From ead3d8177eaebd1a99188dca86641ff3154af4d2 Mon Sep 17 00:00:00 2001 From: CVMart Date: Wed, 12 May 2021 16:01:46 +0800 Subject: [PATCH] Update CVPR2021.md --- CVPR2021.md | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/CVPR2021.md b/CVPR2021.md index 4ec8a09..384d9fc 100644 --- a/CVPR2021.md +++ b/CVPR2021.md @@ -1193,6 +1193,9 @@ ### 行为识别/动作识别/检测/分割/定位(Action/Activity Recognition) +[22] Home Action Genome: Cooperative Compositional Action Understanding(家庭行动基因组:合作组成行动的理解)
+[paper](https://arxiv.org/abs/2105.05226)

+ [21] Weakly Supervised Action Selection Learning in Video(视频中的弱监督动作选择学习)
[paper](https://arxiv.org/abs/2105.02439) | [code](https://github.com/layer6ai-labs/ASL)

@@ -1959,6 +1962,9 @@ ### 表征学习(Representation Learning) +[15] Representation Learning via Global Temporal Alignment and Cycle-Consistency(通过全局时间对齐和周期一致性进行表示学习)
+[paper](https://arxiv.org/abs/2105.05217)

+ [14] Multi-Perspective LSTM for Joint Visual Representation Learning(用于联合视觉表示学习的多视角LSTM)
[paper](https://arxiv.org/abs/2105.02802) | [code](https://github.com/arsm/MPLSTM)

@@ -2414,6 +2420,9 @@ ## 视觉推理/视觉问答(Visual Reasoning/VQA) +[9] Found a Reason for me? Weakly-supervised Grounded Visual Question Answering using Capsules(找到了我的理由? 使用胶囊进行弱监督的地面视觉问答)
+[paper](https://arxiv.org/abs/2105.04836)

+ [8] Bridge to Answer: Structure-aware Graph Interaction Network for Video Question Answering(通往答案的桥梁:用于视频问答的结构感知图交互网络)
[paper](https://arxiv.org/abs/2104.14085)

@@ -3218,6 +3227,15 @@ Densely Coded Labels (DCL)是 Circular Smooth Label (CSL)的优化版本。DCL # 4. CVPR2021 Workshop +[81] EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration(ESPN:用于模糊图像恢复的增强型深金字塔网络)
+[paper](https://arxiv.org/abs/2105.04872)

+ +[80] ChaLearn LAP Large Scale Signer Independent Isolated Sign Language Recognition Challenge: Design, Results and Future Research(ChaLearn LAP大规模签名人独立的隔离手语识别挑战:设计,结果和未来研究)
+[paper](https://arxiv.org/abs/2105.05066)

+ +[79] Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic Annotator via Coordinate Alignment(重新考虑雷达的作用:通过坐标对齐的摄像机-雷达数据集和系统注释器)
+[paper](https://arxiv.org/abs/2105.05207)

+ [78] Good Practices and A Strong Baseline for Traffic Anomaly Detection(【AI CITY第一名】良好做法和强大的交通异常检测基准)
[paper](https://arxiv.org/abs/2105.03827) | [code](https://github.com/Endeavour10020/AICity2021-Anomaly-Detection)