Skip to content

Commit

Permalink
Merge branch 'develop' into develop_acceptance_revisions_AA
Browse files Browse the repository at this point in the history
  • Loading branch information
AshishKuls authored Oct 16, 2024
2 parents f9ce0a4 + b17cb0e commit e39fa19
Show file tree
Hide file tree
Showing 12 changed files with 824 additions and 350 deletions.
Binary file not shown.
71 changes: 71 additions & 0 deletions scripts/compare_skims.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# %%
import pandas as pd
import openmatrix as omx
from pathlib import Path

import numpy as np

network_fid_path = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
# network_fid_path = Path(r"D:\TEMP\TM2.2.1.1-0.05")

# %%


def read_matrix_as_long_df(path: Path, run_name):
run = omx.open_file(path, "r")
am_time = np.array(run["AM_da_time"])
index_lables = list(range(am_time.shape[0]))
return (
pd.DataFrame(am_time, index=index_lables, columns=index_lables)
.stack()
.rename(run_name)
.to_frame()
)


a = read_matrix_as_long_df(
r"D:\TEMP\TM2.2.1.1-New_network_rerun\TM2.2.1.1_new_taz\skim_matrices\highway\HWYSKMAM_taz.omx",
"test",
)
# %%
all_skims = []
for skim_matrix_path in network_fid_path.rglob("*AM_taz.omx"):
print(skim_matrix_path)
run_name = skim_matrix_path.parts[6]
all_skims.append(read_matrix_as_long_df(skim_matrix_path, run_name))

all_skims = pd.concat(all_skims, axis=1)
# %%
# %%%
all_skims.to_csv(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\skim_data\skims.csv"
)
# %%
# %%
import geopandas as gpd
from importlib import Path
import pandas as pd

# %%
output_paths_to_consolidate = Path(r"D:\TEMP\output_summaries")
all_files = []
for file in output_paths_to_consolidate.glob("*_roadway_network.geojson"):
run_name = file.name[0:5]
print(run_name)
specific_run = gpd.read_file(file)
specific_run["run_number"] = run_name
all_files.append(specific_run)
# %%
all_files = pd.concat(all_files)
# %%
all_files.to_file(output_paths_to_consolidate / "all_runs_concat.gdb")

# %%

all_files.drop(columns="geometry").to_csv(output_paths_to_consolidate / "data.csv")
# %%
to_be_shape = all_files[["geometry", "model_link_id"]].drop_duplicates()
print("outputting")
to_be_shape.to_file(output_paths_to_consolidate / "geom_package")
238 changes: 238 additions & 0 deletions scripts/compile_model_runs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
# %%
import geopandas as gpd
import pandas as pd
import numpy as np
from pathlib import Path
from tqdm import tqdm
from shapely.geometry import LineString

input_dir = Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\run_result"
)
output_dir = input_dir / "consolidated_3"


# in_file = next(input_dir.rglob('emme_links.shp'))
# print("reading", in_file)
# input2 = gpd.read_file(in_file, engine="pyogrio", use_arrow=True)
# #%%
# print("writing")
# input[["#link_id", "geometry"]].to_file(output_dir / "test_geom.geojson")

scenarios_to_consolidate = (11, 12, 13, 14, 15)
runs_to_consolidate = (3, 4)
# %%


def read_file_and_tag(
path: Path,
columns_to_filter=(
"@ft",
"VOLAU",
"@capacity",
"run_number",
"scenario_number",
"#link_id",
"geometry",
),
) -> pd.DataFrame:
scenario = file.parent.stem
scenario_number = int(scenario.split("_")[-1])
if scenario_number not in scenarios_to_consolidate:
return None

run = file.parent.parent.stem
run_number = int(run.split("_")[-1])
if run_number not in runs_to_consolidate:
return None

return_gdf = gpd.read_file(path, engine="pyogrio")

return_gdf["scenario"] = scenario
return_gdf["scenario_number"] = scenario_number
return_gdf["run"] = run
return_gdf["run_number"] = run_number

if "VOLAU" not in return_gdf.columns:
print(return_gdf.columns)
print("... No VOLAU, filling with zero")
return_gdf["VOLAU"] = 0

return_gdf = return_gdf[list(columns_to_filter)]

