-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_d2.py
241 lines (186 loc) · 7.64 KB
/
model_d2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch as T
import numpy as np
from tqdm import tqdm
from torch import nn
from torch.nn import functional as F
from components.k_lstm import K_LSTM
from components.attention import Attention
class DiacritizerD2(nn.Module):
def __init__(self, config, device='cuda'):
super(DiacritizerD2, self).__init__()
self.max_word_len = config["train"]["max-word-len"]
self.max_sent_len = config["train"]["max-sent-len"]
self.char_embed_dim = config["train"]["char-embed-dim"]
self.final_dropout_p = config["train"]["final-dropout"]
self.sent_dropout_p = config["train"]["sent-dropout"]
self.diac_dropout_p = config["train"]["diac-dropout"]
self.vertical_dropout = config['train']['vertical-dropout']
self.recurrent_dropout = config['train']['recurrent-dropout']
self.recurrent_dropout_mode = config['train'].get('recurrent-dropout-mode', 'gal_tied')
self.recurrent_activation = config['train'].get('recurrent-activation', 'sigmoid')
self.sent_lstm_units = config["train"]["sent-lstm-units"]
self.word_lstm_units = config["train"]["word-lstm-units"]
self.decoder_units = config["train"]["decoder-units"]
self.sent_lstm_layers = config["train"]["sent-lstm-layers"]
self.word_lstm_layers = config["train"]["word-lstm-layers"]
self.cell = config['train'].get('rnn-cell', 'lstm')
self.num_layers = config["train"].get("num-layers", 2)
self.RNN_Layer = K_LSTM
self.batch_first = config['train'].get('batch-first', True)
self.device = device
self.num_classes = 15
def build(self, wembs: T.Tensor, abjad_size: int):
self.closs = F.cross_entropy
self.bloss = F.binary_cross_entropy_with_logits
rnn_kargs = dict(
recurrent_dropout_mode=self.recurrent_dropout_mode,
recurrent_activation=self.recurrent_activation,
)
self.sent_lstm = self.RNN_Layer(
input_size=300,
hidden_size=self.sent_lstm_units,
num_layers=self.sent_lstm_layers,
bidirectional=True,
vertical_dropout=self.vertical_dropout,
recurrent_dropout=self.recurrent_dropout,
batch_first=self.batch_first,
**rnn_kargs,
)
self.word_lstm = self.RNN_Layer(
input_size=self.sent_lstm_units * 2 + self.char_embed_dim,
hidden_size=self.word_lstm_units,
num_layers=self.word_lstm_layers,
bidirectional=True,
vertical_dropout=self.vertical_dropout,
recurrent_dropout=self.recurrent_dropout,
batch_first=self.batch_first,
return_states=True,
**rnn_kargs,
)
self.char_embs = nn.Embedding(
abjad_size,
self.char_embed_dim,
padding_idx=0,
)
self.attention = Attention(
kind="dot",
query_dim=self.word_lstm_units * 2,
input_dim=self.sent_lstm_units * 2,
)
self.word_embs = T.tensor(wembs, dtype=T.float32)
self.classifier = nn.Linear(self.attention.Dout + self.word_lstm_units * 2, self.num_classes)
self.dropout = nn.Dropout(self.final_dropout_p)
def forward(self, sents, words, labels):
#^ sents : [b ts]
#^ words : [b ts tw]
#^ labels: [b ts tw]
word_mask = words.ne(0.).float()
#^ word_mask: [b ts tw]
if self.training:
q = 1.0 - self.sent_dropout_p
sdo = T.bernoulli(T.full(sents.shape, q))
sents_do = sents * sdo.long()
#^ sents_do : [b ts] ; DO(ts)
wembs = self.word_embs[sents_do]
#^ wembs : [b ts dw] ; DO(ts)
else:
wembs = self.word_embs[sents]
#^ wembs : [b ts dw]
sent_enc = self.sent_lstm(wembs.to(self.device))
#^ sent_enc : [b ts dwe]
sentword_do = sent_enc.unsqueeze(2)
#^ sentword_do : [b ts _ dwe]
sentword_do = self.dropout(sentword_do * word_mask.unsqueeze(-1))
#^ sentword_do : [b ts tw dwe]
word_index = words.view(-1, self.max_word_len)
#^ word_index: [b*ts tw]?
