-
Notifications
You must be signed in to change notification settings - Fork 1
/
qz_mu
183 lines (183 loc) · 6.34 KB
/
qz_mu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
digraph {
graph [size="23.25,23.25"]
node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
140491608388080 [label="
(3200, 32)" fillcolor=darkolivegreen1]
140491143817648 [label=SplitBackward0]
140491141315216 -> 140491143817648
140491141315216 [label=AddmmBackward0]
140491141315072 -> 140491141315216
140491713432928 [label="
(64)" fillcolor=lightblue]
140491713432928 -> 140491141315072
140491141315072 [label=AccumulateGrad]
140491141315168 -> 140491141315216
140491141315168 [label=ReluBackward0]
140491141315600 -> 140491141315168
140491141315600 [label=AddmmBackward0]
140491141314832 -> 140491141315600
140491713432688 [label="
(256)" fillcolor=lightblue]
140491713432688 -> 140491141314832
140491141314832 [label=AccumulateGrad]
140491141314880 -> 140491141315600
140491141314880 [label=AddBackward0]
140491141314688 -> 140491141314880
140491141314688 [label=ReshapeAliasBackward0]
140491141316560 -> 140491141314688
140491141316560 [label=UnsafeViewBackward0]
140491289922432 -> 140491141316560
140491289922432 [label=CloneBackward0]
140491289922480 -> 140491289922432
140491289922480 [label=PermuteBackward0]
140491289922624 -> 140491289922480
140491289922624 [label=CudnnBatchNormBackward0]
140491289922720 -> 140491289922624
140491289922720 [label=ReluBackward0]
140491289923008 -> 140491289922720
140491289923008 [label=ConvolutionBackward0]
140491289923104 -> 140491289923008
140491289923104 [label=CudnnBatchNormBackward0]
140491289923392 -> 140491289923104
140491289923392 [label=ReluBackward0]
140491289923632 -> 140491289923392
140491289923632 [label=ConvolutionBackward0]
140491289923776 -> 140491289923632
140491289923776 [label=CudnnBatchNormBackward0]
140491289924016 -> 140491289923776
140491289924016 [label=ReluBackward0]
140491289924256 -> 140491289924016
140491289924256 [label=ConvolutionBackward0]
140491289924400 -> 140491289924256
140491713213152 [label="
(64, 1, 3, 3)" fillcolor=lightblue]
140491713213152 -> 140491289924400
140491289924400 [label=AccumulateGrad]
140491289924352 -> 140491289924256
140491713213792 [label="
(64)" fillcolor=lightblue]
140491713213792 -> 140491289924352
140491289924352 [label=AccumulateGrad]
140491289923968 -> 140491289923776
140491713298736 [label="
(64)" fillcolor=lightblue]
140491713298736 -> 140491289923968
140491289923968 [label=AccumulateGrad]
140491289923872 -> 140491289923776
140491713298976 [label="
(64)" fillcolor=lightblue]
140491713298976 -> 140491289923872
140491289923872 [label=AccumulateGrad]
140491289923680 -> 140491289923632
140491713301776 [label="
(1024, 64, 3, 3)" fillcolor=lightblue]
140491713301776 -> 140491289923680
140491289923680 [label=AccumulateGrad]
140491289923488 -> 140491289923632
140491713301936 [label="
(1024)" fillcolor=lightblue]
140491713301936 -> 140491289923488
140491289923488 [label=AccumulateGrad]
140491289923296 -> 140491289923104
140491713302176 [label="
(1024)" fillcolor=lightblue]
140491713302176 -> 140491289923296
140491289923296 [label=AccumulateGrad]
140491289923248 -> 140491289923104
140491713302416 [label="
(1024)" fillcolor=lightblue]
140491713302416 -> 140491289923248
140491289923248 [label=AccumulateGrad]
140491289923056 -> 140491289923008
140491713303696 [label="
(64, 1024, 3, 3)" fillcolor=lightblue]
140491713303696 -> 140491289923056
140491289923056 [label=AccumulateGrad]
140491289922864 -> 140491289923008
140491713303856 [label="
(64)" fillcolor=lightblue]
140491713303856 -> 140491289922864
140491289922864 [label=AccumulateGrad]
140491289922672 -> 140491289922624
140491713304096 [label="
(64)" fillcolor=lightblue]
140491713304096 -> 140491289922672
140491289922672 [label=AccumulateGrad]
140491289922240 -> 140491289922624
140491713304336 [label="
(64)" fillcolor=lightblue]
140491713304336 -> 140491289922240
140491289922240 [label=AccumulateGrad]
140491141314640 -> 140491141314880
140491141314640 [label=AddmmBackward0]
140491141314496 -> 140491141314640
140491713311536 [label="
(448)" fillcolor=lightblue]
140491713311536 -> 140491141314496
140491141314496 [label=AccumulateGrad]
140491712503840 -> 140491141314640
140491712503840 [label=SoftmaxBackward0]
140491289922528 -> 140491712503840
140491289922528 [label=DivBackward0]
140491289923440 -> 140491289922528
140491289923440 [label=AddBackward0]
140491289923824 -> 140491289923440
140491289923824 [label=ViewBackward0]
140491289924208 -> 140491289923824
140491289924208 [label=AddmmBackward0]
140491289924544 -> 140491289924208
140491713310496 [label="
(16)" fillcolor=lightblue]
140491713310496 -> 140491289924544
140491289924544 [label=AccumulateGrad]
140491289924160 -> 140491289924208
140491289924160 [label=ReluBackward0]
140491289924592 -> 140491289924160
140491289924592 [label=AddmmBackward0]
140491289924784 -> 140491289924592
140491713309216 [label="
(256)" fillcolor=lightblue]
140491713309216 -> 140491289924784
140491289924784 [label=AccumulateGrad]
140491141314688 -> 140491289924592
140491289924832 -> 140491289924592
140491289924832 [label=TBackward0]
140491289924928 -> 140491289924832
140491713308816 [label="
(256, 448)" fillcolor=lightblue]
140491713308816 -> 140491289924928
140491289924928 [label=AccumulateGrad]
140491289922912 -> 140491289924208
140491289922912 [label=TBackward0]
140491289924976 -> 140491289922912
140491713309616 [label="
(16, 256)" fillcolor=lightblue]
140491713309616 -> 140491289924976
140491289924976 [label=AccumulateGrad]
140491289922336 -> 140491141314640
140491289922336 [label=TBackward0]
140491289923584 -> 140491289922336
140491713311376 [label="
(448, 16)" fillcolor=lightblue]
140491713311376 -> 140491289923584
140491289923584 [label=AccumulateGrad]
140491141314976 -> 140491141315600
140491141314976 [label=TBackward0]
140491141314592 -> 140491141314976
140491713312656 [label="
(256, 448)" fillcolor=lightblue]
140491713312656 -> 140491141314592
140491141314592 [label=AccumulateGrad]
140491141315408 -> 140491141315216
140491141315408 [label=TBackward0]
140491141314736 -> 140491141315408
140491713432528 [label="
(64, 256)" fillcolor=lightblue]
140491713432528 -> 140491141314736
140491141314736 [label=AccumulateGrad]
140491143817648 -> 140491608388080
140491608388720 [label="
(3200, 64)" fillcolor=darkolivegreen3]
140491141315216 -> 140491608388720
140491608388720 -> 140491608388080 [style=dotted]
}