# assert return_gdf["#link_id"].is_unique

return return_gdf


def get_linestring_direction(linestring: LineString) -> str:
if not isinstance(linestring, LineString) or len(linestring.coords) < 2:
raise ValueError("Input must be a LineString with at least two coordinates")

start_point = linestring.coords[0]
end_point = linestring.coords[-1]

delta_x = end_point[0] - start_point[0]
delta_y = end_point[1] - start_point[1]

if abs(delta_x) > abs(delta_y):
if delta_x > 0:
return "East"
else:
return "West"
else:
if delta_y > 0:
return "North"
else:
return "South"


# %%

print("Reading Links...", end="")
all_links = []
for file in tqdm(input_dir.rglob("run_*/Scenario_*/emme_links.shp")):
print(file)
all_links.append(read_file_and_tag(file))
links_table = pd.concat(all_links)

print("done")
# %%
scen_map = {11: "EA", 12: "AM", 13: "MD", 14: "PM", 15: "EV"}


def get_return_first_gem(row):
geom_columns = [col for col in row.index if "geometry" in col]
return [
row[col]
for col in geom_columns
if (row[col] is not None) and (row[col] != np.NAN)
][0]


def combine_tables(dfs, columns_same):
return_frame = dfs[0][columns_same]

for df in dfs:
run_number = df["run_number"].iloc[0]

scen_number = df["scenario_number"].iloc[0]
scen_number = scen_map[scen_number]
df["saturation"] = df["VOLAU"] / df["@capacity"]

df = df[["#link_id", "@capacity", "VOLAU", "geometry", "@ft"]].rename(
columns={
"@capacity": f"capacity_run{run_number}_scen{scen_number}",
"VOLAU": f"@volau_run{run_number}_scen{scen_number}",
"saturation": f"@saturation_run{run_number}_scen{scen_number}",
"geometry": f"geometry_run{run_number}_scen{scen_number}",
"@ft": f"ft_run{run_number}_scen{scen_number}",
}
)
# if there are link_ids that are not in the right frame
return_frame = return_frame.merge(
df, how="outer", on="#link_id", validate="1:1"
)
geometry = return_frame.apply(get_return_first_gem, axis=1)
# remove geometries that are not main geometry
return_frame = return_frame.drop(
columns=[col for col in return_frame.columns if "geometry_" in col]
)
return_frame["geometry"] = geometry

return return_frame


all_links_no_none = [
links
for links in all_links
if (links is not None) and (links["#link_id"].is_unique)
]
links_wide_table = combine_tables(all_links_no_none, ["#link_id", "geometry"])

links_wide_table["direction"] = links_wide_table["geometry"].apply(
get_linestring_direction
)
# %%
ft_cols = [col for col in links_wide_table.columns if "ft_" in col]

links_wide_table["ft"] = links_wide_table[ft_cols].max(axis=1)
links_wide_table = links_wide_table.drop(columns=ft_cols)

# %%
links_wide_table.to_file(
Path(
r"Z:\MTC\US0024934.9168\Task_3_runtime_improvements\3.1_network_fidelity\output_summaries\all_links_data"
)
/ "all_data_wide.geojson"
)


# %%
num_iter = {(3, 11): 3, (3, 12): 10, (3, 13): 10, (3, 14): 19, (3, 15): 4, (4, 12): 20}
# %%
all_links_no_none = [
links for links in all_links if (links is not None)
] # and (links["#link_id"].is_unique)]
for df in all_links_no_none:
df["saturation"] = df["VOLAU"] / df["@capacity"]
ft6_sat = [
(
link["run_number"].iloc[0],
link["scenario_number"].iloc[0],
(link.loc[link["@ft"] == 6, "saturation"] > 1).mean(),
)
for link in all_links_no_none
]

y = [val for val in num_iter.values()]
x = [x[-1] for x in ft6_sat]
col = [val[0] for val in num_iter.keys()]

# %%
import matplotlib.pyplot as plt

plt.scatter(x, y, c=col)

