost, ))
batch_start = time.time()
if step_idx % args.save_step == 0 and step_idx != 0:
# Validation
transformer.eval()
total_sum_cost = 0
total_token_num = 0
with paddle.no_grad():
for input_data in eval_loader:
(src_word, trg_word, lbl_word) = input_data
logits = transformer(
src_word=src_word, trg_word=trg_word)
sum_cost, avg_cost, token_num = criterion(logits,
lbl_word)
total_sum_cost += sum_cost.numpy()
total_token_num += token_num.numpy()
total_avg_cost = total_sum_cost / total_token_num
logger.info("validation, step_idx: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f" %
(step_idx, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
transformer.train()
if args.save_model and rank == 0:
model_dir = os.path.join(args.save_model,
"step_" + str(step_idx))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
paddle.save(transformer.state_dict(),
os.path.join(model_dir, "transformer.pdparams"))
paddle.save(optimizer.state_dict(),
os.path.join(model_dir, "transformer.pdopt"))
batch_start = time.time()
batch_id += 1
step_idx += 1
scheduler.step()
train_epoch_cost = time.time() - epoch_start
ce_time.append(train_epoch_cost)
logger.info("train epoch: %d, epoch_cost: %.5f s" %
(pass_id, train_epoch_cost))
if args.save_model and rank == 0:
model_dir = os.path.join(args.save_model, "step_final")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
paddle.save(transformer.state_dict(),
os.path.join(model_dir, "transformer.pdparams"))
paddle.save(optimizer.state_dict(),
os.path.join(model_dir, "transformer.pdopt"))
if __name__ == '__main__':
# 读入参数
yaml_file = './transformer.base.yaml'
with open(yaml_file, 'rt') as f:
args = AttrDict(yaml.safe_load(f))
pprint(args)
# Define data loader
(train_loader), (eval_loader) = create_data_loader(args)
print('training the model')
do_train(args,train_loader,eval_loader)