cembs = self.char_embs(word_index)
#^ cembs : [b*ts tw dc]
sentword_do = sentword_do.view(-1, self.max_word_len, self.sent_lstm_units * 2)
#^ sentword_do : [b*ts tw dwe]
char_embs = T.cat([cembs, sentword_do], dim=-1)
#^ char_embs : [b*ts tw dcw] ; dcw = dc + dwe
char_enc, _ = self.word_lstm(char_embs)
#^ char_enc: [b*ts tw dce]
char_enc_reshaped = char_enc.view(-1, self.max_sent_len, self.max_word_len, self.word_lstm_units * 2)
# #^ char_enc: [b ts tw dce]
omit_self_mask = (1.0 - T.eye(self.max_sent_len)).unsqueeze(0).to(self.device)
attn_enc, attn_map = self.attention(char_enc_reshaped, sent_enc, word_mask.bool(), prejudice_mask=omit_self_mask)
# # #^ attn_enc: [b ts tw dae]
attn_enc = attn_enc.reshape(-1, self.max_word_len, self.attention.Dout)
# #^ attn_enc: [b*ts tw dae]
final_vec = T.cat([attn_enc, char_enc], dim=-1)
diac_out = self.classifier(self.dropout(final_vec))
#^ diac_out: [b*ts tw 7]
diac_out = diac_out.view(-1, self.max_sent_len, self.max_word_len, self.num_classes)
#^ diac_out: [b ts tw 7]
if not self.batch_first:
diac_out = diac_out.swapaxes(1, 0)
return diac_out, attn_map
def step(self, xt, yt, mask=None):
xt[1] = xt[1].to(self.device)
xt[2] = xt[2].to(self.device)
yt = yt.to(self.device)
#^ yt: [b ts tw]
diac, _ = self(*xt)
loss = self.closs(diac.view(-1, self.num_classes), yt.view(-1))
return loss
def predict(self, dataloader):
training = self.training
self.eval()
preds = {'haraka': [], 'shadda': [], 'tanween': []}
print("> Predicting...")
for inputs, _ in tqdm(dataloader, total=len(dataloader)):
inputs[0] = inputs[0].to(self.device)
inputs[1] = inputs[1].to(self.device)
diac, _ = self(*inputs)
output = np.argmax(T.softmax(diac.detach(), dim=-1).cpu().numpy(), axis=-1)
#^ [b ts tw]
haraka, tanween, shadda = flat_2_3head(output)
preds['haraka'].extend(haraka)
preds['tanween'].extend(tanween)
preds['shadda'].extend(shadda)
self.train(training)
return (
np.array(preds['haraka']),
np.array(preds["tanween"]),
np.array(preds["shadda"]),
)
def flat_2_3head(output):
haraka, tanween, shadda = [], [], []
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
# 0, F, FF, K, KK, D, DD, S, Sh, ShF, ShFF, ShK, ShKK, ShD, ShDD
convert = [
[0,0,0],
[1,0,0],
[1,1,0],
[2,0,0],
[2,1,0],
[3,0,0],
[3,1,0],
[4,0,0],
[0,0,1],
[1,0,1],
[1,1,1],
[2,0,1],
[2,1,1],
[3,0,1],
[3,1,1]
]
b, ts, tw = output.shape
for b_idx in range(b):
h_s, t_s, s_s = [], [], []
for w_idx in range(ts):
h_w, t_w, s_w = [], [], []
for c_idx in range(tw):
c = convert[int(output[b_idx, w_idx, c_idx])]
h_w += [c[0]]
t_w += [c[1]]
s_w += [c[2]]
h_s += [h_w]
t_s += [t_w]
s_s += [s_w]
haraka += [h_s]
tanween += [t_s]
shadda += [s_s]
return haraka, tanween, shadda