# Calculate the trendline
z = np.polyfit(x, y, 1)
p = np.poly1d(z)

# Plot the trendline
plt.plot(x, p(x), color="red")

plt.xlabel("proportion of ft 6 with saturation > 1")
plt.ylabel("number of iterations to solve")
plt.title("Number of iterations to solve (relative gap = 0.05)")
plt.show()
# %%
import matplotlib.pyplot as plt

data = [links_wide_table[col] for col in links_wide_table.iloc[:, 2:].columns]

fig = plt.boxplot(data)
fig.show()

# --------------------------------------------------------------------------
# %%
links_table["direction"] = links_table["geometry"].apply(get_linestring_direction)
# %%
links_table.to_file(output_dir / "all_data.geojson", index=False)


# %%
def get_link_counts(df: pd.DataFrame):
ret_val = df.value_counts("@ft").sort_index().to_frame().T
total = ret_val.sum(axis=1)
total_minus_8 = total - ret_val[8.0].iloc[0]
ret_val["total"] = total
ret_val["total_minus_8"] = total_minus_8

ret_val["run_number"] = df["run_number"].iloc[0]
ret_val["scenario_number"] = df["scenario_number"].iloc[0]
return ret_val


pd.concat([get_link_counts(df) for df in all_links]).sort_values(
by=["run_number", "scenario_number"]
)
31 changes: 30 additions & 1 deletion tm2py/acceptance/simulated.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,7 +386,36 @@ def _reduce_simulated_home_work_flows(self):

return


def _make_simulated_maz_data(self):
root_dir = self.scenario_dict["scenario"]["root_dir"]
in_file = self.scenario_dict["scenario"]["maz_landuse_file"]

df = pd.read_csv(os.path.join(root_dir, in_file))

index_file = os.path.join("inputs", "landuse", "mtc_final_network_zone_seq.csv")

index_df = pd.read_csv(index_file)
join_df = index_df.rename(columns={"N": "MAZ_ORIGINAL"})[
["MAZ_ORIGINAL", "MAZSEQ"]
].copy()

self.simulated_maz_data_df = pd.merge(
df,
join_df,
how="left",
on="MAZ_ORIGINAL",
)

self._make_taz_district_crosswalk()

return

def _make_taz_district_crosswalk(self):
df = self.simulated_maz_data_df[["TAZ_ORIGINAL", "DistID"]].copy()
df = df.rename(columns={"TAZ_ORIGINAL": "taz", "DistID": "district"})
self.taz_to_district_df = df.drop_duplicates().reset_index(drop=True)

return

def _reduce_simulated_rail_access_summaries(self):
if not self.transit_mode_dict:
Expand Down
18 changes: 8 additions & 10 deletions tm2py/components/demand/prepare_demand.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,9 @@ def _prepare_demand(
demand = demand + self._read_demand(file_config, time_period, num_zones)
demand_name = f"{time_period}_{name}"
description = f"{time_period} {description} demand"
self._save_demand(demand_name, demand, description, apply_msa=True)
self._save_demand(
demand_name, demand, description, apply_msa=self.config.apply_msa_demand
)

def _read_demand(self, file_config, time_period, num_zones):
# Load demand from cross-referenced source file,
Expand Down Expand Up @@ -428,7 +430,7 @@ def create_zero_passenger_trips(
self.controller.config.household.transit_demand_file
)
.__str__()
.format(period=time_period),
.format(period=time_period, iter=self.controller.iteration),
"w",
)
# active_out_file = OMXManager(
Expand Down Expand Up @@ -677,12 +679,12 @@ def _read_demand(self, file_config, time_period, skim_set, num_zones):
# Load demand from cross-referenced source file,
# the named demand model component under the key highway_demand_file
if (
self.controller.config.run.warmstart.warmstart
self.controller.config.warmstart.warmstart
and self.controller.iteration == 0
):
source = self.controller.config.run.warmstart
source = file_config["source"]
path = self.controller.get_abs_path(
source.household_transit_demand_file
self.controller.config[source].transit_demand_file
).__str__()
else:
source = file_config["source"]
Expand All @@ -691,11 +693,7 @@ def _read_demand(self, file_config, time_period, skim_set, num_zones):
).__str__()
name = file_config["name"]
return self._read(
path.format(
period=time_period,
# set=skim_set,
# iter=self.controller.iteration
),
path.format(period=time_period, iter=self.controller.iteration),
name,
num_zones,
)
Loading

0 comments on commit e39fa19

Please sign in to comment.