-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_glue.py
416 lines (381 loc) · 15.2 KB
/
run_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import sys
import random
import time
import math
import distutils.util
from functools import partial
import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.metric import Metric, Accuracy, Precision, Recall
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad, Dict
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.transformers import BertTokenizer
from paddlenlp.transformers import LinearDecayWithWarmup
from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman
from modeling_MegatronBERT import MegatronBertForSequenceClassification
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
METRIC_CLASSES = {
"cola": Mcc,
"sst-2": Accuracy,
"mrpc": AccuracyAndF1,
"sts-b": PearsonAndSpearman,
"qqp": AccuracyAndF1,
"mnli": Accuracy,
"qnli": Accuracy,
"rte": Accuracy,
}
MODEL_CLASSES = {
"megatronbert": (MegatronBertForSequenceClassification, BertTokenizer),
}
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " +
", ".join(METRIC_CLASSES.keys()), )
parser.add_argument(
"--model_type",
default='megatronbert',
type=str,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()), )
parser.add_argument(
"--model_name_or_path",
default='bert-base-cased',
type=str,
help="Path to pre-trained model or shortcut name selected in the list: "
+ ", ".join(
sum([
list(classes[-1].pretrained_init_configuration.keys())
for classes in MODEL_CLASSES.values()
], [])), )
parser.add_argument(
"--output_dir",
default='outputs',
type=str,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
parser.add_argument(
"--learning_rate",
default=1e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument(
"--num_train_epochs",
default=2,
type=int,
help="Total number of training epochs to perform.", )
parser.add_argument(
"--logging_steps",
type=int,
default=100,
help="Log every X updates steps.")
parser.add_argument(
"--save_steps",
type=int,
default=10000,
help="Save checkpoint every X updates steps.")
parser.add_argument(
"--batch_size",
default=16,
type=int,
help="Batch size per GPU/CPU for training.", )
parser.add_argument(
"--weight_decay",
default=0.01,
type=float,
help="Weight decay if we apply some.")
parser.add_argument(
"--warmup_steps",
default=0,
type=int,
help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion"
)
parser.add_argument(
"--warmup_proportion",
default=0.06,
type=float,
help="Linear warmup proportion over total steps.")
parser.add_argument(
"--adam_epsilon",
default=1e-6,
type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument(
"--seed", default=42, type=int, help="random seed for initialization")
parser.add_argument(
"--device",
default="gpu",
type=str,
choices=["cpu", "gpu", "xpu", "npu"],
help="The device to select to train the model, is must be cpu/gpu/xpu/npu."
)
parser.add_argument(
"--use_amp",
type=distutils.util.strtobool,
default=False,
help="Enable mixed precision training.")
parser.add_argument(
"--scale_loss",
type=float,
default=2**15,
help="The value of scale_loss for fp16.")
parser.add_argument(
"--model_dir",
type=str,
required=True,
help="pretrained model dir.")
args = parser.parse_args()
return args
def set_seed(args):
# Use the same data seed(for data shuffle) for all procs to guarantee data
# consistency after sharding.
random.seed(args.seed)
np.random.seed(args.seed)
# Maybe different op seeds(for dropout) for different procs is better. By:
# `paddle.seed(args.seed + paddle.distributed.get_rank())`
paddle.seed(args.seed)
@paddle.no_grad()
def evaluate(model, loss_fct, metric, data_loader):
model.eval()
metric.reset()
for batch in data_loader:
input_ids, segment_ids, labels = batch
attention_mask = input_ids != 0
logits = model(input_ids, attention_mask, segment_ids)[0]
loss = loss_fct(logits, labels)
correct = metric.compute(logits, labels)
metric.update(correct)
res = metric.accumulate()
if isinstance(metric, AccuracyAndF1):
print(
"eval loss: %f, acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s, "
% (
loss.numpy(),
res[0],
res[1],
res[2],
res[3],
res[4], ),
end='')
elif isinstance(metric, Mcc):
print("eval loss: %f, mcc: %s, " % (loss.numpy(), res[0]), end='')
elif isinstance(metric, PearsonAndSpearman):
print(
"eval loss: %f, pearson: %s, spearman: %s, pearson and spearman: %s, "
% (loss.numpy(), res[0], res[1], res[2]),
end='')
else:
print("eval loss: %f, acc: %s, " % (loss.numpy(), res), end='')
model.train()
def convert_example(example,
tokenizer,
label_list,
max_seq_length=512,
is_test=False):
"""convert a glue example into necessary features"""
if not is_test:
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
