-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_dynamic.py
400 lines (327 loc) · 17.3 KB
/
train_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel, DynamicScene, GTPTGaussianModel
from utils.general_utils import safe_state
from utils.system_utils import searchForMaxIteration
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
import shutil
import copy
import torch.nn.functional as F
import plyfile
import numpy as np
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def entropy_regularization_loss(current_frame_gaussian, last_frame_gaussian):
# current_frest = current_frame_gaussian._features_rest
current_scale = current_frame_gaussian._scaling
current_rotation = current_frame_gaussian._rotation
current_opacity = current_frame_gaussian._opacity
current_attribute = []
for i in range(current_scale.shape[1]):
current_attribute.append(current_scale[:, i])
for i in range(current_rotation.shape[1]):
current_attribute.append(current_rotation[:, i])
for i in range(current_opacity.shape[1]):
current_attribute.append(current_opacity[:, i])
last_scale = last_frame_gaussian._scaling
last_rotation = last_frame_gaussian._rotation
last_opacity = last_frame_gaussian._opacity
last_attribute = []
for i in range(last_scale.shape[1]):
last_attribute.append(last_scale[:, i])
for i in range(last_rotation.shape[1]):
last_attribute.append(last_rotation[:, i])
for i in range(last_opacity.shape[1]):
last_attribute.append(last_opacity[:, i])
quantization_range = 255
loss = 0.0
for idx in range(len(current_attribute)):
delta_attribute = current_attribute[idx] - last_attribute[idx]
# if zero return
if torch.sum(delta_attribute) == 0:
return 0.0
# delta_attribute_normalize = (delta_attribute - torch.min(delta_attribute)) / (torch.max(delta_attribute) - torch.min(delta_attribute))
delta_attribute_min = torch.min(delta_attribute)
delta_attribute_max = torch.max(delta_attribute)
delta_attribute_normalize = (delta_attribute - delta_attribute_min) / (delta_attribute_max - delta_attribute_min) * quantization_range
# generate -1/2 to 1/2 noise
disturb_noise = np.random.uniform(-0.5, 0.5)
disturb_delta_attribute = delta_attribute_normalize + disturb_noise
disturb_delta_attribute_up = disturb_delta_attribute + 0.5
disturb_delta_attribute_down = disturb_delta_attribute - 0.5
m1 = torch.distributions.normal.Normal(torch.mean(disturb_delta_attribute_up), torch.std(disturb_delta_attribute_up))
m2 = torch.distributions.normal.Normal(torch.mean(disturb_delta_attribute_down), torch.std(disturb_delta_attribute_down))
cdf1 = m1.cdf(disturb_delta_attribute)
cdf2 = m2.cdf(disturb_delta_attribute)
cdf_diff = cdf1 - cdf2
loss += -torch.log2(torch.abs(cdf_diff).sum()) / current_attribute[idx].shape[0]
return loss
def temporal_loss(current_frame_gaussian, last_frame_gaussian):
# current_frest = current_frame_gaussian._features_rest
# current_xyz = current_frame_gaussian._xyz
# current_fdc = current_frame_gaussian._features_dc
current_scale = current_frame_gaussian._scaling
current_rotation = current_frame_gaussian._rotation
current_opacity = current_frame_gaussian._opacity
current_attribute = [current_scale, current_rotation, current_opacity]
# last_frest = last_frame_gaussian._features_rest
# last_xyz = last_frame_gaussian._xyz
# last_fdc = last_frame_gaussian._features_dc
last_scale = last_frame_gaussian._scaling
last_rotation = last_frame_gaussian._rotation
last_opacity = last_frame_gaussian._opacity
last_attribute = [last_scale, last_rotation, last_opacity]
loss = 0.0
for idx in range(len(current_attribute)):
att_loss = l2_loss(current_attribute[idx], last_attribute[idx])
loss += att_loss
return loss
def train_rt_network(dataset, scene, pipe, last_model_path, init_model_path, gtp_iter, load_last_rt_model, load_init_rt_model):
first_iter = 0
gaussians = GTPTGaussianModel(dataset.sh_degree)
# find the last checkpoint
last_pcd_iter = searchForMaxIteration(os.path.join(last_model_path, "point_cloud"))
last_pcd_path = os.path.join(last_model_path, "point_cloud", "iteration_" + str(last_pcd_iter), "point_cloud.ply")
print("Loading last pcd model from: ", last_pcd_path)
gaussians.load_ply(last_pcd_path)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
lambda_dssim = 0.2
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, gtp_iter), desc="Training T progress")
first_iter += 1
for iteration in range(first_iter, gtp_iter + 1):
iter_start.record()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
bg = background
# first predict gtp
gaussians.global_predict()
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - lambda_dssim) * Ll1 + lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
if iteration == gtp_iter:
progress_bar.close()
if iteration % 10 == 0:
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
# Optimizer step
if iteration < gtp_iter:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
with torch.no_grad():
print("\n[ITER {}] Saving GTP Gaussians".format(iteration))
save_gtp_pcd_path = os.path.join(dataset.model_path, "gtp_pcd/iteration_{}".format(iteration))
