-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_d2.py
209 lines (162 loc) · 8.04 KB
/
train_d2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import sys
import yaml
import numpy as np
import torch as T
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model_d2 import DiacritizerD2
from data_utils import DatasetUtils
from dataloader import DataRetriever
SEED = 1337
T.random.manual_seed(SEED)
T.manual_seed(SEED)
np.random.seed(SEED)
class Trainer:
def __init__(self, config, device=T.device('cuda')):
self.device = device
self.config = config
self.debug = config["debug"]
self.run_title = config["run-title"]
self.save_path = config["paths"]["save"]
self.embs_path = config["paths"]["word-embs"]
self.lr_factor = config["train"]["lr-factor"]
self.lr_patience = config["train"]["lr-patience"]
self.min_lr = config["train"]["lr-min"]
self.init_lr = config["train"]["lr-init"]
self.optimizer_name = config['train'].get('optimizer', 'adam').lower()
self.weight_decay_ = config["train"]["weight-decay"]
self.best_loss = np.inf
self.stopping_counter = 0
self.stopping_delta = config["train"]["stopping-delta"]
self.stopping_patience = config["train"]["stopping-patience"]
self.data_utils = DatasetUtils(config)
vocab_size = len(self.data_utils.letter_list)
word_embeddings = self.data_utils.embeddings
self.model = DiacritizerD2(config, self.device)
self.model.build(word_embeddings, vocab_size)
self.resume = config['train']['resume']
self.start_epoch = 0
self.epochs = config["train"]["epochs"]
if self.resume:
model_data = T.load(config["paths"]["resume"], map_location=T.device(self.device))
state_dict = model_data['state_dict']
self.start_epoch = model_data['last_epoch'] + 1
if config["train"]["resume-lr"]:
self.init_lr = model_data["last_lr"]
self.best_loss = model_data["val_loss"]
self.model.load_state_dict(state_dict)
print(f"> Loading Checkpoint {config['paths']['resume']} with Best Val-Loss: {self.best_loss:.4f} and Stopping Counter {self.stopping_counter}")
print(f"> Optimizer {self.optimizer_name} with initial LR {self.init_lr}")
if self.optimizer_name == 'adamw':
self.optimizer = T.optim.AdamW(self.model.parameters(), lr=self.init_lr, weight_decay=self.weight_decay_)
elif self.optimizer_name == 'rmsprop':
self.optimizer = T.optim.RMSprop(self.model.parameters(), lr=self.init_lr, weight_decay=self.weight_decay_)
else:
self.optimizer = T.optim.Adam(self.model.parameters(), lr=self.init_lr, weight_decay=self.weight_decay_)
print("> Creating Dataloaders")
train_set = "train-small" if "small" in self.embs_path else "train"
self.train_loader = DataLoader(
DataRetriever(train_set, self.data_utils),
batch_size=config["train"]["batch-size"],
shuffle=True,
num_workers=config["loader"]["num-workers"]
)
self.val_loader = DataLoader(
DataRetriever("val", self.data_utils),
batch_size=min(config["train"]["batch-size"], 128),
shuffle=False,
num_workers=config["loader"]["num-workers"]
)
self.model.to(self.device)
print(self.model)
def train(self, epoch):
n_batches = len(self.train_loader)
train_loss = np.zeros(n_batches)
progress = tqdm(range(n_batches), ascii=False, dynamic_ncols=True, unit_scale=True)
self.model.train()
for idx, (inputs, outputs) in enumerate(self.train_loader):
self.optimizer.zero_grad()
loss = self.model.step(inputs, outputs, None)
loss.backward()
self.optimizer.step()
train_loss[idx] = loss.item()
progress.update()
progress.set_description(
f"Training: Epoch [{epoch}/{self.epochs}], Loss: {train_loss[:idx+1].mean():.4f} | ({idx}/{n_batches})")
return train_loss.mean()
def validate(self, epoch):
n_batches = len(self.val_loader)
val_loss = np.zeros(n_batches)
progress = tqdm(range(n_batches), ascii=False, dynamic_ncols=True, unit_scale=True)
self.model.eval()
for idx, (inputs, outputs) in enumerate(self.val_loader):
loss = self.model.step(inputs, outputs, None)
val_loss[idx] = loss.item()
progress.update()
progress.set_description(
f"Validating: Epoch [{epoch}/{self.epochs}], Loss: {val_loss[:idx+1].mean():.4f} | ({idx}/{n_batches})")
return val_loss.mean()
def run(self):
filepath = os.path.join(self.save_path, self.run_title, self.run_title+"_{epoch:02d}_{val_loss:.4f}.pt")
best_filepath = os.path.join(self.save_path, self.run_title, self.run_title+".best.pt")
reduce_lr = T.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, factor=self.lr_factor, patience=self.lr_patience, min_lr=self.min_lr)
writer = SummaryWriter(log_dir=os.path.join("logs", self.run_title))
print("[INFO] Training Model:", self.run_title)
for epi in range(self.start_epoch, self.epochs):
train_loss = self.train(epi)
writer.add_scalar("loss/train", train_loss, epi)
val_loss = self.validate(epi)
writer.add_scalar("loss/val", val_loss, epi)
reduce_lr.step(val_loss)
last_lr = reduce_lr._last_lr[0] if hasattr(reduce_lr, "_last_lr") else self.init_lr
writer.add_scalar("lr", last_lr, epi)
if (val_loss < self.best_loss) and self.save_path and not self.debug:
model_data = {
'last_epoch': epi,
'last_lr': last_lr,
'val_loss': val_loss,
'stopping_counter': self.stopping_counter,
'state_dict': self.model.state_dict()
}
T.save(model_data, filepath.format(epoch=epi, val_loss=val_loss))
if os.path.isfile(best_filepath):
os.remove(best_filepath)
T.save(model_data, best_filepath)
self.best_loss = val_loss
self.stopping_counter = 0
else:
self.stopping_counter += 1
if self.stopping_counter > self.stopping_patience:
break
print(f"\nEpoch [{epi}/{self.epochs}] | Training Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f} | Best Val Loss: {self.best_loss:.4f} | LR: {last_lr} | DDO: {self.model.diac_dropout_p}")
writer.flush()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Paramaters')
parser.add_argument('-c', '--config', type=str,
default="config.yaml", help='path of config file')
parser.add_argument('--skip', action='store_true',
help='Skip existing run')
parser.add_argument('--force', action='store_true',
help='Force reruns')
args = parser.parse_args()
with open(args.config, 'r', encoding="utf-8") as file:
config = yaml.load(file, Loader=yaml.FullLoader)
run_title = config["run-title"]
exp_path = os.path.join(config["paths"]["save"], config["run-title"])
if not os.path.isdir(exp_path): os.mkdir(exp_path)
if not args.force:
if os.path.isfile(config["paths"]["load"]) and not config["train"]["resume"] and not config["debug"]:
if not args.skip:
print('[WARNING] Found existing run with name: ', run_title)
cont = input('Continue?')
if cont.lower() not in ['y', 'yes']:
sys.exit(0)
else:
sys.exit(0)
with open(os.path.join(exp_path, "config.yaml"), 'w', encoding="utf-8") as fout:
yaml.dump(config, fout)
model = Trainer(config)
model.run()