-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
76 lines (62 loc) · 2.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import joblib
from data_processing import load_data, preprocess_data
from model_training import train_models, evaluate_model, save_model
from recommendation import recommend_products
from sklearn.model_selection import train_test_split
def main():
# Check if the model already exists in the 'models' directory
models_dir = 'models'
model_path = os.path.join(models_dir, 'best_model.pkl')
vectorizer_path = os.path.join(models_dir, 'tfidf_vectorizer.pkl')
scaler_path = os.path.join(models_dir, 'scaler.pkl')
model_exists = os.path.exists(model_path) and \
os.path.exists(vectorizer_path) and \
os.path.exists(scaler_path)
if model_exists:
print("Loading the existing trained model and preprocessing objects from 'models/' directory...")
# Load the model and preprocessing objects
model = joblib.load(model_path)
tfidf_vectorizer = joblib.load(vectorizer_path)
scaler = joblib.load(scaler_path)
# Load the dataset for recommendations
df = load_data('datasets/cosmetics.csv')
else:
print("No pre-trained model found. Training model for the first time...")
# Load and preprocess the data
df = load_data('datasets/cosmetics.csv')
X, y, tfidf_vectorizer, scaler = preprocess_data(df)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Train the model
model = train_models(X_train, y_train)
# Evaluate the model
evaluate_model(model, X_test, y_test, y.columns)
# Save the model and preprocessing objects
save_model(model, tfidf_vectorizer, scaler)
# User interaction for recommendations
print("\nWelcome to the Skincare Recommendation System!")
print("Please select your skin type(s) from the following options:")
print("1. Combination")
print("2. Dry")
print("3. Normal")
print("4. Oily")
print("5. Sensitive")
# Get user input
choices = input("Enter the numbers corresponding to your skin types, separated by commas: ")
choice_map = {'1': 'Combination', '2': 'Dry', '3': 'Normal', '4': 'Oily', '5': 'Sensitive'}
selected_types = [choice_map.get(choice.strip()) for choice in choices.split(',') if choice.strip() in choice_map]
if not selected_types:
print("Invalid selection. Please try again.")
else:
# Get recommendations
recommendations = recommend_products(df, selected_types, model, tfidf_vectorizer, scaler)
print("\nRecommended Products:")
if isinstance(recommendations, str):
print(recommendations)
else:
print(recommendations.to_string(index=False))
if __name__ == "__main__":
main()