gaussians.save_ply(os.path.join(save_gtp_pcd_path, "point_cloud.ply"))
print("\n[ITER {}] Saving GTP Checkpoint".format(iteration))
# save_gtp_ckpt_path = os.path.join(dataset.model_path, "gtp_ckpt/iteration_{}".format(iteration))
# os.makedirs(save_gtp_ckpt_path, exist_ok = True)
# gaussians.rt_model.dump_ckpt(os.path.join(save_gtp_ckpt_path, "rt_ckpt.pth"))
def finetune(dataset, scene, opt, pipe, last_model_path, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
gaussians = GaussianModel(dataset.sh_degree)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
# load gtp pcd and finetune
last_model_iter = searchForMaxIteration(os.path.join(dataset.model_path, "gtp_pcd"))
print("Loading last gtp model from: ", os.path.join(dataset.model_path, "gtp_pcd", "iteration_" + str(last_model_iter)))
gaussians.load_ply(os.path.join(dataset.model_path, "gtp_pcd", "iteration_" + str(last_model_iter), "point_cloud.ply"))
gaussians.training_setup(opt)
last_gaussians = GaussianModel(dataset.sh_degree)
last_model_iter = searchForMaxIteration(os.path.join(last_model_path, "point_cloud"))
print("Temporal loss and entropy Loading last pcd model from: ", os.path.join(last_model_path, "point_cloud", "iteration_" + str(last_model_iter), "point_cloud.ply"))
last_gaussians.load_ply(os.path.join(last_model_path, "point_cloud", "iteration_" + str(last_model_iter), "point_cloud.ply"))
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Finetune progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
temporal_loss_value = temporal_loss(gaussians, last_gaussians)
entropy_loss = entropy_regularization_loss(gaussians, last_gaussians)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) + opt.lambda_temporal * temporal_loss_value + opt.lambda_entropy * entropy_loss
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), gaussians)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
# always save gaussian after finetune
with torch.no_grad():
print("\n[ITER {}] Saving Gaussians".format(iteration))
save_pcd_path = os.path.join(dataset.model_path, "point_cloud/iteration_{}".format(iteration))
gaussians.save_ply(os.path.join(save_pcd_path, "point_cloud.ply"))
def dynamic_training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, start_frame, end_frame, interval_frame):
if not os.path.exists(dataset.model_path):
os.makedirs(dataset.model_path)
print("Using keyframe {}".format(start_frame))
# test if keyframe is in the dataset
frame_list = os.listdir(dataset.model_path)
if str(start_frame) not in frame_list:
print("Keyframe model not find")
return
gtp_iterations = 800
# gtp_iterations = 4000
# finetune_iterations = 3500
finetune_iterations = 2000
load_last_rt_model = False
load_init_rt_model = False
testing_iterations = [finetune_iterations]
# record code
os.makedirs(os.path.join(dataset.model_path, "record"), exist_ok = True)
shutil.copy(__file__, os.path.join(dataset.model_path, "record", "train_dynamic.py"))
shutil.copy("config/config_hash.json", os.path.join(dataset.model_path, "record", "config_hash.json"))
shutil.copy("scene/gaussian_model.py", os.path.join(dataset.model_path, "record", "gaussian_model.py"))
shutil.copy("scene/global_t_field.py", os.path.join(dataset.model_path, "record", "global_rt_field.py"))
init_model_path = os.path.join(dataset.model_path, str(0))
for frame in range(start_frame + 1, end_frame + 1, interval_frame):
print("Training frame {}".format(frame))
# ready dataset and opt into frame
frame_dataset = copy.copy(dataset)
frame_dataset.model_path = os.path.join(dataset.model_path, str(frame))
frame_dataset.source_path = os.path.join(dataset.source_path, str(frame))
frame_opt = copy.copy(opt)
frame_opt.iterations = finetune_iterations
# ready scene
tb_writer = prepare_output_and_logger(frame_dataset)
scene = DynamicScene(frame_dataset)
# learn from last frame
last_frame = frame - interval_frame
last_model_path = os.path.join(dataset.model_path, str(last_frame))
# train rt for the frame using the keyframe model
train_rt_network(frame_dataset, scene, pipe, last_model_path, init_model_path, gtp_iterations, load_last_rt_model, load_init_rt_model)
# finetune wrapped model
finetune(frame_dataset, scene, frame_opt, pipe, last_model_path, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from)
# clean up
del scene
del tb_writer
print("Training frame {} done".format(frame))
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, gaussians):
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[3_500])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[3_500])
parser.add_argument("--st", type=int, default=0)
parser.add_argument("--ed", type=int, default=0)
parser.add_argument("--interval", type=int, default=0)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
torch.autograd.set_detect_anomaly(args.detect_anomaly)
print(f"train with keyframe {args.st}")
print(f"train from frame {args.st + args.interval} to frame {args.ed}")
dynamic_training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.st, args.ed, args.interval)
# All done
print("\nTraining complete.")