label = example['labels']
label = np.array([label], dtype=label_dtype)
# Convert raw text to feature
if (int(is_test) + len(example)) == 2:
example = tokenizer(example['sentence'], max_seq_len=max_seq_length)
else:
example = tokenizer(
example['sentence1'],
text_pair=example['sentence2'],
max_seq_len=max_seq_length)
if not is_test:
return example['input_ids'], example['token_type_ids'], label
else:
return example['input_ids'], example['token_type_ids']
def do_train(args):
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args)
args.task_name = args.task_name.lower()
metric_class = METRIC_CLASSES[args.task_name]
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
train_ds = load_dataset('glue', args.task_name, splits="train")
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
trans_func = partial(
convert_example,
tokenizer=tokenizer,
label_list=train_ds.label_list,
max_seq_length=args.max_seq_length)
train_ds = train_ds.map(trans_func, lazy=True)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment
Stack(dtype="int64" if train_ds.label_list else "float32") # label
): fn(samples)
train_data_loader = DataLoader(
dataset=train_ds,
batch_sampler=train_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
if args.task_name == "mnli":
dev_ds_matched, dev_ds_mismatched = load_dataset(
'glue', args.task_name, splits=["dev_matched", "dev_mismatched"])
dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True)
dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True)
dev_batch_sampler_matched = paddle.io.BatchSampler(
dev_ds_matched, batch_size=args.batch_size, shuffle=False)
dev_data_loader_matched = DataLoader(
dataset=dev_ds_matched,
batch_sampler=dev_batch_sampler_matched,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
dev_batch_sampler_mismatched = paddle.io.BatchSampler(
dev_ds_mismatched, batch_size=args.batch_size, shuffle=False)
dev_data_loader_mismatched = DataLoader(
dataset=dev_ds_mismatched,
batch_sampler=dev_batch_sampler_mismatched,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
else:
dev_ds = load_dataset('glue', args.task_name, splits='dev')
dev_ds = dev_ds.map(trans_func, lazy=True)
dev_batch_sampler = paddle.io.BatchSampler(
dev_ds, batch_size=args.batch_size, shuffle=False)
dev_data_loader = DataLoader(
dataset=dev_ds,
batch_sampler=dev_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
num_classes = 1 if train_ds.label_list == None else len(train_ds.label_list)
model = model_class.from_pretrained(
args.model_dir, num_labels=num_classes)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
num_training_steps = args.max_steps if args.max_steps > 0 else (
len(train_data_loader) * args.num_train_epochs)
warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
warmup)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "Norm", "ln"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
beta1=0.9,
beta2=0.999,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
loss_fct = paddle.nn.loss.CrossEntropyLoss(
) if train_ds.label_list else paddle.nn.loss.MSELoss()
metric = metric_class()
if args.use_amp:
scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss)
global_step = 0
tic_train = time.time()
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, segment_ids, labels = batch
attention_mask = input_ids != 0
with paddle.amp.auto_cast(
args.use_amp,
custom_white_list=["layer_norm", "softmax", "gelu"]):
logits = model(input_ids, attention_mask, segment_ids)[0]
loss = loss_fct(logits, labels)
if args.use_amp:
scaler.scale(loss).backward()
scaler.minimize(optimizer, loss)
else:
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.logging_steps == 0:
print(
"global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s"
% (global_step, num_training_steps, epoch, step,
paddle.distributed.get_rank(), loss, optimizer.get_lr(),
args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
if global_step % args.save_steps == 0 or global_step == num_training_steps:
tic_eval = time.time()
if args.task_name == "mnli":
evaluate(model, loss_fct, metric, dev_data_loader_matched)
evaluate(model, loss_fct, metric,
dev_data_loader_mismatched)
print("eval done total : %s s" % (time.time() - tic_eval))
else:
evaluate(model, loss_fct, metric, dev_data_loader)
print("eval done total : %s s" % (time.time() - tic_eval))
if paddle.distributed.get_rank() == 0:
output_dir = os.path.join(args.output_dir,
"%s_ft_model_%d.pdparams" %
(args.task_name, global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
if global_step >= num_training_steps:
return
def print_arguments(args):
"""print arguments"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == "__main__":
args = parse_args()
print_arguments(args)
do_train(args)